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Abstract

This study investigated the genetic components of ADHD and ASD by examining the

cross-disorder trait of emotion recognition problems. The genetic burden for ADHD

and ASD on previously identified emotion recognition factors (speed and accuracy of

visual and auditory emotion recognition) and classes (Class 1: Average visual, impul-

sive auditory; Class 2: Average-strong visual & auditory; Class 3: Impulsive & impre-

cise visual, average auditory; Class 4: Weak visual & auditory) was assessed using

ASD and ADHD polygenic risk scores (PRS). Our sample contained 552 participants:

74 with ADHD, 85 with ASD, 60 with ASD + ADHD, 177 unaffected siblings of

ADHD or ASD probands, and 156 controls. ADHD- and ASD-PRS, calculated from

the latest ADHD and ASD GWAS meta-analyses, were analyzed across these emo-

tion recognition factors and classes using linear mixed models. Unexpectedly, the

analysis of emotion recognition factors showed higher ASD-PRS to be associated

with faster visual emotion recognition. The categorical analysis of emotion recogni-

tion classes showed ASD-PRS to be reduced in Class 3 compared to the other classes

(p value threshold [pT] = 1, p = .021). A dimensional analysis identified a high ADHD-

PRS reduced the probability of being assigned to the Class 1 or Class 3 (pT = .05,

p = .028 and p = .044, respectively). Though these nominally significant results did

not pass FDR correction, they potentially indicate different indirect causative chains

from genetics via emotion recognition to ADHD and ASD, which need to be verified

in future research.
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1 | INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum

disorder (ASD) are frequently comorbid disorders that are highly heri-

table. Recent studies have calculated the heritability of ADHD at

h2 = 0.74 (Faraone & Larsson, 2019) and of ASD at h2 = 0.83 (Sandin

et al., 2017). Individuals with ASD and their relatives have an

increased risk of ADHD and vice versa (Ghirardi et al., 2018;

Oerlemans et al., 2015; Septier et al., 2019). Recent genome-wide

association studies (GWAS) have identified genomic loci associated

with each disorder (Demontis et al., 2019; Grove et al., 2019), and

there is evidence for genetic sharing among them (Nijmeijer

et al., 2010). In addition, the associated genetic variants also seem to

contribute to the cognitive deficits seen in the two disorders

(Campbell et al., 2011; LoParo & Waldman, 2015; Martin, Hamshere,

Stergiakouli, O'Donovan, & Thapar, 2015; Nigg et al., 2018). For

example, polygenic risk scores for ADHD are associated with a lower

educational attainment as well as with deficits in working memory

and social communication (Martin et al., 2015). Similarly, genetic risk

variants for ASD have been found to be associated with social com-

munication and general cognitive abilities (Clarke et al., 2016; Peñ-

agarikano & Geschwind, 2012). Given their shared etiology, it may be

unsurprising that ADHD traits, such as hyperactivity, have been found

to contribute to the clinical presentation of ASD, just as ASD traits,

including repetitive behaviors and social deficits, contribute to the

presentation of ADHD (Cooper, Martin, Langley, Hamshere, &

Thapar, 2014; Grzadzinski et al., 2011; Kotte et al., 2013; Meer

et al., 2012).

The genetic risk of ASD and ADHD in relation to emotion recog-

nition abilities, defined as the ability of identifying emotional facial

expressions and emotional prosody (see Adolphs, 2003; Adolphs,

Tranel, & Damasio, 2001; Bänziger, Grandjean, & Scherer, 2009), has

received little attention (Coleman et al., 2017; Martin et al., 2015).

This is surprising given that studies have highlighted an increase in

ADHD and/or ASD symptoms is associated with an increase in the

severity of emotion recognition problems, though some suggest that

inattentive symptoms predominantly underlie these problems in

ADHD (Oerlemans et al., 2014; Sinzig, Morsch, & Lehmkuhl, 2008;

Waddington et al., 2018b). Yet contrary reports indicate that this defi-

cit is heterogeneous and complex (Bora & Pantelis, 2016; Collin,

Bindra, Raju, Gillberg, & Minnis, 2013; Harms, Martin, &

Wallace, 2010). Our group has recently used factor mixture modeling,

a hybrid of latent class and factor analysis, to identify more homoge-

neous emotion recognition subtypes, based on four factors capturing

most variance in the assessment of this trait (Waddington

et al., 2018a, 2018b), i.e., visual speed, visual accuracy, auditory speed,

and auditory accuracy. The subtypes identified, hereinafter referred

to as classes, ranged from strong-average performing classes, Class 1:

