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COVID-19 presentation is very heterogeneous across cases, and host factors are at the
forefront for the variables affecting the disease manifestation. The immune system has
emerged as a key determinant in shaping the outcome of SARS-CoV-2 infection. It is
mainly the deleterious unconstrained immune response, rather than the virus itself, which
leads to severe cases of COVID-19 and the associated mortality. Genetic susceptibility to
dysregulated immune response is highly likely to be among the host factors for adverse
disease outcome. Given that such genetic susceptibility has also been observed in
autoimmune diseases (ADs), a number of critical questions remain unanswered;
whether individuals with ADs have a significantly different risk for COVID-19–related
complications compared to the general population, and whether studies on the
genetics of ADs can shed some light on the host factors in COVID-19. In this
perspective, we discuss the host genetic factors, which have been under investigation
in association with COVID-19 severity. We touch upon the intricate link between
autoimmunity and COVID-19 pathophysiology. We put forth a number of autoimmune
susceptibility genes, which have the potential to be additional host genetic factors for
modifying the severity of COVID-19 presentation. In summary, host genetics at the
intersection of ADs and COVID-19 may serve as a source for understanding the
heterogeneity of COVID-19 severity, and hence, potentially holds a key in achieving
effective strategies in risk group identification, as well as effective treatments.

Keywords: COVID-19, SARS-CoV-2, immune response, autoimmunity, host genetics, susceptibility,
cytokine, polymorphism
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INTRODUCTION

Coronaviruses have been a source of global alarm for the last two
decades (1). The most recent emerging coronavirus SARS-CoV-2
has led to a pandemic, as declared by the World Health
Organization (WHO) in March 2020. There have been more
than 40 million confirmed cases of COVID-19 worldwide, and it
has claimed more than 1,000,000 lives (2). Considering the risk
of healthcare systems being overwhelmed, it is of utmost
importance to pinpoint the risk factors for adverse disease
outcomes to implement informed preventive measures limiting
the global burden of the current pandemic.

Epidemiological reports from different countries highlighted
COVID-19 mortality risk factors; comorbidities such as
hypertension, diabetes, obesity, cardiovascular disease, chronic
respiratory disease and cancer (3), as well as older age and male
sex regardless of any comorbidities (2, 4). Discrepancies in
testing availability, differences in testing algorithms and the
presence of asymptomatic cases confound cross-country
comparisons of the actual infection and mortality rates. These
challenges are also relevant to research studies on host
susceptibility factors for COVID-19 severity. Therefore,
additional host susceptibility factors are likely to transpire as
further epidemiological data emerge over time.

symptomatic and mild cases are estimated to comprise the
majority of COVID-19 cases (5). As a multisystem disease, severe
and critical cases may have acute respiratory distress syndrome
(ARDS), and organ injuries due to cytokine storm and
coagulopathies potentially leading to death (5–7). The striking
interpersonal differences in clinical presentation have led to
questions on the role of genetic factors. For instance, angiotensin-
converting enzyme2 (ACE2)wasoneof thefirst genes that attracted
a lot of interest due toACE2being theviralportal of entry to thehost
cells, and the high mortality rate observed among cases with
hypertension receiving ACE-inhibitor treatment.

Exaggerated inflammatory response is the culprit of the
majority of the COVID-19 deaths. Hence, genetic susceptibility
to dysregulated immune response is potentially among the host
factors for adverse disease outcome. Such genetic susceptibility
has also been observed in autoimmune diseases (ADs) (8, 9).
Therefore, a significant question remains to be answered; does
genetic susceptibility to ADs affect the risk for COVID-19–
related complications and mortality?

ADs are complex diseases due to both genetic and
environmental factors. They are characterized by an aberrant
immune response to self-antigens due to the presence of
autoreactive lymphocytes and loss of immune tolerance (10).
Uncovering any potential genetic, and possibly, biological link
between ADs and immune response to SARS-CoV-2 may in turn
help to (1) identify individuals at risk, (2) shed light on COVID-19
immunopathology, (3) explain the broad heterogeneity in the
disease progression and treatment responses, and (4) guide the
vaccine development to prevent any vaccine-induced destructive
immune response.

