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Abstract: Relationships between demographic, anthropometric, inflammatory, lipid and glucose
tolerance markers in connection with the fat but fit paradigm were investigated by supervised and
unsupervised learning. Data from 81 apparently healthy participants (87% females) were used to
generate four classes of fatness and fitness. Principal Component Analysis (PCA) revealed that
the principal component was preponderantly composed of glucose tolerance parameters. IL-10
and high-density lipoprotein, low-density lipoprotein (LDL), and total cholesterol, along with body
mass index (BMI), were the most important features according to Random Forest based recursive
feature elimination. Decision Tree classification showed that these play a key role into assigning each
individual in one of the four classes, with 70% accuracy, and acceptable classification agreement,
κ = 0.54. However, the best classifier with 88% accuracy and κ = 0.79 was the Naïve Bayes. LDL and
BMI partially mediated the relationship between fitness and fatness. Although unsupervised learning
showed that the glucose tolerance cluster explains the highest quote of the variance, supervised
learning revealed that the importance of IL-10, cholesterol levels and BMI was greater than the
glucose tolerance PCA cluster. These results suggest that fitness and fatness may be interconnected
by anti-inflammatory responses and cholesterol levels. Randomized controlled trials are needed to
confirm these preliminary outcomes.

Keywords: VO2max; anti-inflammatory; machine learning; PCA

1. Introduction

In the 1950s, first observational evidence emerged showing that physically active
individuals had a lower risk of cardiovascular disease (CVD) [1]. This evidence was
later corroborated by the protective effect found for cardiorespiratory fitness (CRF), as
shown in the Aerobics Center Longitudinal Study in 1989 [2,3]. Since then, several reviews,
systematic reviews, and meta-analysis have confirmed and highlighted the protective role
of CRF regardless the level of fatness [4–7]. According to the “fat but fit paradox”, people
who have a high level of CRF may be better protected from the risk of CVD than leaner
people who have low CRF [8]. However, only a small proportion of US citizens can be
considered “fat and fit”, and obesity is independently associated with low CRF, simply
because obese people are generally less active [9].

Lahoz-Garcia et al. [10] showed an interesting partial mediation of CRF between diet
and obesity in schoolchildren, meaning that higher CRF contributes, for the same diet, to a
lower fat mass (FM). Consistently, others have found that moderate to vigorous physical
activity levels, thus higher CRF, were independently associated with a lower atherogenic
index of plasma, namely blood fat strongly related with CVD, regardless of diet; and that
central adiposity mediated, in other words explains, the relationship between moderate to
vigorous physical activity levels and atherogenic index of plasma [11]. This would rule

Int. J. Environ. Res. Public Health 2021, 18, 1800. https://doi.org/10.3390/ijerph18041800 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-4244-8220
https://orcid.org/0000-0001-6224-6581
https://doi.org/10.3390/ijerph18041800
https://doi.org/10.3390/ijerph18041800
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18041800
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/18/4/1800?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 1800 2 of 17

in favor of the protective role of higher CRF against CVD risk. Moreover, poor CRF has
been associated with glucose intolerance [12] and a higher risk of insulin resistance in
apparently healthy individuals [13]. Furthermore, it has been hypothesized that low CRF
could provide an early sign of insulin resistance [14].

Obesity has been shown to be associated with low level systemic inflammation in
connection with increased adipose tissue mass [15,16]. In turn there is evidence, in animal
studies, of the possible role of inflammation on over-nutrition [17]. However, physical
activity may counteract over-nutrition behavior at the hypothalamic level by means of
anti-inflammatory signaling mediated interleukin-10 (IL-10) [17]. An anti-inflammatory
role of IL-10 has been found also in rat skeletal muscle tissue [18]. In humans it was
found consistently that intensive cycling is able to increase, 1 hour after the exercise, gene
expression of several interleukins including IL-10, but not IL-6 [19]. High intensity exercise
showed an acute, 30 minutes, IL-10 and IL-6 increase in overweight-obese inactive individ-
uals, but this increase was not elicited by moderate intensity exercise [20]. Nevertheless,
two weeks of high intensity exercise in overweight-obese unfit individuals did not show
a chronic increase in IL-10 nor in IL-6 [21,22]. Rather, a chronic elevation of IL-10 found
in obese women was reduced by 12 weeks of lifestyle intervention, including 30 minutes
of exercise a day, only in those obese women who did not have metabolic syndrome [23].
Furthermore, higher serum concentration of IL-10 was found in older adults with a higher
volume of physical activity [24]. Additionally, animal models show a possible protective
role of anti-inflammatory signaling on cardiac function (i.e., left ventricular end-diastolic
pressure) [25], a finding supported in human studies involving coronary heart disease
patients, obese and diabetic individuals [26,27].