Average visual, impulsive auditory and Class 2: Average-strong visual

and auditory, to poorer performing classes, Class 3: Impulsive and

imprecise visual, average auditory and Class 4: Weak visual and audi-

tory. These classes were associated with ADHD and ASD symptoms;

stronger and average-performing classes displayed fewer ADHD and

ASD symptoms. Based on such findings, we hypothesized that par-

tially different mechanisms may contribute to emotion recognition

features captured in the defined factors and classes. Their potential

differential association with genetic risk for ADHD and ASD may

underlie the earlier observed lack of association of such genetic risk

with emotion recognition (Coleman et al., 2017; Martin et al., 2015).

An example of such work is given by the study by Veatch and col-

leagues, who used hierarchical clustering to partition phenotypic het-

erogeneity in ASD and found cluster assignment to be influenced by

genetics (Veatch, Veenstra-VanderWeele, Potter, Pericak-Vance, &

Haines, 2014). The hierarchical clustering approach that was used in

this study is limited to analyzing data from a categorical perspective

and disregards associations that may be present between variables

utilized to define clusters. Other subtyping techniques that utilize a

dimensional approach to define more homogeneous phenotypes may

be more suitable and powerful for genetic analyses.

The current study aimed to yield further insight into the genetic

components of ADHD and ASD, by examining emotion recognition

problems, which are observed as a cross-disorder trait in these disor-

ders; in this, we took into account existing heterogeneity of emotion

recognition by investigating potentially more homogeneous factors

and classes. The influence of genetic burden for ADHD and ASD on

emotion recognition factors and classes identified in Waddington

et al., (2018a, 2018b) was assessed using polygenic risk scores (PRS)

based on the latest ADHD GWAS (Demontis et al., 2019) and ASD

GWAS (Grove et al., 2019). We hypothesized that higher ADHD- and

ASD-PRS would be linked to slower and/or less accurate identifica-

tion of emotions. Consequently, individuals in the weakest emotion

recognition class, defined by slow and inaccurate visual and auditory

emotion recognition factors, were expected to have the highest

genetic burden for these disorders compared to individuals in the

stronger emotion recognition classes. To our knowledge, this is the

first study to investigate the genetic burden of ADHD and ASD in

relation to emotion recognition factors and classes.

2 | SUBJECTS AND METHODS

2.1 | Sample

Genotype and phenotype data were available from the NeuroIMAGE

and Biological Origins of Autism (BOA) cohorts. The NeuroIMAGE

cohort (Von Rhein et al., 2015) of children with ADHD, their unaffected

siblings and controls, is a follow-up to the IMAGE study (Müller

et al., 2011a; Müller et al., 2011b; Nijmeijer et al., 2009; Rommelse &

Buitelaar, 2008), whereas the BOA cohort is a study of children with

pure ASD or comorbid ASD + ADHD, their unaffected siblings and con-

trols, the design of which was based on (Neuro)IMAGE (van Steijn

et al., 2012). Both of these studies recruited participants from the

Netherlands. All participants from the BOA study were assessed in Nij-

megen. The NeuroIMAGE study conducted 49% of assessments in

Amsterdam and the remainder in Nijmegen. Patient families were

included in these cohort studies if they had one child with a clinical

402 WADDINGTON ET AL.



diagnosis of ADHD (NeuroIMAGE) or ASD (BOA) and at least one bio-

logical sibling (regardless of possible clinical diagnosis) willing to partici-

pate. Control families for each cohort were included if they had at least

one child with no formal or suspected ADHD or ASD diagnosis them-

selves, nor in any of their first-degree relatives. Participants in both

cohorts were of European descent. These cohorts used some of the

same exclusion criteria, such as Full Scale IQ (FSIQ) <70, diagnosis of

epilepsy, and known genetic syndromes (e.g., Down-syndrome or

Fragile-X-syndrome). The NeuroIMAGE cohort had as an additional

exclusion criterion a clinical diagnosis of ASD based on DSM-IV criteria.