Herein, we briefly discuss the host genetic factors that have
been under investigation with regards to association with
COVID-19 disease severity, and also suggest a number of AD
Frontiers in Immunology | www.frontiersin.org 2
susceptibility genes, with the potential to be additional host
genetic factors for heterogeneous COVID-19 presentation.
PROGRESS IN THE INVESTIGATION OF
COVID-19 HOST GENETICS

From the very start of the COVID-19 outbreak, protein members
of the biological pathway essential for the entry of the virus into
the host cells have become a focus of attention as candidate host
susceptibility genes. Epidemiological findings on chronic
conditions such as hypertension having more severe COVID-
19 disease and a higher mortality risk, have also pointed out
specific proteins functioning in the viral entry pathway (11). Of
main interest were two proteins, ACE2 and transmembrane
serine protease 2 (TMPRSS2), but the latter received
significantly less attention with regards to host genetics studies
(12–16). ACE2, a transmembrane protein, mainly found in
airway ciliated epithelial cells with different enzymatic activities
related to the renin-angiotensin-aldosterone system, has been
shown to serve as a functional receptor for SARS-CoV-2 to infect
nasal and alveolar epithelial cells in the lungs (17). The spike
glycoprotein (S-protein) on the viral envelope of SARS-CoV-2
binds to the host ACE2 via its receptor-binding domain. Upon
binding, the S-protein is activated by the TMPRSS2, which is a
cellular protease that co-localizes with ACE2. This interaction
assists the virus to fuse with the plasma membrane and facilitates
the viral invasion of the host cell (18) (Table 1).

ACE inhibitors and angiotensin-receptor blockers (ARBs),
which are used to balance blood pressure and vascular
complications in chronic diseases (e.g. cardiovascular diseases
and diabetes), provide various clinical benefits by increasing the
expression of ACE2 while blocking ACE. Given that ACE2
facilitates viral invasion of human cells, there have been
concerns that upregulation of ACE2, via use of ACE inhibitors
and ARBs, may increase COVID-19 susceptibility and severity
(19). However, it was also suggested that increasing ACE2 by the
same intervention might be beneficial for a subset of cases,
mainly because of its anti-inflammatory effects (19, 20).
Supporting this perspective, a population-based case-control
study reported that the use of ACE inhibitors or ARBs does
not directly correlate with COVID-19 susceptibility or outcome
severity (11). Studies in mice also suggested a potential protective
role for ACE2 as its downregulation resulted in more severe
respiratory failure (21). Furthermore, ACE2 deficiency has been
shown to increase inflammatory response via increased
expression of cytokines, promoting vascular inflammation (22).
Hence, ACE2 may potentially play contrasting roles at different
stages of the disease, affecting COVID-19 susceptibility and
severity in multiple ways; at early stages, enabling viral entry to
the cell, and hence, increasing disease susceptibility, and later,
down-regulating cytokines/inflammatory response, and
therefore, decreasing severity of the disease.

So far, studies on population genetics and genetic epidemiology
of ACE2 variants have been inconclusive, not showing a significant
global pattern. A number of potentially functional variants (such as
missense variants rs758278442, rs759134032, and rs763395248)
December 2020 | Volume 11 | Article 586111
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have been shown to have varying frequencies in populations of
European vs. Asian descent, but convincing evidence for biological
effects of these on disease susceptibility and severity require further
functional experiments (23–27).

Another gene of interest has been apolipoprotein E (APOE),
due to the observation of pre-existing dementia as a risk factor
for COVID-19 severity and mortality in the older UK Biobank
population (age range ~ 40–69 years; UKBB; Table 1). The
UKBB study concluded that ApoE e4 allele increases the risk of
severe COVID-19 infection, independent of pre-existing
dementia, cardiovascular disease, and type-2 diabetes.
Biologically, ApoE e4 plays a role both in lipoprotein function
and in regulation of macrophage pro-/anti-inflammatory
phenotypes (28). ApoE is highly expressed in the lungs (29).
The precise biological mechanisms linking ApoE variants to
COVID-19 severity require further investigation (30).

