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Hepatic, biliary and pancreatic cancers are a diverse set of malignancies

with poor prognoses. It is possible that common molecular mechanisms are

involved in the carcinogenesis of these cancers. Here, we identified

LINC01537 and seven protein-coding genes by integrative analysis of tran-

scriptomes of mRNAs, microRNAs and long non-coding RNAs from

cholangiocarcinoma, hepatocellular carcinoma and pancreatic adenocarci-

noma cohorts in TCGA. A predictive model constructed from seven

biomarkers was established to successfully predict the survival rate of

patients, which was then further verified in external cohorts. Additionally,

patients with high-risk scores in our model were prone to epithelial–mes-

enchymal transition. Finally, activation of the biomarker PDE2A signifi-

cantly attenuated migration and epithelial–mesenchymal transition in the

HepG2 liver cancer cell line.

The digestive system consists of the alimentary canal

and accessory organs [1]. The liver and pancreas, the

main accessory organs of the digestive system, provide

various enzymes for metabolism in living organisms

[2]. Bile ducts are responsible for transporting bile,

produced by hepatocytes, to the small intestine at the

duodenum for its biological functions [2]. The hepatic–
biliary–pancreatic system relies on a small endoderm

progenitor compartment that gives rise to a variety of

different mature tissues and organs, including the liver,

pancreas, gall bladder and extra-hepatic bile ducts [3].

Malignances regarding to these three important diges-

tive gland organs have become prevalent in recent

years, with a relatively poor prognosis.

Primary liver cancer, including hepatocellular carci-

noma (75–85% of cases) and intrahepatic cholangio-

carcinoma (10–15% of cases), has become the sixth

most commonly cancer and the fourth leading cause of
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cancer death worldwide [4]. The 5-year survival rate is

only 8.9% for hepatocellular carcinoma and 8% for

cholangiocarcinoma [5,6]. Pancreatic adenocarcinoma

is another devastating malignancy with a 1-year sur-

vival rate of approximately 18%, and a 5-year survival

rate of < 4% [7,8]. Although therapeutic strategies

have largely improved in recent years, prognosis

remains unsatisfactory. Comprising important digestive

glands associated with metabolism, the liver, bile ducts

and pancreas are closely interrelated in organ develop-

ment, disease progression and the mechanism of

tumors [9,10]. Therefore, we inferred that there might

be a common mechanism underlying the malignancies

of the three organs, which has been ignored in previ-

ous studies. In the present study, we aimed to elucidate

the common mechanisms of tumorigenicity and identi-

fying novel biomarkers in the above digestive gland

malignancies.

Recently, accumulating evidence has verified that

mRNAs, microRNAs (miRNAs) and long non-coding

RNAs (lncRNAs) participated in the initiation and pro-

gression of several tumor types, including hepatocellular

carcinoma, cholangiocarcinoma and pancreatic adeno-

carcinoma [11–13]. miRNAs are small non-coding

RNAs (ncRNA) that repress gene expression by bind-

ing to 30 untranslated region of complementary mRNA

sequence through miRNA response elements to nega-

tively regulate target mRNAs translation or promote

mRNA degradation and silencing [14]. Additionally, the

regulatory functions of miRNA can be diluted by com-

petition from other molecules, called competitive

endogenous RNAs (ceRNAs). This hypothesis was first

proposed by Salmena et al. [15], indicating that

ncRNAs can compete with miRNA via acting as natu-

ral miRNA sponges by virtue of sharing miRNA

response elements. lncRNAs are defined as RNA tran-

scripts longer than 200 nucleotides [16]. lncRNAs inter-

act with proteins, DNAs and mRNAs to form complex

intramolecular and intermolecular secondary and high-

order structures through diverse molecular mechanisms,

thus mediating downstream gene expression, regulating

protein activity, controlling alternative mRNAs splicing

and providing scaffolding for chromatin modification

[17]. lncRNAs can also function as ceRNAs by compet-

itively binding to miRNAs, and thereby indirectly regu-

late tumor-related gene expression at transcriptional or

post-transcriptional levels [18]. Therefore, mRNAs,

miRNAs and lncRNAs synergistically participate in

diverse cancer biological processes, such as prolifera-

tion, apoptosis, metastasis, migration, angiogenesis,

metabolism and drug resistance [11–13,19]. However,

whether a common molecule network exists in hepatic,

biliary and pancreatic cancers is unknown.

Genome-wide transcriptomic studies have been per-

formed in various cancers and provide an opportunity

to systematically study the molecular mechanisms

across different types of cancers [20]. Here, we

obtained the genome-wide expression profiles of

lncRNAs, miRNAs and mRNAs and their corre-

sponding clinical information of patients in cholangio-

carcinoma (CHOL), liver hepatocellular carcinoma

(LIHC) and pancreatic adenocarcinoma (PAAD)

cohorts from The Cancer Genome Atlas (TCGA) data

portal. By integrative analysis, we discovered a

lncRNA LINC01537 with a potential role in three

types of digestive gland cancers and established a

robust prognosis-associated prediction model com-

posed of seven protein-coding genes. This model effec-

tively predicted patient survival status in both internal

test cohort and external validation cohorts. The sam-

ples with high-risk score in our model highly express

the signature of epithelial–mesenchymal transition

(EMT), suggesting that genes in our model might be

associated with EMT. Consistently, activation of

PDE2A, one of genes in this model, reversed the

expression of EMT signatures and repressed the cell

invasion in hepatocellular carcinoma cells.