To further investigate the relationship between cardiovascular fitness and body com-
position characteristics i.e., fatness, we used a database, which combined demographic,
blood lipids, insulin resistance, and inflammatory variables in association with CRF and
FM% values. Our approach was to create a categorical variable composed of four classes,
based on CRF and FM% levels. The four classes or categories are termed High Fatness
with High Fitness (HFHF), High Fatness with Low Fitness (HFLF), Low Fatness with High
Fitness (LFHF) and finally Low Fatness with Low Fitness (LFLF). The cutoff levels between
categories were identified according to the literature [28,29]. We have applied a data driven
approach consisting of four steps. First is an unsupervised learning phase, where the
variables are clustered using Principal Component Analysis (PCA) [30]. PCA allows clus-
tering of the variables into principal components. Second, a supervised learning phase was
deployed to use those clusters in the feature importance selection. We opted for feeding
the PCA components as well as the other variables into the feature importance selection
algorithm because, although PCA combines uncorrelated variables with one another in
such a way that each principal component will maximize variance, this does not mean
that the components per se will be the most important classification features. Therefore,
as a second step, we have used the same categorical four classes’ dependent variable for
a random forest based feature importance selection. In detail, we have used the Boruta
algorithm, which is an improvement of the Random Forest feature selection model, also
known as recursive feature elimination [31,32]. The Boruta algorithm adds randomness to
the importance evaluation algorithm, so that the certainty about the importance of a given
variable is increased. In short, a randomized copy of the variables is made at each iteration
of the random forest importance computation. Thus, if a variable has a higher importance
than the maximal importance of all randomized attributes it is retained. If there is some
uncertainty, or if a variable has a lower importance it is rejected or discarded [32].

Third, a decision tree was used in order to define the discriminating path to the
four classes of fitness and fatness. This classification model was used to visualize which
independent variables would best split the data points into the four classes. However,
classification was not limited to the decision tree. Another four classification models were
used as well with the intent of testing which classification model would maximize the use
of the selected independent variables, or features. The four alternative machine learning
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classification models were Multiple Logistic Regression, Decision Tree, Naïve Bayes, and
K-nearest neighbors. This step was necessary to test whether the features selected would
effectively classify the data points. Finally, a fourth step, a mediation and moderation
analysis [33] was conducted in order to investigate whether attenuation between CRF
and FM% would occur when one of the variables extracted was used as covariate. We
hypothesized that we would find attenuations, as previously shown in the literature [10,11],
by means of variables linked to fat metabolism. The overall aim of this study was to use a
data driven approach, employing machine-learning techniques, to generate new insights
connecting fitness and fatness with demographic, blood lipids, insulin resistance, and
inflammatory variables.

2. Materials and Methods
2.1. Study Design and Participants

The data analyzed in this study originated from two separate data collections con-
ducted at Bangor University. Data from 81 apparently healthy participants (10 males and
71 females) were included in the analysis. All participants were informed about the study
protocols and objectives, and provided written consent prior to the start of the studies.
Study protocols were approved by the Ethics Committee of the School of Sports, Exercise
and Health Sciences Department of Bangor University in conformity with the Declaration
of Helsinki. The design of this study was purely observational.

2.2. Body Composition, Fat Mass Percentage, Blood Markers and Cardiorespiratory
Fitness Assessment

Participants were pre-screened for cardiovascular diseases by means of the Ameri-
can Heart Association/American College of Sports Medicine Pre-Participation Question-
naire [34]. However, participants with elevated fasting levels of glucose, insulin and lipids
were not per se excluded from this study. Body composition, fasting blood lipid profile and
CRF (VO2max) were determined using standardized protocols described previously [21].
A cardiorespiratory fitness test was executed on a cycle ergometer (Corival 400, Lode,
Groningen, The Netherlands), the protocol consisted of an incremental exercise test to ex-
haustion (1min at 50 + 20 W increments per minute). Oxygen uptake was measured breath
by breath by means of a metabolic card (ZAN 600 CPET, Oberthulba, Germany). Fasting
blood lipid profile (total Cholesterol, LDL and HDL), plasma insulin, plasma glucose,
leptin and cytokines (IL-6, IL-10, and TNF-α) collection and analysis is also described in
Sartor et al. [21]. Plasma glucose was analyzed by immobilized enzymatic assay (YSI 2300
STAT, Incorporated Life Sciences, Yellow Springs, OH, USA). Lipid profile was analyzed
from plasma samples by optic enzymatic assay (Reflotron®, Roche Diagnostics, Mannheim,
Germany). Plasma insulin was analyzed by ELISA (ultrasensitive human insulin ELISA
kit, Mercodia, Uppsala, Sweden). Cytokines (IL-10, IL-6 and TNF-α) and adipokines were
also analyzed from fasting plasma samples by ELISA (Bender MedSystems GmbH, Austria
and BioVendor, Laboratoní medicína, Czech Republic, respectively). Insulin sensitivity and
β-cell function were estimated using fasting plasma insulin and glucose by means of the
Homeostatic model assessment 2 (HOMA2) [35].

