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ABSTRACT Background: Lyme disease (caused by Borrelia burgdorferi) is an infectious disease transmit-
ted to humans by a bite from infected blacklegged ticks (Ixodes scapularis) in eastern North America. Lyme
disease can be prevented if antibiotic prophylaxis is given to a patient within 72 hours of a blacklegged tick
bite. Therefore, recognizing a blacklegged tick could facilitate the management of Lyme disease. Methods:
In this work, we build an automated detection tool that can differentiate blacklegged ticks from other
tick species using advanced computer vision approaches in real-time. Specially, we use convolution neural
network models, trained end-to-end, to classify tick species. Also, advanced knowledge transfer techniques
are adopted to improve the performance of convolution neural network models. Results:Our best convolution
neural network model achieves 92% accuracy on unseen tick species.Conclusion:Our proposed vision-based
approach simplifies tick identification and contributes to the emerging work on public health surveillance
of ticks and tick-borne diseases. In addition, it can be integrated with the geography of exposure and
potentially be leveraged to inform the risk of Lyme disease infection. This is the first report of using deep
learning technologies to classify ticks, providing the basis for automation of tick surveillance, and advancing
tick-borne disease ecology and risk management.

INDEX TERMS Computer vision, convolution neural network, infectious disease, Ixodes scapularis,
knowledge transfer, Lyme disease, public health, surveillance, vector-borne disease.
Clinical and Translational Impact Statement – Themethods developed and validated in this paper, simplifies
tick identification, facilitates the surveillance of ticks and tick-borne diseases, and improves the management
of Lyme disease.

I. INTRODUCTION
Lyme disease is caused by the spirochete Borrelia burgdor-
feri sensu stricto and is spread to humans through the bite
of an infected blacklegged tick (Ixodes scapularis) in most
of eastern North America. Lyme disease is the most com-
mon tick-borne disease in North America, and in the United
States (US), approximately 475,000 cases occur per year
(2010-2018), with about 35,000 of these reported through
reportable disease surveillance [1], [2]. In Canada, Lyme
disease is an emerging infectious disease, increasing from
992 cases in 2016 to 2636 cases in 2019 [3]. The increase

in Lyme disease incidence is associated with the expand-
ing range of the blacklegged tick, driven in part by climate
change; i.e., an increase in annual cumulative degree days
above 0◦C [4].
Lyme disease generally begins with influenza-like symp-

toms such as arthralgia, chills, fever, myalgia, and stiff neck,
with the appearance of an erythema migrans rash 2 to 30 days
after a bite from an infectious blacklegged tick [5]–[7].
Treatment with antibiotics typically clears the B. burgdorferi
infection; however, if left untreated, infection can progress
to disseminated disease with higher chances of morbidity,
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long-term sequelae and post-treatment Lyme disease syn-
drome [6], [8]–[11]. Lyme disease can be prevented if antibi-
otic prophylaxis is given to a patient within 72 hours of a tick
bite [11].

Understanding where blacklegged ticks and B. burgdorferi
co-occur is vital to informing healthcare providers and the
public about the risks of Lyme disease. Throughout North
America, blacklegged tick surveillance is patchy (using var-
ious passive and active tools) or sometimes absent. Passive
surveillance involves submissions of ticks from the healthcare
providers or the public for identification and/or detection of
B. burgdorferi [12]. Another passive technique is through
the submission of tick pictures to web-based applications
for identification, where an expert manually identifies each
tick picture submission (e.g., eTick.ca in Canada). Active
surveillance includes tick dragging from the environment
or live-animal trapping. Active and passive surveillance are
designed to monitor tick populations and are not designed
with a clinical application in mind; therefore, additional
tools are needed to aide clinician management of Lyme
disease. In addition, these surveillance techniques are time-
consuming, logistically challenging and costly to operate and
maintain. In a clinical setting, healthcare providers require a
faster answer to whether a tick from a patient is a blacklegged
tick or another tick pest species. Healthcare providers and
patients would benefit with a quicker assessment of what
species of tick was involved as this could help with decisions
of whether to monitor a patient’s symptoms or to provide
antibiotic prophylaxis. This quicker turnaround time would
be especially beneficial in areas where blacklegged ticks are
expanding and not easily recognized.