Materials and methods

Data filtration

Systematic searches of the Cancer Genome Atlas (TCGA)

database for the CHOL, LIHC and PAAD cohorts were

performed. Level 3 RNA-sequencing (RNA-seq) count data

(mRNA and lncRNA; Illumina HiSeq RNA-seq platform;

Illumina, San Diego, CA, USA) and miRNA-sequencing

(miRNA-seq) count data (Illumina HiSeq miRNA-Seq

platform), as well as their corresponding clinical phenotypic

data and survival information, were obtained from the

GDC Data Portal (https://portal.gdc.cancer.gov) [21]. For

mRNA expression, 45 samples (nine normal samples and

36 tumor samples) in the CHOL cohort, 424 patients in the

LIHC cohort (50 normal samples and 374 tumor samples)

and 182 samples in the PAAD cohort (covering four nor-

mal samples and 178 tumor samples) were included. Mean-

while, the miRNA expression data of CHOL, LIHC and

PAAD were gathered from 45 samples (nine normal sam-

ples and 36 tumor samples), 425 patients (50 normal sam-

ples and 375 tumor samples) and 183 samples (four normal

samples and 179 tumor samples), respectively. In this study,

patients with both mRNA-seq expression data and

miRNA-seq expression data in each cohort were selected

for subsequent analysis. After data filtration, LIHC expres-

sion data of 416 patients were retained, consisting 49 nor-

mal samples and 367 tumor samples. PAAD expression

data were retained in 182 patients, including four normal
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samples and 178 tumor samples. All patients in the CHOL

cohort were eligible and no data filtration was required.

Essential clinical information consisting of patient ID,

gender, age, TNM staging, tumor histological grading, sur-

vival state and survival time was also extracted. We

excluded cases from TCGA database according to the fol-

lowing criteria: (a) patients without survival statues and

survival time information; (b) patients without their corre-

sponding mRNA or miRNA expression data; (c) patients

with a follow-up time < 1 month. In total, 469 patients

were selected in this project.

The mutation data for CHOL cohort, LIHC cohort and

PAAD cohort were also downloaded from the GDC Data

Portal (https://portal.gdc.cancer.gov) [21].

Additionally, the LIRI-JP cohort downloaded from the

International Cancer Genome Consortium (ICGC; https://

dcc.icgc.org) and the data from GSE57495 [22] in GEO

database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE57495) were used as the external validation

cohorts to further test the efficacy of the predictive accu-

racy of prognostic model.

Finally, the data from GSE5203 [23] in GEO database

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE5203) were utilized for subsequent experimental valida-

tion. All of the data were publicly available and there were

no ethical issues involved.

Differential expression analysis

The DESEQ2 package [24] in BIOCONDUCTOR was used to

reveal the differentially expressed mRNAs (DEmRNAs),

differentially expressed miRNAs (DEmiRNAs) and differ-

entially expressed lncRNAs (DElncRNAs). The significant

different thresholds are P < 0.05 and ¦log2 fold change ¦ ≥
1. The GENCODE database was used for distinguish

lncRNAs from mRNAs (https://www.gencodegenes.org).

Simultaneously, the ‘GDC.h38 GENCODE v22 GTF’ file

was download from GDC to annotate mRNA and lncRNA

from RNA-seq. Venn diagrams were performed to visualize

the uniformly upregulated or downregulated DEmRNAs,

DEmiRNAs and DElncRNAs.

Functional enrichment and pathway analysis

Gene Set Enrichment Analysis (GSEA) against hallmark

gene sets in MsigDb [25] was performed using genes ranked

by log2-transformed fold change (log2FC) with the FGSEA

package [26] in R. To evaluate the potential functions of

uniformly upregulated or downregulated genes of the can-

cers, Gene Ontology (GO; http://geneontology.org) and

Kyoto Encyclopedia of Genes and Genomes (KEGG;

https://www.genome.jp/kegg) pathway enrichment analysis

was performed using the CLUSTERPROFILER package in R

[27]. The significant threshold value was set as P < 0.05.

To explore the significantly enriched gene sets between

high-risk and low-risk groups, GSEA analysis was also per-

formed as described above.

Co-expression analysis

Co-expression analysis was implemented using the Pearson

correlation coefficient. Because co-expression is one of the

features of the ceRNA network, lncRNA–miRNA and

miRNA–mRNA pairs with P < 0.05 and r ≤ −0.3 in each

cohort were selected for ceRNA construction [28,29]. Next,

the intersections of co-expressed lncRNAs–miRNAs and

miRNAs–mRNAs in digestive gland malignancies were

obtained. Finally, the lncRNA, miRNA and mRNA co-

expression network was established and visualized using the

GGALLUVIAL R package [30].

Survival analysis

The relationship between mRNA expression level and over-

all survival (OS) of patients was evaluated by univariate

Cox regression analysis. mRNAs with P < 0.05 were

selected for further analysis. Furthermore, Kaplan–Meier

survival analysis of DEmRNAs and DElncRNA was per-

formed using the SURVIVAL package in R [31]. Patients were

separated into high-risk and low-risk groups according to

gene median value. The P value was calculated utilizing a

log-rank test and DEmRNAs and DElncRNA with

P < 0.05 were considered statistically significant.