The sample analyzed in original emotion recognition subtyping

study by Waddington et al. (2018a) included a total of 675 partici-

pants, of which 275 were from the NeuroIMAGE cohort and 400 were

from the BOA cohort. Genetic data were not available for all partici-

pants in our original study (i.e., due to some participants not contribut-

ing with genetic material or low quality of DNA samples or

genotyping). Therefore, the current study consisted of 552 partici-

pants, of which there were 74 ADHD participants, 60 unaffected sib-

lings of ADHD, 85 ASD participants, 60 ASD + ADHD participants,

117 unaffected siblings of ASD and ASD + ADHD, and 156 controls

(41 from NeuroIMAGE and 115 from BOA). Participants age ranged

from 7 to 18 years. Of the included NeuroIMAGE participants, the

average IQ was 100 ranging from 70 to 139, with 51.4% being male.

Similarly, the BOA sample included in the present study had an aver-

age IQ of 103, ranging from 70 to 155, and 59.7% were male.

2.1.1 | Clinical measures

For an in-depth description of the clinical measures accessed in the

NeuroIMAGE and BOA cohorts, see von Rhein et al. (2015) and Van

Steijn et al. (2012), respectively. In summary, any children who were

previously diagnosed with ADHD and/or ASD, their siblings and the

control children were screened for the presence of ADHD and ASD

symptoms using the parent-reported Social Communication Question-

naire (SCQ) (Rutter, Bailey, & Lord, 2003) and the parent- and

teacher-reported Conners Rating Scales-Revised (CPRS and CTRS,

respectively; Conners, 1997).

Potential ADHD and/or ASD clinical cases were identified by raw

scores of ≥10 on the SCQ Total score and by ≥63 T-score (a score that

accounts for the child's age) on the either the parents' or teachers' Con-

ners DSM-IV Inattention, Hyperactivity-Impulsivity, or Combined scales.

Children who scored above cut-off on any of the screening question-

naires underwent full clinical ADHD assessment; in NeuroIMAGE cohort

this was done using the Schedule for Affective Disorders and Schizo-

phrenia for School-Age Children—Present and Lifetime Version (K-SADS;

Kaufman et al., 1997) and in BOA cohort using the Parental Account of

Childhood Symptoms ADHD subversion (PACS) for ADHD (Taylor,

Sandberg, Thorley, & Giles, 1991). Clinical assessment for ASD in the

BOA cohort was performed using the Autism Diagnostic Interview-

Revised (ADI-R) structured interview for ASD (Le Couteur, Lord, &

Rutter, 2003). In NeuroIMAGE, the clinical assessment for ASD was per-

formed using the Parental Account of Childhood Symptoms (PACS;

Taylor et al., 1986). Children from control families were required to obtain

nonclinical scores (i.e., a raw score < 10 on the SCQ and T-score < 63 on

both CPRS and CTRS) to qualify for this study.

2.1.2 | Cognitive measures intelligence

An estimate of the Full Scale Intelligence Quotient (FSIQ) was derived

from the Vocabulary and Block Design subtests of the Wechsler Intel-

ligence Scale for Children version III (WISC-III; Wechsler, 2000a) for

participants younger than 16 years (n = 510), or the Wechsler Adult

Intelligence Scale version III (WAIS-III; Wechsler, 2000b), for partici-

pants 16 years and older (n = 42).

2.1.3 | Emotion recognition factors and classes

Emotion recognition was assessed through speed and accuracy per-

formance in the Facial Expressions Identification and Affective Pros-

ody Tasks from the Amsterdam Neuropsychological Test (ANT; De

Sonneville, 1999). Briefly, in the Facial Expressions Identification task,

participants were shown pictures of emotional expressions on a com-

puter screen. Participants had to click a yes or no button to confirm if

they did or did not see the target emotion (happy, sad, fearful or

angry) in these photos. In the Affective Prosody task, participants lis-

tened to a sentence of neutral content and had to identify the pros-

ody (happy, sad, fearful, or angry) of the sentence they heard.