2.3. Classification Criteria

Four classes were extracted from the database described above; a Higher-Fatness
with Higher-Fitness (HFHF) group, a Higher-Fatness with Lower-Fitness (HFLF) group,
a Lower-Fatness with Higher-Fitness (LFHF) group, and finally a Lower-Fatness with
Lower-Fitness (LFLF) group. The grouping criteria were taken from Gallagher et al. [28]
for fatness, and the American College of Sports Medicine guidelines [29] for fitness. The
criteria are represented in Table 1.
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Table 1. Classification criteria for body fat percentage and relative VO2max (mL/kg/min), age and sex.

Age Males Females

Young if AGE < 40 years AND if Sex = 1 AND FatMass% ≥ 26
then Higher-Fatness

Elseif Sex = 0 AND FatMass% ≥ 39
then Higher-Fatness

Middle-Age if 59 ≥ AGE ≥ 40 AND if Sex = 1 AND FatMass% ≥ 29
then Higher-Fatness

Elseif Sex = 0 AND FatMass% ≥ 41
then Higher-Fatness

Older if AGE ≥ 60 AND if Sex = 1 AND FatMass% ≥ 31
then Higher-Fatness

Elseif Sex = 0 AND FatMass% ≥ 43
then Higher-Fatness

Young/Middle/Older Else Lower-Fatness Else Lower-Fatness

Young If AGE < 29 AND if Sex = 1 AND if relVO2max > 45.7
then Higher-Fitness

Elseif Sex = 0 AND if relVO2max > 39.5
then Higher-Fitness

Middle-Age
If 39 ≥ AGE > = 30 AND if Sex = 1 AND if relVO2max

> 44.4
then Higher-Fitness

Elseif Sex = 0 AND if relVO2max > 36.7
then Higher-Fitness

If 49 ≥ AGE ≥ 40 AND if Sex = 1 AND if relVO2max >
42.4

then Higher-Fitness

Elseif Sex = 0 AND if OrelVO2max > 35.1
then Higher-Fitness

Older If AGE > 50 AND if Sex = 1 AND if relVO2max > 38.3
then Higher-Fitness

Elseif Sex = 0 AND if OrelVO2max > 31.4
then Higher-Fitness

Young/Middle/Older Else Lower-Fitness Else Lower-Fitness

2.4. Data Analytics
2.4.1. Preprocessing

The full dataset collected at Bangor University premises was loaded into RStudio
(Version 1.2.5033, 2009–2019 RStudio Inc., Boston, MA, USA). This initial dataset included
25 independent variables. A first missing data filter was applied and all variables with
more than 70% missing data were discarded. After this step, 19 independent variables
were retained. Two variables were converted into factorial variables, the classification
variable as explained in Table 1 and the variable Sex. The retained variables were visualized
to reveal imbalance. This visualization showed an imbalance towards females, as they
represented 87% of our dataset. The imbalance was a consequence of the original research
question of one data collection being confined to females. A zero- and near zero-variance
predictors analysis was conducted, by means of nearZeroVar function (caret R package), to
eliminate any independent variables that would not add anything in explaining variance
(Table 2). However, no variables were rejected based on these criteria [36]. The preProcess
function (caret R package) was used to center and scale the variables and missing data, were
imputed using the bagImpute function which uses the bootstrap aggregating method [37].
Outliers were detected as values outside boxplot notches, using boxplot function (graphics
R package). The notches were set as the median, plus or minus the standard error [38]. The
detected outliers were excluded from the analysis.
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Table 2. Zero- and near zero-variance predictors analysis.

