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Purpose: To differentiate polypoidal choroidal vasculopathy (PCV) from choroidal
neovascularization (CNV) and to determine the extent of PCV from fluorescein angiog-
raphy (FA) using attention-based deep learning networks.

Methods: We build two deep learning networks for diagnosis of PCV using FA, one
for detection and one for segmentation. Attention-gated convolutional neural network
(AG-CNN) differentiates PCV from other types of wet age-related macular degener-
ation. Gradient-weighted class activation map (Grad-CAM) is generated to highlight
important regions in the image for making the prediction, which offers explainability of
the network. Attention-gated recurrent neural network (AG-PCVNet) for spatiotemporal
prediction is applied for segmentation of PCV.

Results: AG-CNN is validated with a dataset containing 167 FA sequences of PCV and
70 FA sequences of CNV. AG-CNN achieves a classification accuracy of 82.80% at image-
level, and 86.21% at patient-level for PCV. Grad-CAM shows that regions contributing to
decision-making have on average 21.91% agreement with pathological regions identi-
fied by experts. AG-PCVNet is validatedwith 56 PCV sequences from the EVEREST-I study
and achieves a balanced accuracy of 81.132% and dice score of 0.54.

Conclusions: The developed software provides a means of performing detection and
segmentation of PCV on FA images for the first time. This study is a promising step in
changing the diagnostic procedure of PCV and therefore improving the detection rate
of PCV using FA alone.

Translational Relevance: The developed deep learning system enables early diagnosis
of PCV using FA to assist the physician in choosing the best treatment for optimal visual
prognosis.

Introduction

Age-related macular degeneration (AMD) is a
type of degeneration that gradually leads to signifi-
cant loss of central vision. The wet form of AMD
includes typical AMD with choroidal neovasculariza-
tion (CNV) and polypoidal choroidal vasculopathy
(PCV), which is also a type of neovascular condition
associated with abnormal branching vascular network
and aneurysmal dilations, referred to as polyps. In

the Asian population, 50% of exudative maculopathy
involves PCV. Although treatment with antivascular
endothelial growth factors by intraocular injection can
maintain or improve visual function for patients with
either typical AMDor PCV, early diagnosis to differen-
tiate between both diseases may help decide if combi-
nation with photodynamic therapy should be applied
to those with PCV.1

Fluorescein angiography (FA) is the major imaging
modality for diagnosis and treatment of retinal disor-
ders. Rapid-sequence photographs of the retina are
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captured after intravenous injection of the sodium
fluorescein dye to reveal fine details of the retina, such
as the retinal vessels. When a wet AMD is imaged
with FA, some features like nodular hyperfluores-
cence or massive block fluorescence caused by blood
might suggest PCV, but these leaking patterns have low
specificity because of similar presentation by occult
CNV.2 Optical coherence tomography (OCT) andOCT
angiography have been studied recently for diagnos-
ing PCV, but the sensitivity varies from 30% to 83%3–6

because it lacks the capability of displaying temporal
leaking information, which is an important diagnos-
tic feature for differentiating subtypes of neovascular
AMD. For this reason, OCT is mainly used for assess-
ment of PCV disease activities before the treatment
and during the follow-up period. Indocyanine green
angiography (ICGA) remains the gold standard for
diagnosing PCV, despite its invasive nature, because
of the visualization of choroidal vessels by the near
infrared light penetration through pigment epithelium
layer and the high protein bound with low dye diffu-
sion. However, FA is widely used as a routine image
study for exudative AMD, and not everymedical center
has the ICGA equipment to further confirm the condi-
tion of exudative AMD. If using only FA, clinicians
can misdiagnose PCV as occult CNV for 90% of the
cases.2 For this reason, it is important that a clinician
can confidently diagnose the condition of exudative
AMD as CNV or PCV using FA alone to avoid incor-
rect treatment leading to poor visual prognosis.1

Research on deep learning (DL) for diagnosis of
PCV is yet very limited in the literature. Xu et al.7
applied a convolutional neural network (CNN) to color
fundus photographs (CFP) and OCT separately to
learn features and applied fully connected network on
combined features for classification of CNV and PCV.
Chou et al.8 performed a similar study but included
manually determined OCT biomarkers instead of the
whole OCT images. Yang et al.9 and Kim et al.10
both applied a public-availableDL platform (AutoML;
Google Inc.,Mountain View, CA,USA) to screen PCV
using ICGA images. Ma et al.11 and Hwang et al.12
applied well-known CNN models to differentiate PCV
from other forms of AMD using OCT. None of the
work involves using DL to make diagnosis of PCV
using FA.