Risk score calculation

A risk score signature was constructed utilizing the most

robust markers, which were selected by least absolute

shrinkage and selection operator (LASSO) Cox regression.

The risk score signature was then calculated using:

Risk score ¼ ∑
n

i¼1

Coefi � Expi

where n, Coef and Exp are the number of signature genes,

the coefficient obtained from LASSO Cox regression and

the expression of signature genes, respectively. Features,

consisting of gender, age, TNM grading and tumor histo-

logical staging, were submitted and analyzed by multivari-

ate Cox regression to determine factors related with

prognosis. P < 0.05 was set as the threshold to identify

independent prognostic factors.

Establishment of nomogram model for survival

rate prediction

A nomogram model of independent factors was constructed

and visualized using the REGPLOT package in R [32]. To ver-

ify the predictive ability of the nomogram, the concordance
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index (C-index) of the independent prognostic factors and

the fitting coxph model, consisting of pathologic T and risk

group, were calculated.

Single guide RNA (sgRNA) design and plasmid

construction

sgRNAs targeting PDE2A promoter region were designed

by publicly available online tools (https://zlab.bio/guide-

design-resources). Synthesized sgRNA oligonucleotides

were annealed, phosphorylated and cloned into the digested

plenti-sg-mCherry vector. The sgRNA sequences targeted

PDE2A are shown in Table 1.

Cell culture and transfection

HepG2 cells were obtained from the Cell Bank of Chinese

Academy of Sciences (Shanghai, China) and cultured in

Dulbecco’s modified Eagle’s medium (BI, Cromwell, CT,

USA) containing 10% fetal bovine serum (BI), 1% peni-

cillin/streptomycin (BI) at 37 °C in 5% CO2. All cell lines

were tested for mycoplasma contamination.

plenti-sg-mCherry-vector, plenti-sg-mCherry-PDE2A-sg1

and plenti-sg-mCherry-PDE2A-sg2 were respectively co-

transfected with dCas9-VP64-puro (plasmid #99371;

Addgene, Watertown, MA, USA) utilizing Lipofectamine

3000 (Invitrogen, Waltham, MA, USA). After 24 or 48 h,

cells were collected for subsequent experiments.

Quantitative RT-PCR

Total RNA was extracted using Trizol reagent (Invitro-

gen) in accordance with the manufacturer’s instructions.

Two micrograms of RNA was used for cDNA synthesis

(Abm, Richmond, BC, Canada). qPCR was performed

using EvaGreen 2xqPCR MasterMix (Abm) and CFX96

Real-time PCR Detection System (Bio-Rad, Hercules,

CA, USA). Each sample was determined with triplicate

independent experiments. The relative target gene expres-

sion, as a fold change above control group after normal-

ization to GAPDH, was calculated using the 2−ΔΔCt

method. Primers used for amplification are shown in

Table 2.

Transwell assay

Cells (2 × 105) were resuspended in 200 μL of fetal bovine

serum-free medium and placed in the upper chambers

(Corning Inc., Corning, NY, USA). Then, 600 μL of med-

ium supplemented with 10% fetal bovine serum was added

to the lower chambers. After 48 h of incubation at 37 °C,
the cells were fixed with 4% paraformaldehyde (Solarbio,

Beijing, China), stained with 0.1% crystal violet (Solarbio)

and imaged.

Western blotting

Western blot was performed using antibodies against β-
actin (ZSGB-BIO, Beijing, China), E-cadherin, N-cadherin

and Snail (Epithelial–Mesenchymal Transition Antibody

Sampler Kit, # 9782T; Cell Signaling Technology, Danvers,

MA, USA) with 1 : 1000 dilutions.

Statistical analysis

Statistical analyses were performed using R, version 4.0.3

(R Foundation, Vienna, Austria) and PRISM, version 8

(GraphPad Software Inc., San Diego, CA, USA). All data

are presented as the mean � SD. Pairwise comparisons

were performed based on a two-tailed Student’s t-test.

P < 0.05 was considered statistically significant.

Results

Differentially expressed genes in CHOL, LIHC and

PAAD

A brief overview of the screening strategy employed in

the present study is shown in Fig. 1. To identify genes

that are involved all three cancers, differentially

expressed mRNAs, miRNAs and lncRNAs were first

characterized. In CHOL, 6978 DEmRNAs (4292 up-

Table 1. sgRNA sequences.

Genes Forward primer (50 to 30) Reverse primer (50 to 30)

PDE2A-sg1 caccGTGGGGTCGGAGGATCCGAC aaacGTCGGATCCTCCGACCCCAC

PDE2A-sg2 caccAGACAGAAGCGGGGTGACAG aaacCTGTCACCCCGCTTCTGTCT

Table 2. Primers for PCR.