Exploratory and confirmatory factor analyses had previously been

used to identify a common factor structure across the NeuroIMAGE and

BOA cohorts (Waddington et al., 2018b). The emotion recognition clas-

ses/profiles were identified based on participants' performance on these

four factors through factor mixture modeling, as described in

Waddington et al. (2018a). In brief, the results of the exploratory and

confirmatory factor analyses of this data identified four emotion recogni-

tion factors: (a) speed of visual emotion recognition; (b) accuracy of visual

emotion recognition; (c) speed of auditory emotion recognition; and

(d) accuracy of auditory emotion recognition. The identified emotion rec-

ognition classes, derived from these factors, were then labeled according

the characteristics of their emotion recognition profiles: class 1—average

visual, impulsive auditory; class 2—average-strong visual and auditory;

class 3—impulsive/imprecise visual, average auditory; and class 4—weak

visual and auditory (see Figure 1). Participants were assigned to one of

these classes based on the probability of belonging to each class. Of all

the participants in class 1, 93% had a probability >.50. Similarly, 95 and

91% of classes 2 and 4, respectively, also achieved this probability,

whereas this was only the case for 78% of participants of class 3.

2.1.4 | Genotype data of NeuroIMAGE and BOA
cohorts

In both cohorts, DNA was obtained from blood or saliva samples.

Genotyping of the NeuroIMAGE and BOA samples was performed
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using the Illumina Infinium PsychArray-24 v1.2 BeadChip genotyping

platform. Quality control, principal components analysis (PCA), and

imputation were performed using RICOPILI, the Psychiatric Genomics

Consortium (PGC) pipeline for GWAS (Lam et al., 2019). RICOPILI

default quality control parameters were used extensively. PCA was

used to identify and exclude population outliers during quality control

and the first four principal components were included as covariates to

account for population stratification during association analyses.

Imputation was carried out using as reference the European ancestry

subset of the 1000 Genomes Phase 3 reference panel (1000 Genomes

Project Consortium, 2015). SNPs with a minor allele frequency (MAF)

< .01, an imputation score of INFO <.8, were excluded prior to the

analyses, resulting in 5,064,466 SNPs in the NeuroIMAGE dataset and

4,935,261 SNPs in the BOA dataset.

2.2 | Data analysis

2.2.1 | Polygenic risk scores (PRS)

The summary statistics of the latest GWAS meta-analyses for ADHD

and ASD were used as discovery datasets (Demontis et al., 2019 &

Grove et al., 2019, respectively) to calculate ADHD-PRS and ASD-

PRS, for the participants from the NeuroIMAGE and BOA cohorts

(hereafter referred to as target samples). More specifically, the ADHD

GWAS is composed by samples from the Lundbeck Foundation

Initiative for Integrative Psychiatric Research (iPSYCH) and the

PGC samples of European ancestry (Demontis et al., 2019; summary

statistics available at https://www.med.unc.edu/pgc/results-and-

downloads). Prior to all analyses from the current study, leave-one-

out analyses were performed, and the GWAS results excluding the

NeuroIMAGE cohort are used here as ADHD discovery dataset in

order to avoid sample overlap in the PRS analyses. Genetic variants

with a MAF < .01 and an INFO <.8 were excluded. Therefore, this

ADHD GWAS summary statistics were derived from 34,697 individ-

uals (N = 13,960 cases and N = 20,737 controls) and, after the exclu-

sion of SNPs with MAF < .01 and INFO <.8, it contained a total of

N = 8,094,095 genetic variants. On the other hand, since BOA is not

included as a cohort in the ASD GWAS, the results from the

European-only GWAS could be used directly. These were derived

from 46,351 participants (N = 18,382 cases and N = 27,969 controls)

and summary statistics are available at https://www.med.unc.edu/

pgc/results-and-downloads. Similar to the ADHD GWAS, variants

were excluded if they had a MAF < .01 and an info score < .8,

resulting in 9,112,387 genetic variants. In order to minimize the possi-

bility of batch effect between cohorts, SNPs common to both

NeuroIMAGE and BOA were identified and nonoverlapping SNPs

were removed, resulting in 4,479,126 SNPs in the target sample.

For each participant of the target samples (i.e., NeuroIMAGE and

BOA), PRS were computed as the sum of trait-associated alleles,

weighted by the odds ratio obtained in the discovery GWASs

(i.e., ASD and ADHD GWAS), using PRSice v1.25 software (Euesden,

F IGURE 1 Emotion recognition subtypes identified in Waddington et al. (2018a). Each line represents the emotion recognition class (mean
factor scores—speed and accuracy of Identification of Facial Expressions and Affective Prosody tasks, from the Amsterdam Neuropsychological
Test battery, ± 1 SE) for each class. Lower scores represent faster reaction time and fewer errors made
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Lewis, & O'Reilly, 2015). In order to remove SNPs in linkage disequi-

librium, clumping was performed using PRSice default values (r2 > 0.1

within a 250-kb window). PRS were calculated from SNPs according

to different association thresholds in the discovery GWASs, including

only those SNPs with p-value lower than: 5 × 10−8 (GWAS Signifi-

cance), 10−6 (GWAS Suggestive Significance), .05, and 1 (see Table 1).

