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Abstract 

Backgrounds: To identify diagnostic biomarkers for differentiating oral squamous cell carcinoma (OSCC) 
from oral erosive lichen planus (OELP) and investigate potential biomarkers associated with malignant 
transformation. 
Methods: In this study, 72 patients with OSCC, 75 patients with OELP subjects were recruited. Their plasma 
samples were analyzed by ultra-high-performance liquid chromatography quadrupole-Orbitrap high-resolution 
accurate mass spectrometry, (UHPLC/Q-Orbitrap HRMS). Principal component analysis, orthogonal partial 
least square discrimination analysis, t-test analysis and false discovery rate were used to identify different 
metabolites in patients with OSCC and OELP. The metabolic pathway analysis was performed by 
MetaboAnalyst. To further screen and identify the biomarkers of OSCC and establish a diagnostic panel, binary 
logistic regression analysis and receiver operating characteristic analysis were used. The data were then 
combined with blood samples from healthy individuals for mass spectrometry analysis to obtain biomarkers 
related to malignant transformation. 
Results: A total of 20 kinds of endogenous metabolites were identified from plasma samples of OSCC patients 
and OELP patients. Metabolic pathway analysis showed that the biomarkers associated with OSCC were 
closely related to cholic acid metabolism and amino acid metabolism. Finally, a diagnostic panel composed of 
decanoylcarnitine, cysteine and cholic acid was established. This diagnostic panel had good diagnostic efficiency 
with the AUC=0.998. Other metabolites including uridine, taurine, glutamate, citric acid and LysoPC(18:1) 
were identified to be general biomarkers for malignant transformation of OELP. 
Conclusion: Biomarkers based on plasma metabolomics are of great significance for the prediction of 
malignant transformation of OELP and early diagnosis of OSCC. 
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Introduction 
Oral squamous cell carcinoma (OSCC) is one of 

the most prevalent tumors of head and neck and its 
5-year survival rate is about 50%-60% [1]. According 
to the Globocan Project (http://globocan.iarc.fr/ 
Default.aspx) data, there are about 300 000 new cases 

every year, and 145 000 of them will die [2]. A major 
cause for the high mortality of OSCC is that there is a 
lack of effective biomarker for early-stage diagnosis. 
The high mortality rate of OSCC is largely attributed 
to the fact that early-stage OSCC is mostly 
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asymptomatic. In addition, the maxillofacial region 
has abundant blood and lymphatic vessels that 
facilitate invasion and metastasis of cancer cells. 
Therefore, most of the patients have advanced stage 
disease at diagnosis. Oral lichen planus (OLP) is the 
precancerous change of OSCC. Oral erosive lichen 
planus (OELP), a subtype of oral lichen planus, has a 
higher malignant transformation rate than the 
reticular type. The clinical presentations, especially 
oral mucosa erosions, are similar to the presentations 
of OSCC [3]. It is difficult to distinguish early OSCC 
from OELP. There is an urgent need to distinguish 
OELP from OSCC to better the diagnosis and 
treatment. 

Metabolomics is one of the typical hallmarks of 
cancer cells and is closely related to cancer 
development. Cancer cells maintain rapid 
proliferation by reprogramming their metabolic 
mechanisms [4]. In general, metabolomics leads to 
abnormal levels of differential metabolites in blood, 
saliva and tissues. The changed metabolites may be 
potential biomarkers to distinguish malignant and 
benign lesions. Metabolomics is a high-throughput 
technique which is to measure the expression levels of 
small molecular compounds [5], such as lipids [6], 
amino acids [7], and other small molecule 
compounds, in body fluids or tissues [8]. 
Theoretically, detecting metabolic change is a feasible 
method for diagnosis of OSCC. 