Genes Forward primer (50 to 30) Reverse primer (50 to 30)

GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG

PDE2A GACCGCAAGATCCTCCAACTG CCGAGCACTTTGTCTCCGA
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regulated and 2686 down-regulated), 213 DEmiRNAs

(143 up-regulated and 70 down-regulated) and 3097

DElncRNAs (1916 up-regulated and 1181 down-

regulated) were presented (Fig. S1). In LIHC, there

were 4484 DEmRNAs (3264 up-regulated and 1220

down-regulated), 273 DEmiRNAs (241 up-regulated

and 32 down-regulated) and 2564 DElncRNAs (2065

up-regulated and 499 down-regulated; Fig. S2). In

PAAD, 1951 DEmRNAs (1196 up-regulated and 755

down-regulated), 62 DEmiRNAs (47 up-regulated and

15 down-regulated) and 463 DElncRNAs (349 up-

regulated and 114 down-regulated) were screened (Fig.

S3). Cross-cancer analysis showed that a total of 430

up-regulated DEmRNAs and 76 down-regulated

DEmRNAs, 16 up-regulated DEmiRNAs and one

down-regulated DEmiRNAs, as well as 107 up-

regulated DElncRNAs and six down-regulated

DElncRNAs, were overlapped among three cohort of

aberrantly expressed lnRNAs, miRNAs and mRNAs

(Fig. 2A,C,E).

GSEA of different cohorts

Aiming to explore the enriched gene sets of digestive

glands malignances, GSEA was performed in different

cancers. The GSEA results showed that 20 gene sets

enriched in CHOL, consisting of ‘G2M checkpoint’,

‘E2F targets’ and ‘epithelial mesenchymal transition’,

etc., followed by 15 terms in PAAD (‘pancreas beta

cells’, ‘estrogen response late’ and ‘glycolysis’, etc.) and

14 terms in LIHC (‘G2M checkpoint’, ‘E2F targets’

and ‘spermatogenesis’, etc.). Furthermore, ‘G2M

checkpoint’, ‘E2F targets’ and ‘KRAS down signaling’

were enriched gene sets in CHOL, LIHC and PAAD

(Fig. 2B,D,F), respectively, demonstrating the essential

role of cell proliferation in digestive gland malignancy.

Functional enrichment and pathways for

overlapped mRNAs

Next, we performed GO and KEGG enrichment anal-

yses on the uniformly up-regulated and down-

Fig. 1. Schematic flowchart for the study. CHOL, cholangiocarcinoma; DElncRNA, differentially expressed long non-coding RNA; DEmiRNA,

differentially expressed microRNA; DEmRNA, differentially expressed mRNA; GSEA, gene set enrichment analysis; LASSO, least absolute

shrinkage and selection operator analysis; LIHC, liver hepatocellular carcinoma; PAAD, pancreatic adenocarcinoma.
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Fig. 2. Venn diagram of overlapped lncRNAs, miRNAs and mRNAs and the hallmarks of different malignancies. The overlapped aberrantly

expressed up-regulated and down-regulated (A) lncRNAs, (C) miRNAs and (E) mRNAs. Green circle, CHOL cohort; orange circle, LIHC

cohort; purple circle, PAAD cohort. The hallmarks of (B) CHOL cohort, (D) LIHC cohort and (F) PAAD cohort.
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regulated DEmRNAs in the three types of tumor to

gain insight with respect to the common biological

functions of three digestive gland malignancies. Func-

tional annotations of GO enrichment demonstrated

that upregulated genes were significantly related with

cell division, whereas downregulated genes were signifi-

cantly associated with transport regulation and

immune processes (Fig. 3A,B). The KEGG pathway

enrichment analysis indicated that up-regulated

mRNAs were enriched in 20 pathways, such as ‘cell

cycle’, ‘p53 signaling pathway’ and ‘microRNAs in

cancer’, whereas down-regulated mRNAs were

enriched in 14 pathways, consisting of ‘B cell receptor

signaling pathway’, ‘cytokine-cytokine receptor interac-

tion’ and ‘butanoate metabolism’ (Fig. 3C).

Construction of the co-expression network

Given to that ‘microRNAs in cancer’ was enriched in

upregulated genes in our analysis, we proposed that a

common ceRNA network constructed by mRNAs–
miRNA–lncRNAs may be universally involved in the

digestive malignancies. To explore the potential ones,

we first performed lncRNAs–miRNAs and miRNAs–
mRNAs co-expression analysis in CHOL, LIHC and

PAAD, respectively. One hundred and twenty-two

lncRNAs, 19 miRNAs and 580 mRNAs were co-

expressed in the CHOL cohort; 25 lncRNAs, nine

miRNAs and 181 mRNAs were co-expressed in the

LIHC cohort; and 28 lncRNAs, nine miRNAs and

245 mRNAs were co-expressed in the PAAD cohort.

We then obtained the intersection of co-expression net-

works (Fig. 4A), but no common miRNA profiles

were found in the three types of tumors. For example,

miR-1180-3p participated in LIHC, whereas miR-

135b-5p was involved in PAAD. Interestingly, miR-

1180-3p and miR-135b-5p both took part in CHOL,

suggesting that CHOL may consist of heterogenous

populations that are similar to LIHC or PAAD.