The objective of this study is to investigate the
efficacy of diagnosing PCV using FA alone by lever-
aging the technology of DL. Challenges of our work
come from the high degree of variation in lesion
appearances caused by various speed of circulation
of the dye, nonstandard protocol in sequence image
acquisition, coexistence of other medical conditions,
and low availability of clinical images. To facilitate this
study, we developed two attention-gated DL networks

to exploit subtle visual cues of choroidal circula-
tion on FA images for diagnosis of PCV. The first
network differentiates PCV from other types of wet
AMD, mainly choroidal neovascularization (CNV),
and the second network determines the extent of PCV,
including both polyps and the branching vascular
network, for cases determined as PCV. Both models
were assessed at both image-level and patient-level.

Methods

Data Description

Our FA datasets are collected frommultiple sources
with different imaging protocols: 56 PCV sequences
from EVEREST-I study,13 45 PCV and 70 CNV
sequences from Taipei Veterans General Hospital
(TVGH, Taipei, Taiwan), and 63 PCV sequences
from Rajavithi Hospital (RH, Bangkok, Thailand). All
sequences are treatment-naïve (no prior treatment),
with the disease condition confirmed by standard
ICGA imaging.

For all 56 PCV sequences from EVEREST-I, the
ICGA and FA images were captured individually or
by simultaneous acquisition mode of scanning laser
ophthalmoscope (Heidelberg Engineering Inc., Heidel-
berg, Germany), with fluorescein dye and indocyanine
green dye injected separately or together at the same
time. For images taken in the simultaneous mode with
FA and ICGA shown side by side, the FA and ICGA
components are separated as two images for future
processing. Each patient has FA images taken at five
different time points (i.e., 1.5, 3, 5, 10, and 20 minutes).
The set of 115 FA sequences from the Department
of Ophthalmology, TVGH, is composed of 31 classic
CNV, 39 occult CNV, and 45 PCV. Each sequence
has five or more images, taken within 20 minutes of
injection. All 63 sequences from the Department of
Ophthalmology, RH, are PCV, with each having three
images taken mainly in the first five minutes. In total,
there are 164 PCV cases with 847 images and 70 CNV
cases with 898 images. No image contains traceable
patient information or a hospital-specific code.

Attention-Gated Convolutional Neural
Network for Screening

Classic machine learning approach requires manual
determination of biomarkers or features to be
computed, which is termed feature engineering. A
classifier is built to learn from a training set contain-
ing features with known class labels. The recognition
power of a classifier mostly relies on the discriminative
power of the chosen features. In the era of DL, feature
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Figure 1. Architecture of AG-CNN.

engineering is fully automated as part of the machine
learning process. CNN is a DL model that imitates the
central nervous system. It has multiple intermediate
layers positioned between the input (the image) and
output layers, allowing each level to learn to extract
features of increasing abstraction from its input signal
during training.

Different from most of the works on PCV in the
literature, we design our own CNN with the attention
mechanism, named attention-gated CNN (AG-CNN).
The architecture is shown in Figure 1. AG-CNN takes
one single FA image (of any time point) downscaled to
the size of 224 × 224 and produces the probability of
the image being PCV. This is image-level classification.
The probabilities of images from the same FA sequence
are averaged to produce the patient-level result. If the
value is greater than 50%, the patient is classified as
PCV. Because AG-CNN works on individual images,
not a complete sequence, there is no assumption on
the number of images per sequence to accommodate
various imaging protocols.

Each blue block in Figure 1 is a convolution layer
that applies a various number of mathematical filtering
operations (known as convolution) to detect discrimi-
native features. Batch normalization (BN) and rectified
linear activation function are performed; the former
improves the stability for faster convergence, and the
latter introduces nonlinearity in the model for learning
of more complex functions. The loss function is cross
entropy, the optimizer is Adam, the learning rate is
0.0001, the number of epochs is 300, and the batch size
is 32. Feature maps of a convolution layer are down-
sampled using max pooling so features of higher-level
representation can be detected in the successive layer.
The attention layer is an adaptive mask learned during

the training process to regulate the attention of the
network. We implement Attention Dropout Gate14 so
the network can also pay attention to areas being
dropped with certain probability to avoid overfitting.
The drop rate is 0.25 and the drop threshold is 0.8.
Global average pooling (GPA) is applied to the last
convolution layer; feature maps are each reduced into
a single number through averaging, resulting in 1024
features for each input image. Fully-connected layer
is performed to do classification, and the outcome of
SoftMax are the disease probabilities, adding up to
100%.