2.2.2 | Statistical analyses

The current study comprises a subset of participants who had valid

emotion recognition data and for whom genetic data were available

(Waddington et al., 2018a). Therefore, it was necessary to check if the

age, IQ, and gender proportions were similar to those reported in the

previous study (Waddington et al., 2018a). ANOVAs were used to

compare differences in age and IQ of participants in the emotion rec-

ognition classes in the current study. Potential differences in the pro-

portion of males in each class were assessed using the chi-square

statistic.

Differences in mean ADHD and ASD-PRS were assessed across

diagnostic groups. The comorbid diagnostic group contains individ-

uals who reached criteria for ASD and ADHD diagnoses in the BOA

cohort, whereas those with a diagnosis of ASD or ADHD were

assigned to the ASD-only and ADHD-only groups, respectively. Due

to the small number of unaffected siblings of individuals with

comorbid ASD + ADHD, these siblings were placed into the same

group as unaffected siblings of individuals with ASD. The control

group consisted of controls from the BOA and NeuroIMAGE

cohorts.

Linear mixed models that accounted for family structure (modeled

as a random effect), age, gender, IQ, and population stratification

(i.e., using the first four principal components, as described above)

were used to test the associations between ADHD-PRS/ASD-PRS

and emotion recognition factors and classes. Given that factors of

speed and accuracy are not mutually exclusive variables, the overarch-

ing model of the emotion recognition factors was analyzed. The indi-

vidual factors were analyzed, irrespective of the significance of the

overarching model. These analyses of individual factors were also

modeled with their modality counterpart (i.e., speed of visual emotion

recognition was modeled with accuracy of visual emotion recognition,

whereas speed of auditory emotion recognition was modeled with

accuracy of auditory emotion recognition). All of these models also

included ADHD and ASD diagnostic status as covariates.

Emotion recognition classes can be utilized as a categorical vari-

able. Alternatively, the probability of a participant being assigned to a

particular class can be used as a continuous variable. Both approaches

were explored in the current study.

ADHD and ASD PRS derived from the GWAS Significance,

GWAS Suggestive Significance, pT = .05 and pT = 1 thresholds were

transformed into z-scores, to reduce scale bias and improve stability

of the linear mixed models of the emotion recognition classes and fac-

tors. The number of SNPs present at each threshold used to calculate

the ASD and ADHD PRS can be seen in Table 1. FDR corrections for

multiple testing were performed. In case none of the PRS associations

remained significant after correction, nominally significant findings are

presented and later discussed in an exploratory manner.

3 | RESULTS

3.1 | Descriptive statistics

3.1.1 | Differences between groups defined by
emotion recognition classes

There was no significant difference in age between the classes, (F

[3, 548] = 1.87, p = .13) (Table 2). A significant difference in IQ was

observed between the classes, (F[3, 548] = 11.91, p < .001), with class

4 having a lower IQ than class 1 (p < .001), class 2 (p < .001), and class

3 (p = .017). Furthermore, a significantly greater proportion of males

than females was present in our sample (X2[1] = 11.02, p = .001); class

4 had significantly more males than females (X2[1] = 20.81, p < .001).

3.1.2 | Differences in mean ADHD-PRS across
diagnostic groups

There were no differences in mean ADHD-PRS between the healthy

controls and ADHD patients, ASD patients, ADHD+ASD patients,

ADHD-unaffected siblings, and ASD(+ADHD) unaffected siblings,

respectively, at the GWAS Significance (F[5,491.44] = 0.93, p = .46) or

at the GWAS Suggestive Significance (F[5,494.75] = 0.76, p = .58)

thresholds. However, we did find differences in the mean ADHD-PRS

between the diagnostic groups at the pT = .05 (F[5,512.45] = 2.74,

p = .019) and the pT = 1 (F[5,520.66] = 2.70, p = .020) thresholds. As

expected, the ADHD-only and the ASD + ADHD participants both

had a significantly higher ADHD-PRS than controls.