Although the ceRNA network was unsuccessfully

established, we discovered that LINC01537 and eight

mRNAs were significantly correlated in all the three

types of tumor. The eight mRNAs were acyl-CoA syn-

thetase medium chain family member 5 (ACSM5),

adrenoceptor alpha 1A (ADRA1A), C-C motif chemo-

kine ligand 14 (CCL14), deoxyribonuclease 1 like 3

(DNASE1L3), leukocyte immunoglobulin like receptor

B5 (LILRB5), phosphodiesterase 2A (PDE2A) protein

phosphatase, Mg2+/Mn2+ dependent 1 K (PPM1K)

and retinol binding protein 5 (RBP5), among which

PDE2A exhibited the strongest correlation with

LINC01537 (Fig. 4B and Table S1). Interestingly,

PDE2A was a potential target of LINC01537

according to the prediction in the public database star-

Base v2.0 (http://starbase.sysu.edu.cn). It was sug-

gested that LINC01537 and the eight protein-coding

genes may be interrelated in a miRNA independent

manner in hepatic–biliary––pancreatic cancers.

Paired samples expression analysis and survival

analysis of identified significative molecules

To further investigate the importance of the above

nine molecules (LINC01537 and eight mRNAs), we

performed paired comparison analysis by examining

their expression in tumor samples and the correspond-

ing adjacent tissues (62 pairs). The expression of these

nine molecules decreased in tumor tissues significantly

compared to their matching para-cancerous tissues

(Fig. 5). Moreover, we performed Kaplan–Meier sur-

vival analysis to identify the prognostic power of each

individual molecule in the OS of patients. Seven

mRNAs, including ACSM5, ADRA1A, CCL14,

DNASE1L3, LILRB5, PDE2A and RBP5, were linked

with a higher OS probability, whereas the contribution

of PPM1K and LINC01537 was not significant

(Fig. 6). Therefore, we concluded that these seven

genes might be protective prognostic factors. Notably,

although LINC01537 was not significantly associated

with OS in pan-digestive cancer patients, it was signifi-

cantly associated with that in hepatic cancer patients

(Fig. S4).

Establishment of the prognostic model

Next, based on the eight molecules, we explored to

establish a predictive model that can be universally

applied for hepatic–biliary–pancreatic cancer progno-

sis. Univariate Cox regression analysis was used to

select out significant genes contributing to the success-

ful prediction of patients’ survival rate. As shown in

Table S2, seven mRNAs (ACSM5, ADRA1A, CCL14,

DNASE1L3, LILRB5, PDE2A and RBP5) were

selected except for PPM1K (P = 0.449). Moreover, the

hazard ratios of these seven genes were all less than 1,

demonstrating that they were protective factors. Con-

sidering the potential roles of these seven mRNAs in

patient prognosis, we established a LASSO Cox regres-

sion model integrating these mRNAs to build a risk

score signature (Fig. 7A,B) and screened out two

mRNAs (DNASE1L3 and RBP5) by minimizing λ.
The two mRNAs strongly represented the risk scores,

as shown in Fig. 7C. We then grouped the patients

into a low-risk group with a 5-year survival rate of

approximately 50%, and a high-risk group with a 5-

year survival rate of approximately 25% based on the
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Fig. 3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in digestive gland malignancies. GO

enrichment analysis including biological process (BP), cellular component (CC) and molecular function (MF) for (A) up-regulated mRNAs and

(B) down-regulated mRNAs. (C) KEGG pathway analysis. Red, up-regulated genes; green, down-regulated genes.
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cut-off value −0.62 (Fig. 7D). In total, 5097 DEmR-

NAs (3337 up-regulated and 1760 down-regulated)

were identified. As expected, the expression of the

seven mRNAs was significantly higher in the low-risk

group than those in the high-risk group (Fig. 7E).

Next, the independent factors associated with patient

prognosis, including gender, age, TNM grading and

tumor histological staging, were submitted for multi-

variate Cox regression analysis, respectively. The

results of multivariate Cox regression analysis demon-

strated that risk score signature could serve as a reli-

able and independent prognostic biomarker to assess

patient outcomes. Furthermore, pathologic T was also

significantly related to patient prognosis and could be

regarded as the independent prognosis factor as well

(Fig. 7F). Patient mortality significantly decreased as

the risk values increased (Fig. 8A). The established

nomogram, which integrated risk score and indepen-

dent clinical prognostic factors, could effectively pre-

dict the probability of patient mortality (3- and 5-year

survival rates) and provide a potential prognostic

method in clinics (Fig. 8B).

External and internal validation of the prediction

model

For cross-validation, we applied our prediction

model to the internal cohorts (TCGA) and two

Fig. 4. The construction of co-expression

network of digestive gland malignancies.

(A) The co-expression network of digestive

gland malignancies. (B) The relationship

between LINC01537 and PDE2A.
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Fig. 5. The expression analyses between normal and corresponding tumor tissues in paired samples (62 pairs) in hepatic–biliary–pancreatic
tumors. (A) ACSM5, (B) ADRA1A, (C) CCL14, (D) DNASE1L3, (E) LILRB5, (F) PDE2A, (G) PPM1K, (H) RBP5 and (I) LINC01537. Comparisons

between groups were performed using a two-tailed Student’s t test.
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independent external cohorts (LIRI-JP and

GSE57495). The area under the curve values of the

entire TCGA cohorts were 0.69, 0.74 and 0.65 for 1-,

3- and 5-year survival rates, respectively. (Fig. 9A).