Further approaches to exploring COVID-19 host genetics
involve international collaborations to perform hypothesis-free
association analysis across the human genome. The global
COVID-19 Host Genetics Initiative (HGI) has been formed to
bring together international human genetics and epidemiology
experts, and to gather and analyze scientific data on genetic
determinants of COVID-19 susceptibility (31) (https://www.
covid19hg.org/). Their main focus is to comprehensively
investigate the human genome to obtain insights into disease
susceptibility, as well as severity and outcome. As part of the
Initiative, a genome-wide association study (GWAS) including
1980 cases from Italy and Spain was conducted by the Severe
COVID-19 GWAS Group (32). Two loci, 3p21.31 gene cluster and
9q34.2 ABO blood group locus, were associated with severe
COVID-19, defined by respiratory failure (Table 1). Individuals
with the blood group A had a higher risk of severe COVID-19,
whereas there was a protective effect for those with the blood group
O. The gene cluster on chromosome 3 contains six genes (CCR9,
CXCR6, FYCO1, LZTFL1, SLC6A20, XCR1) with potential roles in
COVID-19 severity, such as those involved in immune response
(CCR9 and CXCR6), as well as in amino acid transport interacting
with ACE2 (SLC6A20). A very recent GWAS preprint by Genetics
ofMortality in Clinical Care (GenOMICC) collaborators including
HGI (https://genomicc.org) reported additional novel loci (DPP9,
TYK2,OAS gene cluster, IFNAR2, CCR2, CCR3, HLA-G, CCHCR1,
and NOTCH4) associated with COVID-19 severity, all of which
contain genes with roles in immune response and/or immune-
mediate diseases (Table 1) (33). Although identifying actual causal
gene variant(s) requires further association analyses in larger and
more diverse sample populations as well as functional experiments,
these results provide important insights into the potential factors
affecting COVID-19 severity.
AUTOIMMUNITY-ASSOCIATED GENES
PROVIDING POTENTIAL INSIGHTS INTO
SUSCEPTIBILITY TO SEVERE COVID-19

Immune system is key in shaping the outcome of SARS-CoV-2
infection. An appropriate immune response to SARS-CoV-2 is
Frontiers in Immunology | www.frontiersin.org 3
dependent not only on mounting the right type of response at
the right time, but also at the right intensity. Exaggerated
immune response to SARS-CoV-2, involving increased pro-
inflammatory serum cytokines [e.g. interleukin-1B (IL-1B), IL-
1RA, IL-7, IL-9, IFNg, CXCL10, TNFa, and especially, IL-6 and
IL-8], C-reactive protein, and lung inflammatory mononuclear
infiltrates, may cause lung fibrosis and lead to life-threatening
ARDS (34–37). Likewise, cytokine storm increases the risk for
disseminated intravascular coagulation (DIC) and multiple
organ failure that may result in death (38). Thus, it is mainly
the deleterious unconstrained immune response, rather than
the virus itself, that leads to COVID-19–associated mortality (39).

Several factors may cause the hyper-inflammation observed
in severe COVID-19. One of them might be the weak early
interferon response that leads to excessive viral replication,
which then triggers an exaggerated inflammatory response (40,
41). Other factors promoting this aggressive immune response
might be the initial dose of exposure and previous infections of
the host. An important host factor is highly likely to be the host’s
genetic predisposition to a dysregulated immune response,
similar to those seen in ADs.

An intricate link is emerging between autoimmunity and
COVID-19 pathophysiology. The presence of autoantibodies
is associated with an increased need for respiratory support
(42), and furthermore, anti-cardiolipin IgA antibody
detected frequently in anti-phospholipid syndrome (APS)
has also been observed in a number of COVID-19 cases, with
thrombotic events (43, 44). Auto-antibodies against type I
interferons have also recently been identified in some of the
severe COVID-19 cases (45). Several groups have also put
forth that the molecular mimicry by SARS-CoV-2 may
induce a disseminated autoimmune reaction in the body (46–
48). Interestingly, lymphopenia is both a prognostic factor in
COVID-19 and a trigger in multiple ADs (35, 49–51).

Exacerbated immune response in COVID-19 is overall akin
to hemophagocytic lymphohistiocytosis (HLH), with its
hyperferritinemia, cytopenia, and increased cytokine levels
(52) . Interestingly, secondary HLH can be seen in
rheumatological diseases, such as systemic lupus erythematosus
(SLE), juvenile idiopathic arthritis, and rheumatoid arthritis
(RA), which are all autoimmune conditions (53). Besides HLH,
hyperferritinemia is a finding in a number of ADs such as adult-
onset Still’s disease, and catastrophic APS (54). As per the
observed link between autoimmunity and COVID-19, drugs
commonly used in AD, such as corticosteroids, and IL-6R and
IL-1 antagonists, are being tested and used in COVID-19 cases
(55, 56).

Given the aforementioned link between autoimmunity and
COVID-19, we propose a connection between genetic
susceptibility to ADs and to COVID-19 severity. We put forth
candidates for shared genetics, among severe COVID-19 and AD
susceptibility, by considering the well-known and replicated
genetic variants shared across multiple ADs (Table 2). As
shown in Table 2 and further discussed below, these genes
code for proteins involved in antigen sensing, T cell activation
and in cytokine signaling, hence they functionally participate in
December 2020 | Volume 11 | Article 586111
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TABLE 1 | Descriptions of selected host genes and their functions relevant to COVID-19 susceptibility and severity.