3.1.3 | Differences in mean ASD-PRS across
diagnostic groups

There were no differences in mean ASD-PRS between the diagnostic

groups at the GWAS Significance (F[5,491.44] = 0.93, p = .46), GWAS

TABLE 1 SNPs per p-value threshold used in the generation of
ADHD-PRS and ASD-PRS

Threshold

No. SNPs

ASD GWAS

No. SNPs

ADHD GWAS

GWAS significance 5 × 10‑8 1 8

GWAS suggestive

significance 10‑6
9 29

pT = .05 16,523 17,180

pT = 1 117,648 114,022
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Suggestive Significance (F[5,494.75] = 0.76, p = .58), pT = .05

(F[5,515.89] = 1.65, p = .14), or the pT = 1 (F[5,509.97] = 1.93,

p = .088) thresholds.

3.2 | ADHD and ASD-PRS association analyses

We tested the association between ADHD and ASD-PRS and the

emotion recognition factor and classes separately. None of the find-

ings survived FDR corrections for multiple testing. Below, we present

the nominally significant findings in an exploratory context.

3.3 | Association between ADHD-PRS and
emotion recognition factors

We found no association of the ADHD-PRS with the overarching

emotion recognition factor model at the GWAS Significance (F

[1,522.27] = 0.25, p = .62), GWAS Suggestive Significance (F[1,

486.65] = 0.01, p = .95), pT = .05 (F[1,468.44] = 0.21, p = .65), or pT = 1

(F[1,477.20] = 2.08, p = .15) thresholds. For exploratory purposes, the

four individual emotion recognition factors (speed of visual emotion

recognition; accuracy of visual emotion recognition; speed of auditory

emotion recognition; accuracy of auditory emotion recognition) were

also analyzed. However, these analyses, with and without modality

counterpart covariates, also did not find any significant effect of the

ADHD-PRS on these factors (see Table 3).

3.4 | Association between the ASD-PRS and
emotion recognition factors

Similar to the ADHD-PRS association analyses, there was no effect of

the ASD-PRS on the overarching combined emotion recognition fac-

tor model at any of the p-value thresholds tested. Upon further analy-

sis of the individual emotion recognition factors, we observed a single

association, for the speed of visual emotion recognition factor (Factor

1) at the pT = .05 threshold (Table 3; column a:F[1,499.24] = 4.17,

p = .042, d = .17), with a higher ASD-PRS associated with faster visual

emotion recognition. This association remained when the modality

counterpart, accuracy of visual emotion recognition, was included as a

covariate (Table 3; column b: F[1,499.60] = 4.56, p = .033, d = .18). No

other effects of the ASD-PRS on any other thresholds and other indi-

vidual factors were seen.

3.5 | Association between ADHD-PRS and
emotion recognition classes

There was no significant difference in the ADHD-PRS between the

different emotion recognition classes at the GWAS Significance

threshold (F[3,518.92] = 0.67, p = .57), the GWAS Suggestive Signifi-

cance threshold (F[3,465.96] = 1.45, p = .23), the pT = .05 thresholdT
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(F[3,466.39] = 1.61, p = .19), or the pT = 1 threshold (F

[3,481.75] = .84, p = .47) (Figure 2).

3.6 | Association between ASD-PRS and emotion
recognition classes

The ASD-PRS was associated with emotion recognition classes at the

pT = 1 threshold (F[3,461.58] = 3.26, p = .021; Figure 3); class 3 (impul-

sive/imprecise visual, average auditory emotion recognition) had a sig-

nificantly reduced ASD-PRS compared to class 1 (average visual,

impulsive auditory emotion recognition; p = .005), class 2 (average-

strong visual and auditory emotion recognition; p = .002), and class

4 (weak visual and auditory emotion recognition; p = .010). No associ-

ation was observed with any of the other thresholds and for any of

the other classes.

3.7 | Association between PRS and emotion
recognition class probabilities

Exploring the use of probabilities of belonging to a class in the associ-

ation analyses with PRS (Table 4), we found that the ADHD-PRS

affected the probability of being assigned to class 1 and class 2 at the

pT = .05 threshold (p = .028 and p = .044, respectively), as well as class

3 at the GWAS Suggestive Significance threshold (p = .040). For the

ASD-PRS, no associations were observed.