Frequency
Ratio Percent Unique Zero Variance Near Zero

Variance

Sex 7.100000 2.469136 FALSE FALSE
Age 1.555556 23.456790 FALSE FALSE

Height 1.142857 28.395062 FALSE FALSE
Weight 1.000000 77.777778 FALSE FALSE

BMI 1.500000 75.308642 FALSE FALSE
Chol 1.000000 72.839506 FALSE FALSE
HDL 1.000000 62.962963 FALSE FALSE
LDL 1.333333 69.135802 FALSE FALSE
TG 5.250000 49.382716 FALSE FALSE

Fgluc 1.500000 62.962963 FALSE FALSE
Leptin 1.000000 76.543210 FALSE FALSE
Insulin 1.000000 77.777778 FALSE FALSE

BetacellF 1.000000 77.777778 FALSE FALSE
InsSens 1.000000 80.246914 FALSE FALSE
InsRes 1.000000 43.209877 FALSE FALSE

TNFalpha 1.333333 66.666667 FALSE FALSE
IL-6 1.333333 71.604938 FALSE FALSE
IL-10 1.000000 50.617284 FALSE FALSE
RER 1.200000 34.567901 FALSE FALSE

BMI = Body Mass Index, Chol = Fasting Total Cholesterol, HDL = Fasting High Density Lipoprotein,
LDL = Fasting Low Density Lipoprotein, TG = Fasting TriGlycerides, Fgluc = Fasting Glucose, BetacellF = β
cell Function, InsSens = Insulin Sensitivity, InsRes = Insulin Resistance, TNFalpha = Tumor Necrosis Factor α,
IL-6 = Interleukin-6, IL-10 = Interleukin-6, RER = Respiratory Exchange Ratio.

2.4.2. Principal Component Analysis and Feature Selection

Once the data were pre-processed a principal component analysis was conducted to
find what combination of variables would explain the variability of the data. The function
PCA (FactoMineR R package) as described in [39] was used. Eigenvalues, which represent
the amount of the variation explained by each principal component, were extracted by
fviz_eig. The number of retained components was set so that 70% of the total variance is
explained. Correlation plots of all variables were produced using the corrplot function
(corrplot R package). The importance of the twenty variables including five new Principal
Components was evaluated by a recursive feature elimination technique based on the
Boruta Random Forest method (Boruta R package) [32]. The Boruta function compares
original importance attributes against importance achievable by shadow random variables,
in iterations until convergence. The principal components were also included in the feature
selection step, to test whether the most variation corresponded with the highest importance.

2.4.3. Decision Tree

A decision tree was built using the nine variables selected by the Boruta algorithm,
with the exclusion of the PCA dimensions. As first step, the class imbalance was compen-
sated by means of weights for simple random sample (i.e., 1/probability). The decision
tree was constructed using the rpart function (rpart R package) and vitalized by rpart.plot
(rpart.plot R package). Tree depth was set as the smallest tree within one standard error of
the minimum cross validation error [40].

2.4.4. Classification Models

Multiple logistic regression, decision tree, naïve Bayes, and κ-nearest neighbors classi-
fication model were trained on our dataset by means of the train function (caret R package)
as described in Kuhn [36]. The classes were the four subgroups (HFHF, HFLF, LFHF, LFLF)
described above. In order to perform the multinomial logistic regression, the multinom
method was selected within the train function. In order to evaluate the performance of
each single classifier, accuracy tables and confusion matrices were generated, using the
confusionMatrix in caret and visualized thanks to ggplot (ggplot2 R package) [36].
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2.4.5. Mediation and Moderation Analysis

Mediation analysis was conducted by means of the mediation R package [41]. Before
analyzing, the mediation and moderation raw data for each variable were assessed for
normality and linearity by means of quantile-quantile plots (qqnorm function, from the
basic stats R package), centered, and scaled when required, as described earlier. Linear
regressions models, via the lm function (stats R package), were built between the mediator
and the independent variable (relative VO2max), and between the dependent variable (Fat
Mass percentage) and the independent variable-mediator combined. The mediate function
simulated the comparison between these two linear regressions, showing if the mediation
would add a significant contribution in relating the independent and dependent variables.
The mediation analysis resulted in the Average Causal Mediation Effects (ACME), the
Average Direct Effects (ADE), and the combined effects (Total Effect), and the proportion
mediated (Prop. Mediated). Moderation was executed by the gylma and stargazer R
packages. A linear model was built between the dependent variable and independent
variable plus the moderator, and between the dependent variable and the moderator plus
the product.

2.5. Statistical Analysis

The descriptive statistics, means and standard deviations of all participants for the 15
included variables and for each of the four subgroups were analysed using the arsenal R
package [42]. Data for the four subgroups were split using the filter function supported by
the dplyr R package. One-way ANOVAs were performed to compare the four sub-groups
and they were followed-up when appropriate both by the tableby function (arsenal R
package). Significance level was set at 0.05.