To provide the visual explanation of the network
model, we apply the concept of gradient-weighted
class activation mapping (Grad-CAM)15 on AG-CNN
to highlight the regions in the image that drive the
prediction of a given class of object, so different
maps are produced for different classes. In the map,

Figure 2. Grad-CAM for explainability of AG-CNN in two cases
with PCV. The first row is case 1 and the second row is case 2. (A)
ICGA images show delineation of PCV. (B) FA images. (C) Grad-CAM
produced from FA by AG-CNN, our proposed DL model. (D) Grad-
CAM produced from FA by ResNet-50.



Diagnosis of PCV From FA Using Deep Learning TVST | February 2022 | Vol. 11 | No. 2 | Article 6 | 4

Figure 3. Architecture of AG-PCVNet.

each pixel is assigned a value between [0,1], indicat-
ing its contribution. Grad-CAM can facilitate clinical
translation if the learning process is pathology driven,
not imaging device driven. As shown in Figure 2(c)
is the Grad-CAM generated by AG-CNN, and (d) is
generated by ResNet-50,16 which is one of the publicly
available networks used in other studies.7,11,12 AG-
CNN focuses on the region that has a greater overlap
with biomarkers of PCV identified by the specialists,
whereas ResNet-50 provides much lower explainability
for its decision.

Attention-Gated PCVNet for Segmentation

Our proposed method for PCV segmentation is
based on the U-Net architecture,17 which has proven
to be effective for semantic segmentation. The name
of U-Net comes from its U-shape; the left arm is the
encoder for extracting features and the symmetric right
arm is the decoder for precise localization. Figure 3
shows our modified architecture, named Attention-
Gated PCVNet, which is attention U-Net with ConvL-
STM18 in the decoding path.

Attention-gated PCVNet (AG-PCVNet) takes a
sequence of aligned images and outputs a sequence
of segmented images. The segmentation is the delin-
eation of the PCV lesion, including branching vascular
network and polyps. This is image-level segmentation.
The novelty of AG-PCVNet is its ability to work on a
sequence end-to-end so the temporal context can also
be considered, because ConvLSTM is a type of recur-
rent neural network for spatiotemporal prediction. We
apply ConvLSTM to the attention maps, so the atten-
tion map can be determined by the input feature maps
and the attention map of the previous frame. Same as
forAG-CNN, at each level, the attentionmap is applied
to the input featuremaps in the decoding path. The loss

function is a combination of binary cross entropy and
dice loss. The latter is found to be effective for train-
ing with small datasets.19 The optimizer is Adam, the
learning rate is 0.0005, the number of epochs is 1600,
and the batch size is five sequences. For the patient-
level segmentation, we take the segmentation result of
the last image frame for the given sequence because the
network retains the spatiotemporal information from
the complete sequence when segmenting the last image
frame.

Results

All sequences are involved in the development of the
network for screening, which is AG-CNN. We parti-
tion the collection to three sets: training, validation and
test, each containing images from all three centers. The
model is trained with the training set, fine-tuned with
the validation set for selection of hyper-parameters,
and tested with the test set. Table 1 shows the distri-
butions of images in the three sets. Data augmentation
is performed on the minority class of the training set to
balance the two classes. All images of a sequence go to
the same set to make sure fair testing. Please note that
having sequences with highly similar image frames does
not give our DL model an extra advantage, because

Table 1. Data Distribution for Training, Validation, and
Testing of AG-CNN for Classification

Disease Training Set Validation Set Test Set

PCV 514 (102) 176 (33) 157 (29)
CNV 559 (42) 176 (14) 163 (14)

Each set is recorded as the number of images with the
number of patients in the parentheses.
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Table 2. Accuracies of Different Models for Classification of PCV in Both Image-Level and Patient-Level

Validation Test

PCV CNV Average PCV CNV Average

Model (Image-level)
ResNet-50 0.7671 0.6648 0.7159 0.7261 0.5644 0.6438
AG-CNN 0.8125 0.7614 0.7869 0.8280 0.6749 0.75

Model (Patient-level)
ResNet-50 0.9394 0.6154 0.8478 0.8276 0.7857 0.8140
AG-CNN 0.8485 0.8462 0.8478 0.8621 0.7857 0.8372
AG-CNN is our proposed model. The PCV detection accuracy shows the sensitivity, and the CNV detection accuracy shows

the specificity of a model.

such images provide no additional information in the
learning process, but they serve the purpose of data
augmentation for imbalanced data.