Rapid automatic identification of blacklegged ticks using
machine learning technologies is a potential solution in miti-
gating some of the challenges of the current tick identification
process, leading to automation of tick surveillance. Recent
advances in machine learning and deep learning have con-
tributed to the prevention, management, and surveillance of
infectious diseases [13]–[16]. Here we built computer vision
models - enabled by advanced deep neural networks - to auto-
matically identify blacklegged ticks from other tick species.
To facilitate adoption and future potential implementation of
this technology into a real-life environment, we developed
a web application that can be further used in prospective
validation of the model by healthcare stakeholders and the
public. Here we present our initial proof-of-concept work on
using computer vision models to identify blacklegged ticks.

II. MATERIALS AND METHODS
A. BACKGROUND
Automation of surveillance and identification of tick species
using computer vision models could be potentially powered
by advances in deep neural networks [17]. Convolution neural
network (CNN) is a class of deep neural networks that is
most commonly applied to computer vision tasks. However,
training CNN models from scratch is not without complica-
tions and requires collection and annotation of large data sets

which limit their utilization in health settings [18]. A popular
approach for handling this shortcoming is to leverage the
‘‘transferability’’ of knowledge embedded in the pre-trained
CNNs and to transfer that knowledge from a known source
task to a new target task [19]–[21]. The most widely used
approach in knowledge transfer is transfer learning where
a source deep neural network is first trained with a large
dataset such as ImageNet [22] (this is called pre-training)
and then the networks’ learned weights (knowledge) are
used as an initialization to train a target deep neural net-
work on a smaller dataset such as medical images (this is
called fine-tuning) [23], [24]. Fine-tuning requires minimal
modifications where some of the network parameters remain
frozen during training [24], [25]. Transfer learning has been
applied successfully to various computer vision tasks such as
object classification and feature generation for both generic
and medical domains [26]–[28]. However, depending on the
problem, transfer learning might not be the best approach
and provide no benefit especially if the source and target
domains are semantically and substantially different [17].
An alternative to transfer learning for heterogeneous domains
is another knowledge transfer technique which is called the
teacher-student learning framework. Knowledge transfer in
teacher-student learning framework occurs between two dis-
tinct networks namely a teacher network and student net-
work where the student network is trained to imitate the
output of a more extensive and powerful teacher network or
ensemble of teacher networks [19], [20]. One of the popular
teacher-student training frameworks is attention transfer pro-
posed by Zagoruyko et al. [29]. In this method, the teacher’s
feature maps guide the student to learn data patterns. Using
this approach, given the attention maps of a teacher network,
the student network is trained to imitate the exact behavior of
the teacher network by trying to replicate its output at a layer
receiving attention from the teacher.

In this work, we built our computer vision pipeline using
different knowledge transfer approaches (e.g., attention trans-
fer) [29], [30] due to the small size (several thousand images)
of our tick data set. Also, our tick data set included several
noisy and blurry images due to the presence of very small
nymphal ticks, so we utilized Label Smoothing Regular-
ization (LSR) [21] besides attention transfer as a regular-
izer to enhance CNN models’ robustness and generalization.
LSR converts one-hot encoded labels (hard labels) to soft
labels with a mixture of uniform distribution. In addition to
model improvement, both attention transfer and LSR provide
benefit to model compression [20], [31] which enables the
deployment of CNN models on mobile phones or website
applications.