3. Results
3.1. Subgrouping and Difference Analysis

As described in the method section, four subgroups were derived according to par-
ticipants’ CRF, body FM%, age, and sex. The subgroups sizes are not evenly distributed.
Two subgroups HFHF and LFHF are rather small (N = 9, N = 6, respectively). In line with
our intention to form four groups of different fatness and fitness levels, the ANOVA and
follow-up showed significant differences between the two higher-fitness and lower-fitness
levels. Moreover, the HFHF group and the LFHF groups also showed a significant differ-
ence in fitness, the lower in fatness being fitter (40.1 ± 2.9 mL/kg/min) than the higher in
fatness (34.3 ± 4.3 mL/kg/min). As for the higher fatness/lower fatness split, this was fully
achieved, as confirmed by the ANOVA and follow-ups (Table 3). As to be expected, BMI
was significantly higher in the HFLF group compared with the LFHF and LFLF subgroups.
There was a trend towards a higher BMI for the HFLF group when compared with the
HFHF group, and a trend towards a higher BMI in the HFHF group compared with the
LFHF group. It is to be noted that BMI does not fully reflect FM% (Table 3). Total fasting
plasma Cholesterol levels showed significantly higher levels in the HFLF compared with
the HFHF and LFHF groups. There was a strong trend towards a higher cholesterol level
in the LFLF group compared with the HFHF group. The LFHF group showed higher HDL
than the HFHF group. The LFLF group had a higher HDL level than the HFLF group.
Moreover, there were two strong trends for a higher HDL in the LFLF group and the LFHF
group versus the HFHF and the HFLF groups, respectively. LDL was higher in the HFLF
group compared with the HFHF, LFHF, and LFLF groups. Finally, fasting plasma insulin
was higher in the HFLF compared with the HFHF. Interestingly two, LFHF and LFLF,
groups showed higher insulin values than the HFHF group (Table 3).
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Table 3. Descriptive Statistics of Database, difference analysis and follow-up analyses.

HFHF (N = 9) HFLF (N = 47) LFHF
(N = 6) LFLF (N = 19) Total (N = 81) ANOVA

p Value

t-Test
Follow-Up
HFHF vs.

HFLF
p Value

t-Test
Follow-Up
HFHF vs.

LFHF
p Value

t-Test
Follow-Up
HFHF vs.

LFLF
p Value

t-Test
Follow-Up
HFLF vs.

LFHF
p Value

t-Test
Follow-up
HFLF vs.

LFLF
p Value

t-Test
Follow-Up
LFHF vs.

LFLF
p Value

Relative VO2max
(mL/kg/min) <0.001 <0.001 0.013 <0.001 <0.001 0.346 <0.001

Mean(SD) 34.349 (4.237) 25.492 (6.432) 40.123 (2.992) 26.968 (3.272) 27.906 (6.932)
Range 29.560–42.530 14.050–41.700 35.680–44.400 19.300–31.500 14.050–44.400

Fat Mass % <0.001 0.108 0.003 0.003 <0.001 <0.001 0.065
Mean(SD) 41.951 (5.686) 45.842 (6.686) 31.395 (4.828) 35.548 (4.510) 41.925 (7.871)

Range 32.100–47.500 29.800–57.240 25.400–37.750 26.180–40.500 25.400–57.240
Age, yrs 0.063

Mean (SD) 42.444 (7.764) 34.787 (13.454) 24.500 (8.666) 33.526 (12.624) 34.580 (12.866)
Range 33.000–50.000 19.000–57.000 19.000–42.000 20.000–49.000 19.000–57.000
BMI 0.003 0.063 0.099 0.687 0.009 0.005 0.454

Mean (SD) 31.174 (1.572) 33.728 (3.949) 29.165 (2.828) 30.577 (4.217) 32.367 (4.061)
Range 27.580–33.080 26.970–44.990 25.000–31.440 25.300–39.230 25.000–44.990

Height, m 0.894
Mean (SD) 1.671 (0.114) 1.662 (0.092) 1.657 (0.047) 1.681 (0.099) 1.667 (0.093)

Range 1.570–1.950 1.500–1.950 1.580–1.710 1.540–1.950 1.500–1.950
Weight, kg 0.138
Mean (SD) 87.458 (13.453) 93.392 (14.219) 80.335 (10.806) 87.141 (18.855) 90.299 (15.427)

Range 67.990–119.050 63.400–125.690 62.500–91.630 61.750–125.690 61.750–125.690
Cholesterol,

mmol/L 0.006 0.003 0.995 0.055 0.013 0.447 0.113

Mean (SD) 3.839 (0.623) 4.756 (0.830) 3.837 (0.753) 4.573 (1.003) 4.543 (0.904)
Range 3.210–5.020 2.590–6.260 2.830–4.970 3.170–6.320 2.590–6.320

HDL, mmol/L 0.008 0.900 0.025 0.056 0.057 0.004 0.873
Mean (SD) 1.023 (0.205) 1.040 (0.395) 1.368 (0.327) 1.407 (0.554) 1.149 (0.445)