Consistently, the area under the curve values were

0.70, 0.75 and 0.64 in the LIRI-JP cohort and 0.70,

0.69 and 0.53 in the GSE57495 cohort for 1-, 3- and

5-year survival rates (Fig. 9B,C). Kaplan–Meier

analysis also demonstrated that the OS of patients in

the low-risk group was significantly higher than

those in the high-risk group in both external cohorts

(Fig. 9D,E). To further investigate the underlying

mechanism, GSEA analysis was performed, demon-

strating that the differentially expressed genes in the

high-risk group were significantly enriched in the

EMT pathway (Fig. 10), suggesting that our predic-

tion model could also predict the EMT occurrence

possibly. As shown in Table S3, epithelial marker

like E-cadherin was decreased, whereas mesenchymal

markers, including Snail, Twist, vimentin and N-

cadherin, were increased in high-risk group from

hepatic–biliary–pancreatic tumors.

Mutation landscape of key molecules

Considering their protective roles, we examined the

mutation landscape of seven mRNAs in CHOL, LIHC

and PAAD, respectively. In CHOL samples, 5.88% of

51 patients experienced mutations in ACSM5, DNA-

SE1L3 and PDE2A (Fig. S5A). In LIHC samples,

2.47% of 364 patients experienced mutations in

LILRB5, ACSM5, CCL14 and RBP5 (Fig. S5B). In

PAAD samples, 2.25% of 178 patients experienced

mutations in ADRA1A, ACSM5, PDE2A, LILRB5

Fig. 6. The survival analysis of key molecules in hepatic–biliary–pancreatic cancers. (A) ACSM5, (B) ADRA1A, (C) CCL14, (D) DNASE1L3, (E)

LILRB5, (F) PDE2A, (G) RBP5, (H) PPM1K and (I) LINC01537.
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and DNASE1L3 (Fig. S5C). It was found that the

ACSM5 exhibited mutation in three tumors. ACSM5,

DNASE1L3 and PDE2A showed mutations in CHOL

and PAAD. Furthermore, missense mutations are

dominant forms.

PDE2A repressed EMT as a protective factor

Given that these genes may be protective factors, we

further tested whether they could prevent carcinogen-

esis of LIHC, the most common cancer in the

Fig. 7. Construction of risk signature in digestive gland malignancies form TCGA cohort. (A) Tuning parameter lambda/λ selection in the

LASSO model. The partial likelihood deviance was plotted against log (λ). The dotted vertical lines showing the optimal values through

minimum criteria and 1se criteria. (B) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of seven mRNAs

selected by univariate cox regression analysis. (C) The optimal cut-off point value dichotomized risk score into low and high groups. (D) Sur-

vival analyses for low-risk (275 samples) and high-risk (194 samples) groups using Kaplan–Meier curves (P < 0.0001; log-rank test). (E) The

seven key molecules expressed in the low-risk and high-risk groups (P < 0.0001, P < 0.05). (F) Pathologic T and risk score could be

regarded as independent prognostic biomarkers using multivariate analyses.
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hepatic–biliary–pancreatic system. We took a widely-

used human liver cancer cell line HepG2 as a model

system. Among the seven genes, PDE2A exhibited

the lowest expression level in HepG2, as revealed by

public RNA-seq data (Fig. S6). Therefore, we took

PDE2A as an example and activated the endogenous

expression of PDE2A by dCas9-VP64 mediated

CRSIPRa [33]. The result of a quantitative RT-PCR

indicated that PDE2A was successfully up-regulated

by 4–6-fold via CRISPRa employing two different

sgRNAs (P < 0.01; Fig. 11A). Because our analysis

suggested that our predictive model distinguished the

patients with high and low EMT signatures, we fur-

ther explored the role of PDE2A in cancer cell inva-

sion and EMT. Transwell assays demonstrated that

activation of PDE2A attenuated the invasion ability

of HepG2 cells (Fig. 11B). In addition, western blot

analysis revealed that epithelial marker E-cadherin

was slightly increased, whereas mesenchymal marker

N-cadherin and EMT-associated transcription factor

Snail were decreased when PDE2A were activated

(Fig. 11C). These results suggested that PDE2A was

not only a prognostic mark, but also a functional

gene that is negatively associated with liver carcino-

genesis.

Discussion

We initially identified the DElncRNAs, DEmiRNAs and

DEmRNAs between tumor tissues and para-cancerous

tissues. GSEA analysis indicated that gene sets related to

cell cycle and cell division might be the common poten-

tial mechanism in digestive malignancies. Functional

enrichment analysis demonstrated that GO-BP terms

such as ‘nuclear division’ and ‘organelle fission’ were sig-

nificantly enriched by upregulated mRNAs, whereas

GO-BP terms such as ‘positive regulation of ion trans-

port’ and ‘regulation of immune effector process’ were

significantly enriched by downregulated mRNAs. More-

over, ‘cell cycle’ was significantly enriched by upregu-

lated genes whereas ‘B cell receptor signaling pathway’

was significantly enriched by downregulated genes in

digestive gland tumors in KEGG pathway enrichment

analysis. Previous studies have demonstrated that cell

cycle and cell division are critical for cancer development

[34]. B cells, the main effector cells associated with

immunity, inhibit tumor progression by secreting

immunoglobulins, promoting a T cell response and

directly killing cancer cells [35]. Therefore, the dysregu-

lated genes observed in our research might contribute to

tumor progression through these signaling pathways.