Gene Location Function Discovery Reference(s)

CCR2 3p21.31 The C-C Motif Chemokine Receptor 2 gene encodes the receptor for monocyte chemoattractant
protein-1, a chemokine which mediates monocyte chemotaxis. CCR2-associated diseases include
human immunodeficiency virus type 1 and idiopathic anterior uveitis.

GWAS/TWAS
(differential
predicted
expression in
lung tissue)

Pairo-Castineira
et al. https://doi.org/
10.1101/2020.09.
24.20200048

CCR3 3p21.31 The C-C Motif Chemokine Receptor 3 gene encodes a receptor for C-C type chemokines. It belongs to
family 1 of the G protein-coupled receptors. This receptor may contribute to the accumulation and
activation of eosinophils and other inflammatory cells in the allergic airway. CCR3-associated diseases
include aids dementia complex and folliculotropic mycosis fungoides.

GWAS/TWAS
(differential
predicted
expression in
lung tissue)

Pairo-Castineira
et al. https://doi.org/
10.1101/2020.09.
24.20200048

CCR9 3p21.31 The C-C Motif Chemokine Receptor 9 gene encodes a member of the beta chemokine receptor family.
Chemokines and their receptors are key regulators of the thymocytes migration and maturation in
normal and inflammation conditions. CCR9-associated diseases include ileitis and celiac disease 1.

GWAS PubMed ID:
32558485

CXCR6 3p21.31 The C-X-C Motif Chemokine Receptor 6 gene encodes a protein with G protein-coupled receptor
activity and C-X-C chemokine receptor activity functioning in GPCR signaling and CCR5 pathway in
macrophages. CXCR6-associated diseases include sarcoidosis 1 and immune deficiency disease.

GWAS/TWAS
(differential
predicted
expression in
lung tissue)

PubMed ID:
32558485; Pairo-
Castineira et al.
https://doi.org/10.
1101/2020.09.24.
20200048

FYCO1 3p21.31 The FYVE And Coiled-Coil Domain Autophagy Adaptor 1 gene encodes a protein with a role in
microtubule plus end-directed transport of autophagic vesicles through interactions with the small
GTPase Rab7, phosphatidylinositol-3-phosphate (PI3P) and the autophagosome marker LC3. FYCO1-
associated diseases include autosomal recessive congenital cataract-2.

GWAS PubMed ID:
32558485; Pairo-
Castineira et al.
https://doi.org/10.
1101/2020.09.24.
20200048

LZTFL1 3p21.31 The Leucine Zipper Transcription Factor Like 1 gene encodes an ubiquitously expressed protein
localized in the cytoplasm. LZTFL1 regulates protein trafficking to the ciliary membrane via interactions
with Bardet-Biedl Syndrome (BBS) proteins. It may also function as a tumor suppressor by interacting
with E-cadherin and the actin cytoskeleton to regulate the transition of epithelial cells to mesenchymal
cells. LZTFL-associated diseases include Bardet-Biedl Syndrome 17 and Bardet-Biedl Syndrome 1.

GWAS PubMed ID:
32558485; Pairo-
Castineira et al.
https://doi.org/10.
1101/2020.09.24.
20200048

SLC6A20 3p21.31 The Solute Carrier Family 6 Member 20 gene encodes a membrane transporter with unidentified
substrates within the Na+ and Cl- coupled transporter family. It is expressed in the kidneys. SLC6A20-
associated diseases include iminoglycinuria and hyperglycinuria.

GWAS PubMed ID:
32558485; Pairo-
Castineira et al.
https://doi.org/10.
1101/2020.09.24.
20200048

XCR1 3p21.31 The X-C Motif Chemokine Receptor 1 gene encodes a chemokine receptor belonging to the G protein-
coupled receptor superfamily. It transduces a signal by increasing the intracellular calcium ions level. The
viral macrophage inflammatory protein-II is an antagonist of this receptor. XCR-associated diseases
include Leber plus disease.

GWAS PubMed ID:
32558485

NOTCH4 6p21.32 The Notch receptor 4 gene encodes a member of the NOTCH family of proteins. Notch signaling is an
evolutionarily conserved intercellular signaling pathway that regulates interactions between physically
adjacent cells. This receptor may play a role in vascular, renal and hepatic development. NOTCH4-
associated diseases include arteriovenous malformation and schizoaffective disorder.