Range 0.610–1.420 0.370–2.490 1.110–1.790 0.700–2.590 0.370–2.590
LDL, mmol/L <0.001 0.002 0.367 0.388 <0.001 0.037 0.186

N-Miss 0 1 0 0 1
Mean (SD) 2.456 (0.509) 3.221 (0.667) 2.165 (0.699) 2.769 (1.006) 2.949 (0.816)

Range 1.860–3.240 1.910–4.460 1.230–2.890 0.360–4.560 0.360–4.560
Fglucose,
mmol/L 0.237

N-Miss 0 0 0 1 1
Mean (SD) 5.416 (0.652) 5.078 (0.802) 4.665 (0.565) 5.030 (0.351) 5.074 (0.700)

Range 4.710–6.360 3.850–9.050 3.800–5.300 4.190–5.460 3.800–9.050
Leptin, ng /mL 0.118

N-Miss 0 0 1 0 1
Mean (SD) 16.966 (10.307) 29.711 (15.740) 22.058 (18.130) 29.883 (16.539) 27.840 (15.895)
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Table 3. Cont.

HFHF (N = 9) HFLF (N = 47) LFHF
(N = 6) LFLF (N = 19) Total (N = 81) ANOVA

p Value

t-Test
Follow-Up
HFHF vs.

HFLF
p Value

t-Test
Follow-Up
HFHF vs.

LFHF
p Value

t-Test
Follow-Up
HFHF vs.

LFLF
p Value

t-Test
Follow-Up
HFLF vs.

LFHF
p Value

t-Test
Follow-up
HFLF vs.

LFLF
p Value

t-Test
Follow-Up
LFHF vs.

LFLF
p Value

Range 1.380–26.760 2.690–59.970 3.070–48.840 5.470–57.640 1.380–59.970
Insulin, pmol/L 0.040 0.012 0.023 0.039 0.630 0.184 0.722

N-Miss 0 0 1 0 1
Mean (SD) 5.667 (2.978) 11.053 (6.038) 9.722 (2.363) 9.021 (4.129) 9.881 (5.415)

Range 1.730–9.640 1.210–28.090 7.350–12.400 2.410–17.470 1.210–28.090
TNFalpha,

pg/mL 0.992

Mean (SD) 1.411 (1.669) 1.476 (2.253) 1.188 (1.952) 1.432 (2.046) 1.437 (2.093)
Range 0.280–4.920 0.240–10.900 0.270–5.170 0.240–7.070 0.240–10.900

IL-6, pg/mL 0.045 0.087 0.418 0.183 0.028 0.394 0.061
Mean (SD) 1.609 (0.525) 1.118 (0.811) 1.933 (0.983) 1.294 (0.589) 1.274 (0.777)

Range 0.800–2.200 0.000–3.120 0.380–3.040 0.190–2.250 0.000–3.120
IL-10, pg/mL 0.138

N-Miss 0 0 1 0 1
Mean (SD) 0.864 (0.224) 0.841 (0.332) 1.130 (0.848) 1.108 (0.662) 0.925 (0.470)

Range 0.430–1.190 0.030–1.700 0.030–2.370 0.040–2.250 0.030–2.370

HFHF = Higher-Fatness with Higher-Fitness group, HFLF = Higher-Fatness with Lower-Fitness group, LFHF = Lower-Fatness with Higher-Fitness group, LFLF = Lower-Fatness with Lower-Fitness group,
VO2max = maximal oxygen uptake, BMI = Body Mass Index, HDL = Fasting High Density Lipoprotein, LDL = Fasting Low Density Lipoprotein, TNFalpha = Tumor Necrosis Factor α, IL-6 = Interleukin-6,
IL-10 = Interleukin-6. Significant p-levels are highlighted in bold.
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3.2. Principal Component Analysis

The independent variables, once filtered for missing data, were clustered by means
of principal component analysis. Five principal component dimensions were found that
explained 70% of the variance (Figure 1). Dimension 1 was dominated by glucose tolerance
features, dimension 2 by Leptin and Sex, dimension 3 was constituted by lipid profile,
dimension 4 by triglycerides and glucose, and, finally, dimension 5 by BMI and weight.
(Figure 1). In Figure 2 the classification and the weight of the single individuals is shown
when the first two components are put in relation.