B. DATA SET DESCRIPTION
Our tick data set was collected from May 2019 to November
2019 by Public Health Ontario, which includes images of
blacklegged and over 6 other non-blacklegged species such as
the American dog tick (Dermacentor variabilis) and the lone
star tick (Amblyomma americanum). All ticks were received
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FIGURE 1. (a) High-resolution microscopic images, (b) Mobile phone
images of fully engorged ticks, and (c) Mobile phone images of unfed
ticks. Fully and slightly engorged ticks can triple in volume when filled
with blood.

by Public Health Ontario laboratories and identified morpho-
logically using existing identification keys (e.g., Lindquist
et al. 2016 [32]). Given the long-term goal of developing
a smartphone application, camera phones (iPhone 5s, 6)
were used for image acquisition. The phones were mounted
8 centimeters above the ticks which were placed on a white
paper. In total, 12,588 images were captured, 2 per tick, one
dorsal and one ventral. Moreover, in order to improve the
quality of our data set, 1000 high-resolution tick images were
taken with a camera mounted on the laboratory stereomicro-
scope. Our data set included 6,294 distinct ticks, of which
41%were blacklegged, and 59%were non-blacklegged ticks.
A spread of fully engorged, slightly engorged, unfed, and
nymph-stage ticks were included in our dataset. All tick
images were manually annotated by an expert at Public
Health Ontario. Fig. 1 shows a sample of tick images in the
data set.

C. MODELS AND TRAINING FRAMEWORKS
In this work, the automated identification of blacklegged ticks
is framed as a binary classification task where a CNN model
is trained to predict class labels for given tick images through
the following training strategies:

1) Training the CNN models from scratch with ran-
dom initialization where all layers were open to be
tuned during training. In this setting, two CNN archi-
tectures were used including Inception-Resnet [33] and
a lighter CNN model designed for this study. The
lighter CNNmodel comprised 7 convolution layers fol-
lowed by a dropout or batch normalization. In addition,
average pooling layers were used to reduce the num-
ber of parameters. In total, the network had 13 layers
with 5,350,633 trainable parameters out of 5,352,041
parameters (more details of the network is shown in
Appendix A).

2) Transfer learning from an Inception-Resnet CNN
network pre-trained on ImageNet. In this setting, two
sets of experiments were conducted, including opening

all the CNN layers to be tuned and unfreezing only the
last five layers during training.

3) Attention transfer from an Inception-Resnet [33]
teacher pre-trained on ImageNet. In this setting, the
knowledge is transferred to the student network which
was the lighter CNN model with and without LSR.

Attention transfer: Following the work of
Zagoruyko et al. [29], we built an activation based attention
transfer to transfer knowledge from the last layer of the
teacher network (Inception-Resnet) to the one before the last
layer of the student network (lighter CNN) as shown in Fig. 2.
The knowledge to be transferred in our setting is a spatial
attention map, constructed by taking the sum of absolute
values of a layer’s 3D tensor A ∈ RC×H×W across the channel
dimension:

Q =
C∑
i=1

|Ai|, (1)

where C , H , and W are channel dimension, height, and
width of a CNN layer’s tensor, A, respectively. The spatial
attention map, Q, is therefore a 2D tensor Q ∈ RH×W .
Using l2 normalization, we calculated attention transfer loss
between the teacher’s and student’s spatial attention map of
the same resolution (same H and W ) as follows:

LAT = ||
QT
||QT || 2

−
QS
||QS || 2

||2, (2)

where QS and QT are the vectorized form of student’s and
teacher’s spatial attention maps. The overall approach is
shown in Fig. 2.

Label Smoothing Regularization (LSR): In this work,
we made use of LSR as a regularization technique to smooth
the loss function. For this approach, we trained two student
networks where one of the students, student1, was trained on
a subset of training data using attention transfer loss. After
student1 was trained, it was used to generate soft labels for
the entire training data as follows:

• For correctly classified images, the network produced
class probabilities by converting the logits, θi, i ∈
{0, 1}, computed for each class, into a probability
pi = 1

1+exp−θi/T
, as suggested in [34]. T is a temperature

where a higher value for T produces a softer probability
distribution over classes.

• For incorrectly classified images, the network replaced
class probabilities, pi, with a constant probability sam-
pled from a uniform distribution. In this work, we chose
to replace the predicted probabilities for true classes
with 0.6.