GWAS Pairo-Castineira
et al. https://doi.org/
10.1101/2020.09.
24.20200048

CCHCR1 6p21.33 The Coiled-Coil Alpha-Helical Rod Protein 1 gene encodes a protein with five coiled-coil alpha-helical
rod domains acting as a regulator of mRNA metabolism through its interaction with mRNA-decapping
protein 4. CCHCR1-associated diseases include autoimmune psoriasis.

GWAS Pairo-Castineira
et al. https://doi.org/
10.1101/2020.09.
24.20200048

HLA-G 6p22.1 Human Leukocyte Antigen (HLA) G belongs to the HLA class I heavy chain paralogues on chromosome
6. HLA-G is expressed on fetal derived placental cells. HLA-G-associated diseases include asthma and
severe pre-eclampsia.

GWAS Pairo-Castineira
et al. https://doi.org/
10.1101/2020.09.
24.20200048

ABO
blood
group
locus

9q34.2 This locus encodes proteins related to the first discovered blood group system, ABO. Variations in the
ABO gene determines the ABO blood groups. ABO-associated diseases include epiglottis cancer and
orbital tenonitis.

GWAS PubMed ID:
32558485;
Replicated by the
23andMe
(unpublished) and
Zhao et al. https://
doi.org/10.1101/
2020.03.11.
20031096

(Continued)
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shaping the intensity of the immune response; a paramount
factor in COVID-19 severity.

In pathogen sensing by the innate immune system, toll-like
receptor 7 (TLR7), an endosomal pattern recognition receptor
(PRR), recognizes single-stranded RNA, and thus, it is among the
initial innate immune cell receptors that sense SARS-CoV-2.
TLR signaling leads to expression of pro-inflammatory cytokines
and interferon genes (10). ADs, such as SLE, RA, and systemic
sclerosis, have associations with TLR variants (10, 57, 58). Even
though the early interferon response is delayed in SARS-CoV-2,
upon increased viral load, excessive signaling due to genetic
variants in TLR signal transduction pathways may lead to
exacerbated macrophage and neutrophil activation, and
subsequent, cytokine secretion (59). Interestingly, a recent
case-series has shown that four young males with severe
COVID-19 harbored rare TLR7 variants, which hampered
interferon responses upon TLR7 engagement (60). Since TLR7
is located on the X-chromosome and is expressed bi-allelically, it
Frontiers in Immunology | www.frontiersin.org 5
has been suggested as one of the reasons for the sex bias, albeit in
opposite direction, seen in AD and COVID-19 (61). These
claims are yet to be proved, but it is becoming more apparent
that a coordinated immune response is key for successfully
controlling SARS-CoV-2 infection (62). Therefore, it is
probable that any change in TLR7 signaling might increase the
risk for a dysregulated immune response seen in severe COVID-
19. The role of genetic variants in other players for type I
interferon response, including TLR3 in severe COVID-19 is
also emerging (63). In the case of antigen sensing in the
adaptive immune system, T cells are dependent on antigens
presented on human leukocyte antigen (HLA) molecules, and
HLA loci are strongly associated with ADs (64). However, the
mechanistic link between HLA loci and autoimmunity is
complex, hence it is challenging to put forth a specific
candidate variant that might also be present in severe COVID-
19 cases. The GWAS in Italian and Spanish populations did not
find any link between the HLA locus and respiratory failure in
TABLE 1 | Continued

Gene Location Function Discovery Reference(s)

OAS1,
OAS2,
OAS3
gene
cluster

12q24.13 The 2'-5'-Oligoadenylate Synthetase gene cluster encode the antiviral restriction enzyme activators,
essential proteins involved in the innate immune response to viral infection. These enzymes are induced
by interferons and catalyze reactions to activate RNase L, which results in viral RNA degradation and
the inhibition of viral replication. This enzyme family plays a significant role in the inhibition of cellular
protein synthesis, and hence, viral infection resistance. OAS-associated diseases include chikungunya,
tick-borne encephalitis, microphthalmia with limb anomalies and pulmonary alveolar proteinosis with
hypogammaglobulinemia.