These five dimensions were further included in the feature selection process. Recursive
feature elimination based on random forest showed that the stronger features in describing
the four groups were IL-10, BMI, total cholesterol, HDL, LDL, dimension 1, beta cell
function, dimension 4, IL-6, Age, dimension 3, and weight. In Figure 2 the interrelationship
of the first two PCA components is shown and the four groups are clustered. Fitter groups
tend to develop along dimension 1 while the less fit along dimension 2.
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3.3. Classification Models

The Random Forest based recursive feature elimination Boruta algorithm found twelve
variables as certainly important in classifying the four fatness and fitness classes (Figure 3).
Amongst these twelve are PCA dimensions 1,4 and 3, in order of importance. While the algo-
rithm is uncertain about dimension 5 and discards dimension 2. IL-10, BMI, and cholesterol
levels are clearly the most important variables. In Figure S1 the first 10 selected variables
are shown as boxplot. Additionally, in Figure S1 linear correlations between variables are
displayed, showing how the retained variables still carry most of the correlations.
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When the twelve variables, including the PCA dimensions, selected by the Boruta
importance algorithm were used to generate the classification model, we found acceptable
classification performances. In fact, the Multiple Logistic Regression model showed a
classification accuracy of 0.77 (95% CI: 0.6717, 0.8627), significantly higher than the No
Information Rate (0.4691), and a κ-coefficient of 0.65, Figure 4. The Decision Tree model,
displayed in Figure 5, although having the lowest accuracy (0.70, 95% CI: 0.5919, 0.8001)
amongst the models generated here, still had an accuracy significantly higher than its No
Information Rate (0.432), and an acceptable κ-coefficient (0.54) (Figure 4). The Naïve Bayes
classifier showed the highest accuracy (0.88, 95% CI: 0.7847, 0.9392), significantly higher
than the No Information Rate (0.58), and a moderate κ-coefficient equal to 0.79 (Figure 4).
Finally, the K-Nearest Neighbors classifier had an accuracy of 0.73 (95% CI: 0.6181, 0.8213),
which was, however, not higher than the No Information Rate (0.76), with a rather weak
agreement, a κ-coefficient of 0.47 (Figure 4). Overall, the latter performed worse than the
other classification models.
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3.4. Mediation and Moderation Analysis

All selected variables were analyzed for mediation and moderation. As shown by the
quantile-quantile plots in Figure 6, LDL and BMI did not require further scaling and/or
centering and were the only two variables to show a significant partial mediation effect
between CRF and FM% (Figure 7). Details of the causal mediation analysis are captured in
Table 4.
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Table 4. Causal Mediation Analysis, Quasi-Bayesian Confidence Intervals.

Estimate 95% CI Lower 95% CI Upper p-Value

ACME (LDL) −0.0843 −0.1813 −0.01 0.024 *
ADE (LDL) −0.5221 −0.7414 −0.30 <0.001 ***

Total Effect LDL) −0.6063 −0.8271 −0.40 <0.001 ***
Prop. Mediated (LDL) 0.1308 0.0164 0.31 0.024 *

ACME (BMI) −0.1078 −0.2205 −0.02 0.012 *
ADE (BMI) −0.4996 −0.7034 −0.30 <0.001 ***

Total Effect (BMI) −0.6075 −0.8211 −0.40 <0.001 ***
Prop. Mediated (BMI) 0.1728 0.0397 0.36 0.012 *

LDL = Low Density Lipoprotein, BMI = Body Mass Index, ACME = Average Causal Mediation Effect,
ADE = Average Direct Effect, Prop. Mediated = Proportion of the effect Mediated. Significant values: *** <0.001,
* <0.05. N = 81, Simulations: 1000.

4. Discussion

This present study embraces artificial intelligence as a tool to provide new insight
into the fat but fit paradox [8]. Using unsupervised and supervised machine learning ap-
proaches to interrogate existing physiological data, this work indicates connection between
markers of dyslipidemia, inflammation and cardiorespiratory fitness that reveal possible
functional interaction of physiological systems underpinning the “fat but fit paradox”.

4.1. Descriptive Statistics in Relation to Fatness and Fitness

We have created four classes, or groups, in line with population normative cut-off
values [28,29]. Consistently, these groups differed significantly from one another in terms
of fitness and fatness (Table 3). Fasting total cholesterol levels and LDL were significantly
higher in the HFLF group, while HDL was higher in the groups with lower fatness. The
decision tree depicted in Figure 5 shows how well HDL and LDL alone could differen-
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tiate the HFHF group from the other groups. Although IL-10 did not show significant
differences between the four groups, whereas IL-6 did, IL-10 seemed to be involved in the
differentiation of individuals with lower fitness level in function of their fatness (Figure 5).
Moreover, the Analysis of Variance amongst the four groups also showed differences in
fasting insulin levels. Fasting insulin was the highest in the HFLF group and the lowest in
the HFHF group (Table 3). This is of particular interest because it seemed to be associated
with fitness rather than with fatness levels. Fitness has been shown to play an important
role in protecting against glucose intolerance [43]. This may be related to the well-known
effect of muscle contractile activity, hence exercise training, on insulin sensitivity [44].