The second student network, student2, is therefore trained
with the following loss function, which is a weighted com-
bination of attention transfer and LSR:

Ltot = −
1
β 1

1∑
i=0

(pi log qi)+
1
β 2
LAT , (3)
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FIGURE 2. An overview of the attention transfer loss in a teacher-student learning setting. The spatial attention map is
constructed by taking the sum of absolute values of a layer’s 3D tensor, A, across the channel dimension. In this setting,
knowledge is transferred from the last layer of the teacher network to the one before the last layer of the student network.
In the shown example, the spatial attention map Q ∈ RH×W is 8× 8 and teacher’s (C) and student’s (C’) channel
dimensions are 1536 and 32, respectively.

where pi is the soft label produced by student1, qi is the
output probability predicted by student2, and β1 and β2 are
the weights balancing attention loss and cross-entropy loss.

D. WEB APPLICATION DEVELOPMENT
As a second step toward our main objective, we created
a web application that was shared internally with Public
Health Ontario laboratory technicians for external validation
of the model in the identification of blacklegged ticks. Using
the web application, the laboratory technician can upload
the image of a tick taken by a cell phone and receive feedback
from the platform in less than a minute. It also captures the
geolocation of the exposure and pairs it with public health
data. This capability enables the assessment of the risk of
Lyme disease infection and the need for prophylaxis treat-
ment in future once the web application is open to public.
Fig. 3 shows the end-to-end deployment of the CNN model
as a web application. The uploaded data is processed in the
backend on the compute engine of the google cloud and
results will be provided to users.

III. RESULTS
In this section, the classification results obtained by applying
different CNN models on the tick data set are presented.

For model development and evaluation, our data set was
divided into a train/test split with a ratio of 11/1 without
any overlap. Therefore, 12,554 images (41% blacklegged)
were used for the training set, and 1034 (41% blacklegged)
were used for the test set to validate the performance of
the developed model. The training data was augmented with

FIGURE 3. The system architecture of deploying our CNN model on the
web application for early identification of blacklegged ticks. For the
frontend, HTML (HyperText Markup Language) and CSS (cascading style
sheets) were used to create the user interface (UI). On the backend,
Python Flask application was developed to handle the get and post
requests between UI and compute engine. Our trained CNN model was
deployed on the app engine of the google cloud platform. The users’ data
were stored in the firebase realtime database (NoSQL) as JSON and
synchronized in real-time to every connected user.

random rotation of 0◦-360◦, horizontal flip, vertical flip, and
zoom range of 0.5-2x. Adam was used to optimize the loss
function in all of the experiments. Cross validation (k=3-fold)
was used for hyper-parameter tuning. The input image sizes
for the lighter CNN model and Inception-Resnet network
were 300 × 300 and 299 × 299, respectively. The lighter
CNN model was trained for maximum 256 epochs with an
initial learning rate of 10−3 and a batch size of 64. For the
attention transfer approach, the classification loss was the
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TABLE 1. The performance of using different strategies including the network size and initialization for training CNN classifiers to differentiate between
the two common tick species; blacklegged vs dog ticks. The best performances per each column are in bold and the second best scores are underlined.
ROC-AUC is the area under the ROC curve and PR-AUC is the area under the precision recall curve. Regardless of initialization, CNN models with larger
number of trainable parameters perform better on tick data set. The CNN classifier performs very poorly if the initial layers are fixed during training. *
Only the last 5 layers of the Inception-Resnet were fine tuned while the rest of the CNN in the Table were trained from scratch without any frozen layers.

TABLE 2. The performance of using attention transfer and attention
transfer with label smoothing regularizer (attention transfer+ LSR) for
classification of blacklegged ticks versus other tick specious. Teachers are
Inception-Resnet pre-trained on ImageNet, and students are lighter CNN
model with 5.3 m trainable parameters. The best performances per each
column are in bold. Smoothing the loss function through LSR approach
makes the CNN model perform slightly better on accuracy measure.