We compare AG-CNN with the popular network
model ResNet-50 and human expert performance
documented in the literature. Table 2 shows the classi-
fication accuracies of different models in both image-
level and patient-level. The PCV detection accuracy
is computed as the ratio of the PCV detected to
the total PCV images/sequences. This is equivalent to
the sensitivity measure, because PCV is considered a
positive case. Similarly, the CNV detection accuracy
is the ratio of the CNV detected to the total CNV
images/sequences. This is equivalent to the specificity
measure. Our proposedmodel, AG-CNN, outperforms
ResNet-50 with an average test accuracy of 75.0%
at the image-level and 83.72% at the patient-level for
both conditions. If considering only PCV, AG-CNN
achieves test accuracy of 86.21% at patient-level, which
far exceeds human expert performance, because clini-
cians can misdiagnose PCV as occult CNV for 90% of
the cases,2 if only using FA. If considering only CNV,
classic and occult have the test accuracy of 65.2% and
50%, respectively, at the image-level.

We measure the explainability of the model by
computing the dice similarity score (DSC) between the
ground truth and the part of the Grad-CAM with
values greater than 0.5 using the EVEREST-I dataset.
Our dice scores are 0.1966 and 0.2191 for validation
and test, respectively, whereas ResNet-50 has 0.1371

and 0.0799. Please note that DSC is only good for
making comparison between models but is not a fair
measure for explainability, because the model does not
learn from the ground truth, and it might only need
part of the lesion with strong features for making the
decision. It is also possible that the model realizes
potential biomarkers not yet investigated.

We evaluate the performance of the network for
segmentation, AG-PCVNet, using 56 FA sequences
from the EVEREST-I dataset only, because sequences
from TVGH and RH are lacking pixel-level ground
truth needed for segmentation. The ground truth of
the EVEREST-I dataset was provided by the reading
center and had been reported for segmentation of
polyps in ICGA.20 The ground truth annotation is
transferred from the ICGA sequence to the corre-
sponding FA sequence using Edge-driven DBICP21 to
align images. We perform 5-fold validation for segmen-
tation on the 56 PCV sequences because of low number
of sequences involved. The dataset is divided into five
almost equal portions; each portion is used in turn for
validation whereas the other four portions are used for
training. The final reported error is the average of the
five validation errors.

We compare the performance of AG-PCVNet
with the standard U-Net, attention-gated U-Net
(AG-U-Net), which is AG-PCVNet without ConvL-
STM, and our network pretrained with ICGA
sequences, with the measures of sensitivity, speci-
ficity, balanced accuracy (average of sensitivity and

Table 3. Image-Level Segmentation Performance of Different Models

Model (Image-Level) Sensitivity Specificity Bal. Acc. DSC

U-Net 0.3632/0.127 0.9872/0.009 0.6752/0.060 03566/0.064
AG-U-Net 0.3193/0.063 0.9914/0.002 0.6553/0.032 0.3690/0.070
AG-PCVNet 0.6054/0.136 0.9469/0.027 0.7760/0.579 0.4009/0.089
AG-PCVNet pretrained 0.5438/0.127 0.9694/0.009 0.7566/0.060 0.4325/0.119

AC-PCVNet is our proposed model. The numbers are recorded as mean/SD of 5-fold cross validation.
Bal. Acc., Balanced Accuracy.
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Table 4. Segmentation Performance Measured in DSC of Individual Image Frames

Model 1.5 min. 3 min. 5 min. 10 min. 20 min.

U-Net 0.3479 0.3568 0.3791 0.3591 0.340
AG-PCVNet pretrained 0.4329 0.4330 0.4320 0.4325 0.4325

AG-PCVNet is our proposed model.

specificity), and DSC. For the pretrained model, train-
ing using ICGA images takes 1600 epochs, and tuning
using FA images takes 300 epochs. Table 3 shows
the results. Our network model pretrained with ICGA
sequences gives the best average performance of 0.4325
for DSC. For cases with larger ground truth areas, the
DSC tends to be higher, with the maximum reaching
0.88. Because there are many more cases with small
ground truth areas, the average is brought down to
0.4325.