4.2. Machine Learning

Principal component analysis clustered the various markers available in this study so
that they could better explain the variance of the fatness and fitness categorical variable.
This resulted in PCA Dimension 1, mainly composed of glucose tolerance indicators, such
as fasting insulin, insulin sensitivity, and insulin resistance, as well as beta cell function
derived from the HOMA2 model (Figure 1). However, supervised learning, namely the
random Forest based feature selection algorithm, revealed that the importance of IL-10,
cholesterol levels (i.e., HDL, LDL and total Cholesterol) along with BMI in classifying the
four classes was greater than that of the above mentioned glucose tolerance PCA cluster.
The interesting aspect of our approach is that our analysis clearly points towards dominant
features, namely IL-10, LDL, HDL, BMI, for categorizing our four groups, in competition
with other features, which are just as well known to be influenced by fatness and fitness.
Besides the potential exercise dependent link between IL-10 and insulin/leptin sensitivity
in the hypothalamus in animal studies [17], exercise was found to increase IL-10 levels in
overweight-obese human subjects [20]. An interlink between fatness and IL-10, however,
was found in obese subject after weight loss, revealing higher IL-10 levels [45]. Therefore,
distinct features of our data could point towards an important discriminating function
of IL-10 and LDL/BMI for fatness and fitness classification and could be linked to these
findings. Moreover, exercise has been found to effect LDL as well as HDL levels [46].

4.3. Partial Mediation

Fatness and fitness are significantly inversely related [47]. This was confirmed by
our data. In addition to this, however, we found that CRF is indirectly related to FM%
through the mediation of LDL and BMI. Previous literature found that BMI could mediate
CRF and cardio-metabolic risk in schoolchildren [48]. Another investigation in schoolchil-
dren using a large dataset showed that CRF may have a beneficial effect on lipid profile,
insulin metabolism and inflammation independent of fatness [49]. Our results seem to
lead in the same direction. Specific effects of exercise training, of a high enough intensity,
to promote aerobic capacity improvements have been linked to a decrease in concentra-
tion of atherogenic ox-LDL [46,50]. In addition, upregulation of fatty acid metabolism
and transport through exercise dependent signaling pathways (particularly peroxisome
proliferator-activated receptor) [51,52] and concurrent alterations in lipid profiles [53,54]
are well described. Interestingly, IL-10 was found to be linked with LDL level as IL-10 was
shown to induce uptake of LDL by fluid-phase endocytoses in macrophages leading to
lowered LDL plasma levels [55].

4.4. Implications

We are aware that our study is retrospective. Thus, it provides a limited level of
evidence. It is beyond the purpose of this study to accept or not the hypothesis that fitness
plays a protective role in people with higher level of fatness. Yet the discriminating role
that anti-inflammatory and cholesterol levels seem to make sense when addressing fatness
and fitness may point in the direction of “healthy obesity” when the CRF level is high [4].
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4.5. Limitations

The current study is based on data from 81 individuals. Several variables, such as
systolic and diastolic Blood Pressure and C-Reactive Protein, had to be excluded from
the analysis because of missing data. The observations and conclusions drawn from this
study would need to be verified in a larger dataset. This study does not provide direct
experimental evidence, but is merely observational and retrospective. These considerations
need to be taken into account when evaluating our results and conclusions. Our dataset has
more females than males, and although sex did not appear to play a key role in determining
the classification, we cannot exclude that, with a higher number of males this factorial
variable would or could have had a greater weight. Finally, by dividing our dataset into
four classes we observed that these were not evenly distributed. This issue was partially
mitigated by balancing, using class weights.

5. Conclusions

Our data analytics approach has shown a potential key role of IL-10 as well as HDL,
LDL, total Cholesterol and BMI in the classification of people according to their fatness and
fitness levels. Unsupervised learning showed that a cluster of glucose tolerance related
variables explains the highest quote of the variance of the categorical variable. However,
supervised learning did not select this PCA cluster. Mediation analysis showed that LDL
and BMI partially explain the association between fitness and fatness. These results suggest
that CRF and FM% may be interconnected by anti-inflammatory responses and cholesterol
blood levels. This may be in line with the protective role of cardiorespiratory fitness
suggested in recent years. However, large randomized controlled trials are needed to
validate this hypothesis experimentally and conclusively.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
1/18/4/1800/s1, Figure S1: Boxplot of selected variables, and correlation matrices before and after
the selection.
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