combination of LAT and binary cross entropy loss. For the
attention transfer+ LSR approach, the loss parameters (eq.3),
including β1, β2, and T, were set to be 1, 2, and 5, respectively.
Table 1 reports the results of our first experiment, where

the performance of training the lighter CNN and standard
Inception-Resnet [33] models are compared. The lighter
CNN was trained from scratch with random initialization
while the standard Inception-Resnet was trained through
transfer learning using ImageNet weights in addition to the
random initialization. For the transfer learning, we conducted
two tests where in one setting all layers were unfrozen to
be trained translating to 53 m trainable parameters, and in
the other setting, the last five (5) layers were fine tuned
translating to only 4.5 m trainable parameters. As the results
of our first experiment (Table 1) indicate, training the
Inception-Resnet model either from scratch with random
initialization or from ImageNet pre-trained weights with-
out any frozen layers have the highest performances on
accuracy, area under the ROC curve, and area under the
precision-recall curve. We can also observe from the results
that the lighter CNN obtained comparable results to both of
Inception-Resnet CNN models. So, the initial layers of the
network should be included and unfrozen during training the
model as fine-tuning just the last layers of the CNN network
on tick images perform very poorly.

In our second experiment, we examined attention transfer
and attention transfer+ LSR techniques from a teacher net-
work to a student network as shown in Table 2. As explained
in section II-C, two student networks were trained for atten-
tion transfer+ LSR where one student network generates
soft labels. As the results indicate both attention transfer and
attention transfer+ LSR models performed the same across
all measures. Comparing all CNN models from Table 1 and
Table 2 together, we can observe that knowledge transfer
approach (Table 2) outperforms training CNN from scratch
with random initialization (Table 1) based on test accuracy.

FIGURE 4. Confusion matrix for the best performing model on the tick
images included in the testset. The best performing model is the
combination of attention transfer and label smoothing regularization.

However, all models achieve comparable performance on the
area under the ROC curve and the area under the precision
recall curve. The confusion matrix of the best model (atten-
tion transfer+ LSR) is shown in Fig. 4.
For validating our tool as a web application, Public Health

Ontario used our service to identify 3,520 ticks (2,775
blacklegged ticks) submitted by the public from September
2020 through October 2021 in addition to routine lab iden-
tification. Expert laboratory technicians took images of the
ticks and uploaded them to our web application. They then
conducted a pairwise comparison between the ground truth
labels from expert identification (routine lab identification)
and the predicted label by using our web application. In this
comparison, the web application obtained an accuracy of
99.7%, a sensitivity of 99.2%, a precision of 99.5%, and an
f1-score of 99.3%. As shown in Figure 5, only 10 out of total
3,520 tick images were misclassified.

IV. DISCUSSION
We demonstrated that deep learning-based computer vision
models are effective for the classification of blacklegged ticks
versus other tick species. Our best classification model was
able to identify blacklegged ticks with 92% accuracy using
attention transfer and LSR techniques. In this setting, a small
CNN model receives knowledge from a large CNN model
and learns to behave like a large network during classifica-
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FIGURE 5. (a) Confusion matrix for the web application validation.
(b) Tick images misclassified by the web application.

tion. As shown in our experiments, not only did our model
outperform other models (in terms of accuracy) but also it
showed a potential to be deployed on small devices such as
mobile phones due to the small size of the network (5.3 m
trainable parameters). In addition, our model will provide
faster identification of blacklegged ticks (almost real time)
compared to eTick.ca (within 48 hours) or identification
from passive surveillance (up to 3 weeks or longer) [12].
To show the impact of our data augmentation in improving
the generalization and performance of the presented models,
we trained the lighter CNN model without data augmenta-
tion. This model obtained an accuracy of 53.03% ± 9.99%,
a ROC-AUC of 50.08% ± 0.14%, and a PR-AUC of 41.24%
± 0.07%. This result shows a significant performance
drop in comparison to the lighter CNN model with data
augmentation.