We also compute the DSC of individual frames,
shown in Table 4, to study the effect of information
passing among frames for an improved performance.
Compared to U-Net, our network model achieves a
more consistent image-level segmentation with a differ-
ence of 0.001 in DSC value between the best and the
worst time frames.

Discussion

Our study demonstrated the efficacy of using
deep learning model for diagnosis of PCV from FA
alone for patients with exudative AMD. Although
recent deep learning models trained from fundus color
photographs and OCT can also offer a prediction
of PCV, diagnosis of PCV from FA not only allows
additional identification check point but also provides
segmentation of the total lesions.

We compared different algorithms of deep learn-
ing for screening. AG-CNN substantially outperforms
the generic ResNet-50 in both accuracy and explain-
ability. AG-CNN performs slightly better in patient-
level than in image-level for PCV but substantially
better in patient-level for CNV with an improvement
of about 11%. Although image-level success is impor-
tant for the development of a DL model, this experi-
ment stresses the importance of patient-level analysis
in a clinical setting because not one single image in a
temporal sequence, like FA, contains all information
needed for the most accurate diagnosis. When results
from all images are integrated in any fashion, which
can be as simple as averaging, the accuracy improves,
compared to the image-level.

Grad-CAMallows visualization of where AG-CNN
is looking to make sure the decision is medically sound.
Examples are shown in Figure 4 to Figure 6. Figure
4 shows an example of a PCV case being success-
fully classified in both image-level and patient-level.
The polyp, shown in ICGA, is at the center under
the massive submacular hemorrhage with mild leakage
at late phase FA. Grad-CAM of AG-CNN highlights
the area of interest with leakage at different times
for the correct diagnosis of PCV. Figure 5 shows a
case with polyps underneath the pigment epithelial
detachment (PED) in ICGA whereas FA shows occult

Figure 4. AnFA sequence of PCV correctly classified at both image-
level for all images and patient-level for the sequence in an eye with
PCV with hemorrhagic PED and subretinal hemorrhage. Rows are
images taken at 1.5, 3, 5, 10, and 20 minutes, respectively.
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Figure 5. AnFA sequence of PCV correctly classified at both image-
level for all images and patient-level for the sequence in a patient
with leaking fibrovascular PED. Rows are images taken at 1.5, 3, 5,
10, and 20 minutes, respectively.

CNV with fibrovascular PED. Although AG-CNN
correctly classifies this case as PCV at the image and
patient-levels, the Grad-CAM does not focus as well
on the lesion for all images of the sequence. Grad-
CAMmay also facilitate error analysis. Figure 6 shows
another case of PCV underneath a shallow trapezoid
PED whereas FA shows early hyperfluorescence with
late leakage confined to the area of PED. AG-CNN
correctly classifies this case as PCV in the first two
images but classifies this case as CNV at the patient-
level because the last three images are misclassified,
which brings the average probability for PCV to below
50%.

Unfortunately, Grad-CAMs for CNV are not as
informative, because they are more like Grad-CAMs
generated by ResNet-50. This might explain the lower
accuracy for CNV (see Table 2) and can be attributed
to insufficient number of cases for multiple types of
CNV with substantial appearance variation. However,
this study should not be confused with our earlier work

Figure 6. An FA sequence of PCV having the appearance of classic
CNV. Rows are images taken at 1.5, 3, 5, 10, and 20 minutes,
respectively. Images taken at 1.5 and 3 minutes are correctly classi-
fied as PCV but were classified as CNV at 5, 10, and 20 minutes.
The sequence is incorrectly classified at patient-level because the
average probability is below 50% for PCV.

on segmentation of classic CNV,22 which achieved an
average segmentation accuracy of 83.26% when given
only cases of classic CNV. The current study does not
include the same range of disease conditions.