GWAS/TWAS Pairo-Castineira
et al. https://doi.org/
10.1101/2020.09.
24.20200048

TYK2 19p13.2 The tyrosine kinase 2 gene encodes a member of the tyrosine kinase and the Janus kinase (JAK)
protein families. It interacts with the cytoplasmic domain of type I and type II cytokine receptors and
promote cytokine signals by phosphorylating receptor subunits. It is also a component of both the type I
and type III interferon signaling pathways playing a potential role in anti-viral immunity. TYK2-associated
diseases include hyperimmunoglobulin E syndrome (HIES) - a primary immunodeficiency characterized
by elevated serum immunoglobulin E - and lymphomatoid papulosis as well as autoimmune diseases.

GWAS Pairo-Castineira
et al. https://doi.org/
10.1101/2020.09.
24.20200048

DPP9 19p13.3 The Dipeptidyl peptidase 9 gene encodes a protein that is a member of the S9B family in clan SC of the
serine proteases. It has been shown to have post-proline dipeptidyl aminopeptidase activity. Dipeptidyl
peptidases are involved in the regulation of the activity of their substrates and have been linked to a
variety of diseases including type 2 diabetes, obesity and cancer. Other diseases associated with DPP9
include pulmonary fibrosis and nasopharyngitis.

GWAS Pairo-Castineira
et al. https://doi.org/
10.1101/2020.09.
24.20200048

APOE 19q13.32 The Apolipoprotein E gene encodes an apoprotein of the chylomicron, which binds to a specific liver
and peripheral cell receptor and is essential for the normal catabolism of triglyceride-rich lipoprotein
constituents. Located on chromosome 19 in a cluster with the related apolipoprotein C1 and C2 genes.
APOE-associated diseases include lipoprotein glomerulopathy, familial dysbetalipoproteinemia and type
III hyperlipoproteinemia leading to increased blood triglyceride and cholesterol levels.

Observational
candidate

PubMed ID:
32451547

IFNAR2 21q22.1 The Interferon Alpha And Beta Receptor Subunit 2 gene encodes a type I membrane protein that forms
one of the two chains of a receptor for interferons alpha and beta. Binding and activation of the receptor
stimulates Janus protein kinases, which in turn phosphorylate several proteins including STAT1 and
STAT2. IFNAR2-associated diseases include immunodeficiency 45 and measles.

GWAS Pairo-Castineira
et al. https://doi.org/
10.1101/2020.09.
24.20200048

TMPRSS2 21q22.3 The Transmembrane Serine Protease 2 gene encodes a member of the serine protease family known to
be involved in many physiological and pathological processes. It is upregulated by androgenic
hormones in prostate cancer cells and downregulated in androgen-independent prostate cancer tissue.
TMPRSS2-associated diseases include influenza.

Observational
candidate

PubMed IDs:
32658335,
32664879,
32582302

ACE2 Xp22.2 The Angiotensin I Converting Enzyme 2 gene encodes a member of the angiotensin-converting enzyme
family of dipeptidyl carboxydipeptidases. It has significant homology to human angiotensin 1 converting
enzyme. It catalyzes the cleavage of angiotensin I into angiotensin 1-9, and angiotensin II into the
vasodilator angiotensin 1-7. It also functions as a receptor for the spike glycoprotein of the human
coronaviruses SARS and HCoV-NL63. ACE2-associated diseases include severe acute respiratory
syndrome.

Observational
candidate

PubMed IDs:
32341442,
32221983,
32658335,
32664879,
32582302
Decembe
r 2020 | Volum
Literature search performed using the LitCovid hub for COVID-19 using the keywords ‘COVID-19 host genetics’ (https://www.ncbi.nlm.nih.gov/research/coronavirus/, access date 10 July
2020). GWAS, Genome-wide association study; TWAS, transcriptome-wide association study).
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COVID-19 (32). However, a recent small-scale Han Chinese
study has shown that HLA-C*07:29 and B*15:27 genotypes were
more common in 82 recovered COVID-19 cases (65). As a highly
polymorphic region, any HLA association is also bound to be
population-dependent, similar to the previously observed HLA
associations with various ADs (66).

Upon antigen recognition, signal transduction through the T
cell receptor (TCR) leads to the activation of T cells. Among the
proteins involved in T cell activation, protein tyrosine
phosphatase non-receptor type 22 (PTPN22) is a negative
regulator of T cell signaling. PTPN22R620W variant is very
frequently detected in a variety of ADs (Table 2) (67, 68).
Interestingly, PTPN22R620W is a gain of function variant, where
TCR signaling is more inhibited (69). Increased activity of
PTPN22 might tip the balance in regulatory T (Treg) cell and
effector T cell homeostasis against Tregs (70). Such a variant may
also contribute to the T cell depletion and immunoparalysis seen
in severe COVID-19 cases (51, 71).