To the best of our knowledge, this is the first study using
deep learning and computer vision to classify blacklegged
ticks from non-blacklegged ticks. Although our approach was
validated on our test set and external website data, a limitation
of this study was data collected in Ontario with the same
camera setup and model (iPhone 6). Remedying this limita-
tion will involve validating our approach on another dataset

collected under different conditions, for example, using other
phones in a different setup and various backgrounds and col-
lecting images from different countries. Another limitation of
this study is the binary classification of the ticks (blacklegged
tick vs. non-blacklegged tick). With additional tick submis-
sions going forward, this model will be further refined in
the context of a greater number of non-Ixodes/Dermacentor
ticks. Another limitation is that this study is the first attempt
to use artificial intelligence to identify tick species, so there
is no baseline (papers) for comparison. Lastly, while we are
comparing this to gold standard laboratory identification of
ticks, there is always a risk that a tick could be misidentified
in the lab.

Deep learning and computer vision have been devel-
oped to identify a variety of agricultural pests throughout
the world; for example, they have been used to identify
olive fruit flies in Greece (Bactrocera oleae) [35]–[38].
While developed widely in the field of agricultural ento-
mology, recently, researchers have used deep CNNs in the
field of vector-borne diseases. Several studies have inves-
tigated mosquito identification [39]–[41], e.g., Park et al.
(2020) reported a 97% classification accuracy of 8 mosquito
species [42]. To overcome expertise to identify triatomine
vectors of the parasite Trypanosoma cruzi (agent of Cha-
gas disease), Khalighifar et al. (2019) were able to identify
Mexican species (n = 12) and Brazilian species (n = 39) at
an accuracy rate of 83.0% and 86.7%, respectively [43].
Pfieffer and Valdenegro-Toro (2020) reported a accuracy rate
of 80.2% in classifying tick-borne disease skin lesions using
deep learning [44]. Yang et al. (2015) used a support vec-
tor machine classifier with a radial basis kernel function to
identify insects based on wing outlines. They reported an
identification accuracy of 87% to 100% for different species.
However, they did not test their approach on other insect
groups (non-owlfly wings) [45]. Deep learning and computer
vision have the potential to change how we study insect and
tick ecology, along with vector-borne disease epidemiology.
Høye et al. (2021) noted that besides insect identification,
deep learning and computer vision could transform popula-
tion monitoring of insects, including estimating insect abun-
dance and biodiversity [46].

Future work will include public release of the web applica-
tion and its further extension into a mobile app. The mobile
app will allow users to receive an identification in real-time
following uploading their tick picture as well as the geograph-
ical location of tick. The public release of the application
will help with widespread monitoring of the distribution and
relative abundance of blacklegged ticks. This method is part
of a suite of techniques for blacklegged tick surveillance.
Specifically, it could alleviate logistical pressures on experts
and allow them to focus on other areas of tick identification
and surveillance. The power of the tool will increase as the
number of users uploading information increases. The ability
of the tool to detect emerging blacklegged tick population
will help healthcare and public health professionals in raising
awareness of Lyme disease in specific regions. Currently,
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TABLE 3. The architecture of lighter CNN.

we are evaluating the web application in close partnership
with public health experts.

We provided preliminary evidence that advanced deep
learning technologies hold promise for improving black-
legged tick surveillance. In addition, there is opportunity to
further refine the technology to classify other species of ticks.
However, how these technologies will be adopted into an
affordable, sensitive, specific, and user-friendly tool for end-
users requires further examination. Our current and future
work will provide insight to those interested in advancing
and adopting deep learning models in the field of infectious
disease surveillance and diagnostics.

V. CONCLUSION
For clinicians, assessing a patient’s exposure to infectious
blacklegged ticks is a critical step toward determining their
risk of Lyme disease. Advanced deep learning technolo-
gies will help healthcare and public health officials monitor
the geographic emergence and establishment of blacklegged
ticks and their associated pathogens. Furthermore, our tool
simplifies tick identification, in contrast to time-consuming
and labor-intensive laboratory approaches for tick identifica-
tion. This is the first report of using deep learning technolo-
gies to classify ticks, providing the basis for automation of
tick surveillance and advancing tick-borne disease ecology
and risk management.

APPENDIX
Supplementary details about the lighter CNN model; the
network has 13 layers with 5,350,633 trainable parameters
composed of convolution layers and average pooling layers.
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