PCV is known to be easily misdiagnosed as occult
CNV in FA.2 However, to the best of our knowledge,
no studies in the literature of ML for PCV diagnosis
report the composition of subtypes (classic vs. occult)
of the CNV dataset for classification of PCV, even
for CFP and OCT modalities. In the early phase of
the current study, we tested AG-CNN with only 25
CNV sequences—19 classic and six occult (with a ratio
of close to 3:1). We achieved average accuracies of
88.59% and 89.69% for validation and test, respec-
tively. After expanding the dataset to include 31 classic
and 39 occult CNV (with a ratio close to 3:4), the
accuracies are reduced to 78.69% and 75.0% respec-
tively, as reported in Table 2. The reason for the reduced
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performance is that occult CNV has an appearance
closer to PCV than to classic CNV. This demonstrates
the importance of data composition for development
of an DL algorithm for a clinical application, because
such development is data-driven; if the algorithm was
developed with mostly classic CNV cases, the perfor-
mance can degrade substantially for amix of CNV sub-
types in a typical clinical setting.

Recent studies on diagnosing PCV using OCT,
combined with fundus photograph or optical coher-
ence tomography angiography (OCTA), have reported
expert performance of between 82% and 83%4–6 sensi-
tivity based on features of sharply peaked PED, hyper-
reflective ring, and complex retinal pigment epithe-
lium (RPE) elevation. Without the diagnostic features
predetermined, AG-CNN can boost expert perfor-
mance from 10%2 to 86.21% at the patient-level using
FA images alone.

Because the EVEREST-I dataset is complete with
both FA and ICGA images for all sequences, we are
able to study the effect of transfer learning from ICGA
to FA for segmentation. For AG-PCVNet, the perfor-
mance is boosted slightly in the DSC if the network
is pretrained with ICGA sequences for a higher speci-
ficity but dropped slightly in sensitivity, as shown
in Table 3. The improvement of 3.16% in DSC with
pretraining is statistically significant (P < 0.05). In
other words, ICGA and FA do share some common
features such that features learned in ICGA can guide
the network when being fine-tuned with FA sequences
for better performance.

We also examined the agreement between the size
of the detected region and the size of the ground truth
PCVwith a Bland-Altman plot, which shows the differ-
ence between two areas as a function of the mean of
the two areas. The difference is computed by subtract-
ing the ground truth area from the detected area. As
shown in Figure 7, AG-PCVNet tends to produce an
area larger than the ground truth, since there are 16
more images (of 280) with the area difference above 0.

When a retina specialist examines a condition of
exudative AMD, characteristics of the fluorescein
leakage pattern of a complete FA sequence should
be considered, because not one single image captures
all the visual clues for making a proper diagnosis.
As shown in Table 4, U-Net performs better in five-
minute on average, which might not be true for all
sequences. Figure 8 shows three image frames from
the same sequence, but U-Net has the highest DSC
score for the image at 1.5 minutes. The choice of
the best image frame can be patient-dependent for
U-Net. On the contrary, AG-PCVNet retains infor-
mation from earlier frames in the same sequence to
achieve a more consistent image-level prediction—all

Figure 7. Bland-Altman plot. The plot shows the agreement
between the size of the ground truth PCV and the size of the
segmented area by AG-PCVNet. The areas are expressed in pixel.

Figure 8. Segmentation result. The third column contains
outcomes of AG-PCVNet, and the last column contains outcomes
of U-Net. The first row is for 1.5 minutes, and second row for
3 minutes and the third row is for 5 minutes. Yellow patches are
correct segmentation, red patches are undersegmentation, and
green patches are oversegmentation. AG-PCVNet achieves an
average DSC of 0.88, whereas U-Net achieves only 0.16 for this case.

phases have a DSC score very close to 0.4325, as shown
in Table 4. Figure 8 also shows very consistent segmen-
tation outcomes produced by AG-PCVNet in various
phases.

For the future work, screening and segmentation
should be combined so one single end-to-end network
can take an aligned sequence and explore spatiotempo-
ral information for both screening and segmentation to
produce a segmented region if the case is confirmed
as PCV. The data collection should be expanded to
containmore cases of CNVof various types to improve
the detection rate of CNV and more annotated PCV
cases to train the component for segmentation to bring
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themodel one step closer to becoming a useful diagnos-
tic tool in clinical practice.

Conclusions

The developed software provides a means of
performing screening and segmentation of PCV on FA
images for the first time. Screening of FA exempli-
fied in our study far exceeds expert performance and
achieves an accuracy of 86.21% at the patient-level by
deep learning. This study is a promising step in supple-
menting the diagnostic procedure of PCV and there-
fore improving the detection rate of PCV using FA. In
addition, explainability of the deep network computa-
tion offered by Grad-CAM can potentially shed light
on novel biomarkers associated with pathophysiology
of PCV.
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