4 | DISCUSSION

The aim of this study was to yield further insight into the genetic com-

ponents of ASD and ADHD by examining the cross-disorder trait of

emotion recognition problems. To investigate if the genetic burden

for ADHD and/or ASD differed across the earlier defined emotion

recognition factors and classes, ADHD- and ASD-PRS were assessed.

As expected, ASD + ADHD and ADHD participants had a higher aver-

age ADHD-PRS than controls; in contrast, the ASD-PRS did not seem

to differ between ASD participants and controls. Though the analyses

of the emotion recognition factors and classes only yielded nominally

significant results, they were observed in an exploratory manner. For

the emotion recognition factors, our exploration detected a possible

link between a higher ASD-PRS and faster visual emotion recognition.

In the analysis of the emotion recognition classes, the ASD-PRS

appeared lower in emotion recognition class 3 (impulsive/imprecise

visual, average auditory emotion recognition) compared to the other

emotion recognition classes. In the analysis of class probabilities, we

found that a high ADHD-PRS was associated with the reduced proba-

bility of being assigned to emotion recognition class 1 (average visual,

impulsive auditory emotion recognition) or class 3 (impulsive/impre-

cise visual, average auditory emotion recognition), but a greater prob-

ability of being assigned to class 2 (average-strong visual and auditory

emotion recognition). While this lack of significant association of emo-

tion recognition and PRS corroborates findings from an earlier study—

at least for ADHD (Martin et al., 2015), we feel that our findings merit

discussion in an exploratory context below.

The impulsive/imprecise visual, average auditory emotion recog-

nition class (class 3) demonstrated a lower ASD-PRS, which counterin-

tuitively suggests a link between reduced genetic burden for ASD and

poor task performance in this emotion recognition class. Similarly,

high genetic burden for ADHD being linked to average to strong emo-

tion recognition skills as seen in class 2 also appears to be counterin-

tuitive. If these results were to be replicated, they would indicate that

the causative chain from genetics via emotion recognition to disorders

is indirect in ASD and ADHD. This may corroborate other

neurocognitive studies supporting an indirect causative pathway

(Coghill, Hayward, Rhodes, Grimmer, & Matthews, 2014; McAuley,

Crosbie, Charach, & Schachar, 2014; McAuley, Crosbie, Charach, &

TABLE 3 Results of exploratory association analysis of ADHD-PRS and ASD-PRS with individual emotion recognition factors (p-values)

GWAS

significance 5 × 10−8

GWAS suggestive

significance 10−6 pT = .05 pT = 1

ADHD a b a b a b a b

Factor 1: Speed of visual emotion recognition .76 .82 .22 .28 .79 .77 .25 .24

Factor 2: Accuracy of visual emotion recognition .55 .58 .24 .31 .90 .86 .79 .67

Factor 3: Speed of auditory emotion recognition .98 .97 .93 .96 .22 .27 .50 .44

Factor 4: Accuracy of auditory emotion recognition .32 .32 .74 .74 .13 .16 .25 .23

ASD a b a b a b a b

Factor 1: Speed of visual emotion recognition .96 .86 .82 .84 .042 .033 .27 .20

Factor 2: Accuracy of visual emotion recognition .36 .35 .84 .87 .64 .45 .27 .20

Factor 3: Speed of auditory emotion recognition .99 .91 .60 .72 .51 .56 .84 .77

Factor 4: Accuracy of auditory emotion recognition .15 .15 .051 .055 .32 .34 .25 .25

Notes: a: Analysis includes covariates of age, sex, IQ, cohort, diagnosis, population stratification, and family structure. b: Analysis includes covariates listed

in a and modality counterpart as an additional covariate.

WADDINGTON ET AL. 407



Schachar, 2017; van Lieshout et al., 2016). A moderation model, in

which emotion recognition abilities might, for example, act as a buffer

for the risk of developing ADHD and/or ASD, may also be plausible.

The link of genetic burden for ADHD across emotion recognition fac-

tors and classes appeared to be different than the link of genetic bur-

den for ASD with the factors and classes. Differences in ADHD and

ASD genetic contribution to each of the emotion recognition variables

potentially indicate that the indirect causative pathways in ASD and

ADHD are different.