Fig. 8. Prognostic value of the risk score gene signature. (A) Hierarchical clustering of seven key genes between low-risk and high-risk

groups. (B) The nomogram constructed to predict the probability of patient mortality (*P < 0.05, **P < 0.01).
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To better understand the common mechanism of

digestive gland malignancies. LINC01537 and eight

mRNAs (ACSM5, ADRA1A, CCL14, DNASE1L3,

LILRB5, PDE2A, PPM1K and RBP5) were finally

screened out according to lncRNAs–miRNAs and

miRNAs–mRNAs co-expression analysis. LINC01537

is located on human chromosome 11q13.4. A previ-

ous study has demonstrated that LINC01537 was sig-

nificantly associated with lung cancer survival,

inhibiting tumor proliferation and metastasis, as well

as enhanced cellular sensitivity to nilotinib through

stabilized PDE2A protein [36]. Another bioinformatic

analysis indicated that LINC01537 was a risk factor

for patient prognosis and a ferroptosis-related thera-

peutic target in lung adenocarcinoma [37]. Therefore,

LINC01537 was considered as a biomarker related

with survival prediction and therapeutic target in

lung cancer. Consistently, LINC01537 was downregu-

lated in digestive gland tumor tissues compared to

normal in the present study. Although the correlation

between LINC01537 and the survival rate of diges-

tive gland malignancies was not statistically signifi-

cant (P = 0.19), it was significantly correlated with

patient prognosis as a protective factor in LIHC

(P = 0.0045; Fig. S4) from the GEPIA (http://gepia.

cancer-pku.cn) database. The fact that LINC01537

was not significantly correlated with the other two

types of cancer might be a result of limited patient

samples (LIHC : CHOL : PAAD ≈ 4 : 0.4 : 1.7).

However, further functional studies are needed to

investigate the specific effects of LINC01537 in car-

cinogenesis. Survival analysis demonstrated that the

high expression of seven mRNAs (ACSM5,

ADRA1A, CCL14, DNASE1L3, LILRB5, PDE2A

and RBP5) was associated with a significant survival

advantage. Therefore, these seven mRNAs, similar to

LINC01537, might be tumor suppressors in digestive

glands.

Fig. 9. Internal and external validation of the prognostic risk model in digestive gland malignancies. ROC analysis of the prognostic model in

the (A) TCGA testing cohorts, (B) LIRI-JP validation cohort and (C) GSE57495 validation cohort (C). Kaplan–Meier survival analysis of OS

between patients with low-risk scores and high-risk scores in the (D) LIRI-JP validation cohort and (E) GSE57495 validation cohort.
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ACSM5, as a protein-coding gene, mainly partici-

pates in the cytochrome P450 pathway. GO annota-

tions related to ACSM5 consist of GTP binding and

butyrate-CoA ligase activity [38]. ACSM5 also cat-

alyzes the activation of fatty acids by CoA in the first

step of fatty acid metabolism to produce acyl-CoA

[39]. A previous study reported that ACSM5 was iden-

tified as a biomarker for lung adenocarcinoma progno-

sis and was also associated with the tumor

microenvironment [38]. However, the detailed roles

and specific mechanisms of ACSM5 in tumor progres-

sion need further exploration. ADRA1A belongs to

the G protein-coupled receptor superfamily that stimu-

lates the sympathetic nervous system by binding cate-

cholamines. ADRA1A also activates the mitogenic

response and regulates the growth and proliferation of

many cells [40]. Previous studies have demonstrated

that ADRA1A plays a crucial role in various cancer

progresses, including hepatocellular carcinoma [41],

gastric carcinoma [42], lung cancer [43] and hysterocar-

cinoma [44]. ADRA1A hypermethylation contributed

to liver cancer initiation and was associated with

patient prognosis as a promising biomarker for diag-

nosis [41]. CCL14 is a molecular signal of CC

chemokines that induces leukocyte migration during

inflammation [45]. CCL14 is a tumor suppressor asso-

ciated with prognosis in numerous tumors [46]. It was

reported that the overexpressed CCL14 suppressed

proliferation and promoted apoptosis of hepatocellular

carcinoma cells via inhibition of the activation of the

Wnt/β-catenin pathway [45]. DNASE1L3 mediates

DNA breakdown during apoptosis. Patients with posi-

tive DNASE1L3 expression showed significantly longer

overall survival [47]. RBP5 has been shown to be an

essential metabolic protein responsible for the storage

and transportation of retinol throughout the body.