Cytokines play a pleiotropic role in modulating leukocyte
activity, differentiation and intensity of the immune response.
Given the deleterious effects of hypercytokinemia in severe
COVID-19 and association of IL-6 with disease severity,
genetic variants that cause altered cytokine signaling might be
among the host genetic factors for severe COVID-19
susceptibility (35). Janus kinase-signal transducer and activator
Frontiers in Immunology | www.frontiersin.org
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of transcription (JAK-STAT) pathway is involved in signal
transduction from cytokine receptors. Baricitinib, a selective
JAK1/JAK2 inhibitor that is approved for RA treatment, is
currently being tested for COVID-19 management (72).
Tyrosine kinase 2 (TYK2) is a non-receptor tyrosine kinase
from the JAK family that functions together with different JAK
molecules, for signal transduction from IL6R, type I interferon
receptors, IL-12, IL-23 and IL-10 receptors. TYK2 variants have
been shown to affect disease susceptibility in a variety of ADs
(Table 2) (73, 74). Similarly, these TYK2 variants may be
associated with disease manifestation, as well as the response
to Jak inhibitors (Jakinibs) in COVID-19. Response to Jak
inhibitors is especially important as Jakinibs are among the
prime drugs that are being tested for drug repurposing in
COVID-19 (75) (clinical trials: NCT04320277, NCT04338958).
Of great interest, during the peer review process of this
perspective, the GenOMICC study identified TYK2 association
with critical illness in COVID-19 (Table 1) (33).

Furthermore, the IL6R gene variants have been associated
with heterogeneous response to anti-IL6R (Tocilizumab) therapy
in RA (76–78) (Table 2). Hence, in terms of inferring potential
host genetic factors affecting treatment responses in COVID-19
from the genetic studies of ADs, the genetic variants of IL6R
might potentially be promising biomarkers of response to
tocilizumab in COVID-19 (78).
TABLE 2 | Putative candidates for shared genes between severe COVID-19 and autoimmune disease (AD) susceptibility by considering the overlapping genetic
associations across multiple ADs in genes that shape the immune response intensity.

Functional
group

Gene Location Function Associated
autoimmune
disease(s)

Reference(s)

Antigen
Sensing

TLR7 Xp22.2 Toll-like Receptor 7; A pattern recognition receptor for single stranded RNA
that is mainly expressed by plasmacytoid DCs (pDCs), B cells, and
macrophages. Ligand binding induces the secretion of type 1 interferons,
inflammatory cytokines and co-stimulatory molecules.

SLE PubMed IDs: 19926489,
29374079, 32048277, 32706371

MHC 6p.21 Major Histocompatibility Complex Class I; Expressed by all nucleated cells
and is for intracellular antigen presentation to CD8+ T cells. Major
Histocompatibility Complex Class II; Antigen presentation to CD4+ T cells by
the antigen presenting cells (Dendritic cells, B cells and Macrophages)

Majority ot the
ADs

PubMed IDs: 28449694,
20303870; Pairo-Castineira et al.
https://doi.org/10.1101/2020.09.
24.20200048

Lymphocyte
activation

PTPN22 1p13.2 Protein tyrosine phosphatase, non-receptor type 22/ The lymphoid tyrosine
phosphatese (lyp); lymphoid specific tyrosine phosphatase that is a negative
regulator of T cell activation in T cell receptor signalling. It dephosphorylates
Src kinases that are at the downstream of T cell receptor.

SLE, TID, RA,
CD, TID

PubMed IDs: 22174698,
26502338, 19956096

Cytokine
Signaling

TYK2 19p13.2 Tyrosine Kinase 2; Non-receptor type tyrosine kinase involved in signal
transduction upon cytokine binding to its receptor. Receptors for IL-6, IL-12,
Type I interferons, IL-23, and IL-10 use TYK2 for signal transduction.

RA, SLE, SS,
JIA

PubMed IDs: 23143596,
26502338, 23603761, 26338038;
Pairo-Castineira et al. https://doi.
org/10.1101/2020.09.24.
20200048

IL6R 1q21.3 IL-6 receptor; A type 1 cytokine receptor that is mainly expressed on
leukocytes. IL-6 is a pleiotropic cytokine that is involved in the acute phase
response, neutrophil activation and Th17 differentiation.