Seemingly counter-intuitive results may not be entirely unusual,

as a previous study found that association findings may potentially be

explained by associations with other (unobserved) traits; in their case

by cognitive ability (Hagenaars et al., 2016). We took IQ along in our

own analyses in the present and previous studies. Though previously

we did not find emotion recognition difficulties across classes to be

directly attributable to low IQ (Waddington et al., 2018a), it should be

noted that a positive association exists between the genetic risk for

ASD and IQ, whereas a negative association between the risk for

ADHD and IQ has been identified (Clarke et al., 2016). These associa-

tions also appear to be counterintuitive and complex, and potentially

(partially) explain the findings in this study. It may also be worthwhile

exploring other traits that have relevance to the association of emo-

tion recognition abilities such as theory of mind and language abilities.

Similar studies into these traits would be beneficial for our under-

standing of these indirect causative pathways in ASD and ADHD.

Studies of the neural correlates of emotion recognition and potential

mediators in the pathway from genotype to phenotype in ASD and

ADHD may yield some answers.

This study has taken a novel approach to investigating the associ-

ation between the genetic risk of ADHD and ASD and emotion recog-

nition problems. More homogeneous subgroups are suggested to

increase power in genetic association studies (Traylor, Markus, &

Lewis, 2015). We tried to improve such work further by using quanti-

tative in addition to categorical approaches in subgroup specification.

The subgroups in the current study were based on our previous factor

analysis of different emotion recognition domains and identification

of subgroups using factor mixture modeling. This subtyping method

uses probabilities to assign participants to classes, and therefore emo-

tion recognition abilities could be investigated both as a continuous

F IGURE 2 Mean ADHD PRS z-score for each emotion
recognition class (+/− 1 SE); the pT = 1 threshold is shown as an
example. Covariates included in the analysis were population
stratification, family structure, age, sex and IQ

F IGURE 3 Mean ASD PRS z-score at the p = 1 threshold for each
emotion recognition class (+/− 1 SE). Covariates included were
population stratification, family structure, age, sex, and IQ

TABLE 4 The effect of ADHD-PRS and ASD-PRS on class
probability assignment

GWAS

significance
5 × 10−8

GWAS

suggestive
significance 10−6 pT = .05 pT = 1

ADHD-PRS

Class 1 .99 .98 .028 .38

Class 2 .60 .74 .044 .07

Class 3 .50 .040 .92 .72

Class 4 .48 .47 .78 .45

ASD-PRS

Class 1 .59 .45 .28 .66

Class 2 .21 .29 .23 .10

Class 3 .34 .45 .86 .24

Class 4 .09 .35 .69 .40

Notes: Participants were assigned to an emotion recognition class based on

the probability of belonging to that class. Ninety-three percent of partici-

pants in class 1 had a probability of being assigned to this class > 0.50, 95

and 91% of classes 2 and 4, respectively, also achieved this probability,

whereas this was the case for 78% of participants in class 3.
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and as a categorical variable. Nonetheless, studies that utilize a dimen-

sional approach are still vulnerable to other limitations, as demon-

strated by the current study. Limitations were brought about by

sample size: although quite unique in size and depth of phenotyping,

the sample we investigated here was small for genetic studies. A

related limitation was the relatedness of participants. It was necessary

to include this parameter in the analyses, but this reduced statistical

power. In addition, the sample sizes of the GWAS used as a basis for

the PRS were limited to detect small effect sizes. The power of the

ASD GWAS was also lower than the ADHD GWAS, with fewer hits

being identified in the former (Grove et al., 2019). This was exempli-

fied by the lack of difference in the PRS of ASD participants and

healthy controls. Together, the small target cohorts and the still lim-

ited discovery samples pose considerable restraints on statistical

power and thus restrictions on our interpretations. Future studies will

benefit from an increase in the sample size of the ASD and ADHD

GWAS. Moreover, a multimodal emotion recognition GWAS that

combines data from visual and auditory emotion recognition tasks

could also be performed to improve our insight into the genetic basis

of emotion recognition and its genetic links with ADHD and ASD.

This study aimed to investigate the genetics of ASD and ADHD

through emotion recognition abilities. The results did not evidence

strong support for a direct causative pathway from genetics to disor-

ders via emotion recognition abilities, potential indirect pathways

should be further investigated. Our findings tentatively suggest that

potential pathways differ between ASD and ADHD, though replica-

tion is required to confirm this.
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