RBP5 is involved in many tumor progressions, includ-

ing hepatocellular carcinoma [48], cholangiocarcinoma

[49], gastric cancer [50] and lung cancer [51]. LILRB5

is a typical type-1 transmembrane protein, a member

of the leukocyte immunoglobulin-like receptor (LILR)

family, containing four extracellular immunoglobulin

superfamily domains [52]. LILRB5 expressed in a vari-

ety of immune cells from both peripheral blood and

the microenvironment in hepatocellular carcinoma

patients [53]. PDE2A, as a key member of the phos-

phodiesterase (i.e. PDE) family, regulates mitochon-

drial cAMP levels and respiration, participating in

multiple physiological activities such as energy meta-

bolism [54]. The genomic location of the gene for

PDE2A is adjacent to LINC01537. Thus it is possible

that a physical interaction between PDE2A and

LINC01537 exists, which has been observed in lung

cancer. Gong et al. [36] reported that LINC01537 pro-

moted PDE2A expression via RNA–RNA interaction

to stabilize PDE2A mRNA, thus eliciting PDE2A

effects on the energy metabolism of tumors, including

both the Warburg effect and mitochondrial respira-

tion. Consistently, LINC01537 also exhibited signifi-

cant correlation with PDE2A in our analysis (r = 0.73,

Fig. 10. GSEA analysis for mechanism of

prognosis in digestive malignancies

patients between the high-risk and low-

risk groups.
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P = 1.74 × 10–80). Therefore, we propose that

LINC01537/PDE2A might repress the development of

digestive gland malignancies as well, such as tumor

proliferation, invasion and metastasis.

Based on these seven genes, we constructed a predic-

tive model to evaluate the risk of patients’ malignancy.

Multivariate Cox regression analysis demonstrated

that both pathologic T and risk score were indepen-

dent prognostic factors. In addition, the nomogram

model composed of pathologic T and the risk group

accurately predicted the malignancies, which might be

helpful in clinics with respect to guiding the clinical

practice of cancer prognosis. GSEA analysis further

indicated that EMT might be a potential mechanism

of poor outcome in the high-risk group of patients.

EMT is a critical step in cancer metastasis. Metastasis

is the leading cause of cancer-associated deaths [55].

During this process, epithelial markers such as E-

cadherin and claudin are decreased, whereas mes-

enchymal markers such as N-cadherin and vimentin

increased [56]. The switch of these markers was con-

trolled by transcription factors, such as Snail, Slug and

Fig. 11. Overexpressed PED2A repressed tumor EMT in LIHC. (A) The relative expression level of PDE2A by a quantitative RT-PCR (repli-

cates number = 3). (B) Transwell assay (replicates number = 3). Scale bar = 25 μm. (C) Western blot analysis (replicates number = 3). Com-

parisons between groups were performed using a two-tailed Student’s t test. Data are shown as the mean � SD. *P < 0.05, **P < 0.01.
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Twist [57]. Thus, our model may also be useful for

estimating EMT in patients of all samples combined

from hepatic–biliary–pancreatic cancers. The same

result was observed and validated in liver cancer. Con-

sistently, we demonstrated that PDE2A activation

enhanced the expression of epithelial marker E-

cadherin, whereas it reduced the expression of mes-

enchymal marker N-cadherin and transcription factor

Snail in HepG2 cells. Therefore, the genes in our

model may be functionally involved in the occurrence

of EMT.

In the present study, we identified risk score, com-

prising the expression of seven genes (ACSM5,

ADRA1A, CCL14, DNASE1L3, LILRB5, PDE2A

and RBP5), and pathologic T, as robust and indepen-

dent universal biomarkers of digestive gland malignan-

cies. Our nomogram model based on these two

independent prognostic factors could efficiently predict

the prognosis of patients and probably also the occur-

rence of EMT. However, the clinical application of

this nomogram model and the exact molecular mecha-

nism require further research in digestive gland malig-

nancies. The mechanism regarding the key molecules

also needs further study, especially for LINC01537.

We also found that PDE2A might play a role in the

metastasis of hepatocellular carcinoma. In conclusion,

the present study demonstrates a shared molecular

mechanism underlying hepatic, biliary and pancreatic

cancers. Meanwhile, it also improves our cognition of

the heterogeneity and complexity in digestive gland

malignancies, which require more effective diagnostic,

prognostic and therapeutic approaches.
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Fig. S1. Differences between normal and CHOL sam-

ples. Principal component analysis for lnRNAs (A),

miRNAs (B) and mRNAs (C). The heatmap of differ-

entially expressed lnRNAs (D), miRNAs (E) and

mRNAs (F). The volcano plot of differentially

expressed lnRNAs (G), miRNAs (H) and mRNAs (I).

Fig. S2. Differences between normal and LIHC sam-

ples. The heatmap of differentially expressed lnRNAs

(A), miRNAs (B) and mRNAs (C). The volcano plot

of differentially expressed lnRNAs (D), miRNAs (E)

and mRNAs (F).

Fig. S3. Volcano plots of differentially expressed

lnRNAs (A), miRNAs (B) and mRNAs (C) between

normal and PAAD samples.

Fig. S4. Survival analysis of LINC01537 in the

TCGA-LIHC cohort.

Fig. S5. Mutation landscape of key molecules associ-

ated with patient prognosis in digestive gland malig-

nancies. (A) TCGA-CHOL cohort. (B) TCGA-LIHC

cohort. (C) TCGA-PAAD cohort.

Fig. S6. Key molecules expression levels in HepG2 cell

line.

Table S1. The correlation between LINC01537 and

eight mRNAs.

Table S2. The significant genes contributing to patient

prognosis by univariate Cox regression analysis.

Table S3. The differentially expressed EMT markers

between the high-risk group and low-risk group.
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