AS, RA, SLE,
JIA

PubMed IDs: 26974007,
24532676, 28714469, 23603761,
22491018
December 2
SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; AS, ankylosing spondylitis; TID, type I diabetes; CD, Crohn’s disease; SS, systemic sclerosis; JIA, juvenile
idiopathic arthritis.
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DISCUSSION AND FUTURE DIRECTIONS

COVID-19 pandemic has had significant healthcare, socio-
economic and personal implications, and led to extreme
protective measures worldwide, such as lockdowns and border
closures. Significantly increased mortality rates for the high-risk
groups such as the elderly and thosewith chronic diseases, aswell as
concerns of overwhelmed healthcare systems, necessitated use of
such drastic measures (3). Accumulating epidemiological data
across countries have also been revealing potential new risk
groups and post-infection effects of COVID-19 (e.g. acute
thyroiditis in young individuals, an inflammatory condition
similar to Kawasaki disease in children, and onset or worsening of
diabetes (79–82)). There is a plethora of global research currently
ongoing in this rapidly progressing field. Therefore, more factors
and outcomes related to COVID-19 susceptibility and severity will
become evident in the coming months.

Individuals with ADs and those predisposed to ADs (e.g. with
family history for one or more ADs, and/or with clinically/
genetically determined higher risk for ADs) are of special interest
given the immune-related pathways and immunomodulatory
treatments shared with COVID-19. In a number of
epidemiological studies conducted, ADs have not been indicated
as major risk-modulating co-morbidities for severe COVID-19
(83). However, new evidence from a large recent study from the
United Kingdom has revealed RA, lupus and psoriasis, as risk
factors for COVID-19–related deaths (3). Given the current
contrasting epidemiological evidence, it should be considered
whether a possible association might be masked by the use of
some immunomodulatory drugs in ADs, or because underlying
autoimmunity has not yet manifested (84). Investigating the family
history of ADs and/or estimating the risk of individuals for having
ADs, using available clinical and/or genetic variables in cases with
severe and critical COVID-19, could be an approach to reveal a
possible link between predisposition to ADs and COVID-19
severity. Even though consistent epidemiological connection
between severe COVID-19 and AD is currently lacking, the
shared biological pathways and genetic variants related to those
pathways may still aid in deciphering the dysregulated immune
response to the infection and identifying additional targets for
treatment and drug repurposing.

Moreover, candidate gene studies and GWAS including larger
samples of COVID-19 cases of diverse ethnic backgrounds may
shed more light on the host genetic factors in severe COVID-19.
Furthermore, performing sex-stratified genetic analyses in these
larger sample populations is necessary for investigating the
observed epidemiological sex difference in the COVID-19
susceptibility and severity. Although environmental/behavioral
factors are likely to play a role, at least partially, in the observed
sex differences, genetic and biological factors may also contribute
to these observations (4). Sex differences observed in ADs and
COVID-19 severity may also share a number of these factors.

Besides host genetic factors, it has been shown that cases with
severe COVID-19 has a higher viral load and sustain this load for
a longer period (85). Although it remains to be determined
whether the high viral load is the direct cause of the severe
disease, or it is due to a dysregulated immune response, viral load
Frontiers in Immunology | www.frontiersin.org 7
has emerged as a potential key player affecting COVID-19
severity. Additionally, mutations detected in the virus,
especially in the spike protein, have a potential to alter its
virulence (86). Overall, the current scientific evidence shows
that COVID-19 severity is determined by a combination and
interplay of host and viral factors. Thus, multidisciplinary and
comprehensive studies are required to tackle the problem of
severe COVID-19 and to unravel the biological mechanisms
involved to reveal rational drug targets for better treatment.

The genetic underpinnings of ADs and the biological
relevance of many autoimmune-associated variants are yet to
be clearly elucidated. Thus, in this perspective, we focused on the
immune-related genetic factors, frequently observed across
different ADs, which may also be functionally relevant in
COVID-19 severity and treatment. To contribute towards an
effective response to the pandemic, we put forth a number of
gene candidates such as TLR7, the MHC region, PTPN22, TYK2
and IL6R (Table 2), albeit not exhaustive, that may affect the risk
of having ADs, and modulate COVID-19 severity, as well as
treatment response via common biological pathways. After
preparation of this manuscript, supportive evidence for the
role of the two of the gene candidates, TLR7 and TYK2, in
severe COVID-9 has already started to surface, underscoring the
importance and relevance of using the knowledge gained on ADs
to shed light on SARS-CoV-2 (33, 60).
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