Recently, many metabolomic studies have been 
performed to detect metabolic changes in patients 
with OSCC and healthy controls. Some study groups 
[9, 10] successfully revealed metabolites as potential 
biomarkers and used these biomarkers to discriminate 
OSCC patients from healthy control. Salivary 
biomarkers have attracted attention for clinical 
diagnosis because of the noninvasive sampling 
method [11, 12]. Nevertheless, there is few studies [13] 
focused on searching for reliable plasma biomarkers 
of OSCC and OELP. Blood is more stable and contains 
more analytes compared with saliva [14]. Several 
typical tumor specific proteins in blood, such as alpha 
fetoprotein (AFP) [15], prostate specific antigen (PSA) 
[16] and carcinoembryonic antigen (CEA) [17], have 
been used as biomarkers for clinical diagnosis. Our 
team has done some studies about diagnostic 
biomarkers on OELP and obtained some promising 
results [18]. On the basis of previous research, the 
study aims to identify diagnostic biomarkers from 
metabolic reprogramming combined with 
mathematical model analysis, and build a reliable 
diagnostic panel. We also explored whether there 
were biomarkers that could predict the malignant 
transformation of OELP. The study will provide new 
ideas for the early diagnosis and treatment of OSCC, 

which has economic value and social significance. 

Materials and methods 
Sample Information 

The study protocol was approved by the Ethics 
Committee of The First Affiliated Hospital of 
Zhengzhou University (approval No. 2020-KY-036). 
Written informed consent was obtained from all 
participants. All patients were diagnosed clinically 
and confirmed by pathology. Their blood samples 
were collected between June 6, 2019 and January 18, 
2020. All the subjects were diagnosed as OSCC or 
OELP for the first time with no serious systemic 
disease. The OELP criteria for the diagnosis of OELP 
are the modification WHO diagnostic criteria of oral 
lichen planus [19]: In short, clinical criteria included 
presence of bilateral, more or less symmetrical lesions 
accompanied by erosion. Moreover, the histological 
criteria included a clearly defined band-like zone of 
cellular infiltration which is limited to the surface part 
of connective tissue, mainly composed of 
lymphocytes, in the basal cell layer, signs of 
‘liquefactive degeneration’ and absence of epithelial 
dysplasia. Clinical examinations were performed by 
two chief physicians with more than 30-year clinical 
experience. Also, every patient with OELP had 
undergone histopathological examination. In total, 72 
patients with OSCC, 75 patients with OELP were 
recruited in this study. To detect a 50% difference in 
peak areas of each ion peak with a sample size of 100 
in total, we could obtain a power over 0.99. In our 
case, the differences in peak areas between OSCC and 
OELP groups are mostly more than 50%. Therefore, a 
total number of 147 patients is a reasonable sample 
size to detect the difference. The original dataset was 
divided randomly into training (n=98) and validation 
(n=49) sets in a ratio of 2:1, according to random 
number method. Samples were collected and stored at 
-80°C before UHPLC-Q-Orbitrap analysis. 

Experimental equipment 
Thermo Fisher centrifuge (Thermo Fisher 

Science, USA); VORTEX-GENIE 2 vortex oscillator 
(SITM, USA); BX7200HP ultrasonic cleaner (Shanghai 
Xinmiao medical device manufacturing Co., Ltd.); 
AL104 balance with accuracy of 0.0001 (Mettler 
Toledo Shanghai Co., Ltd., Switzerland); CF16RN 
centrifuge (Hitachi, Japan); Ultrapure water meter 
(MilliPore, USA); and -80 °C ultra-low temperature 
refrigerator (Thermo Fisher science, USA). 

Experimental reagent 
Acetonitrile (Chromatographic grade, Fisher, 

USA); Methanol (Chromatographic grade, Fisher, 
USA); Formic acid (Chromatographic grade, Shanghai 
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Aladdin Biotechnology Co., Ltd., China); 
L-2-chlorophenylalanine (Bailingwei Technology Co., 
Ltd., China); Ketoprofen (Sigma, USA); all solutions 
were filtered by 0.22 μm aperture filter before used. 

Sample collection 
All blood samples were collected from 8:00 a.m. 

to 10:00 a.m. The blood was collected to the vacuum 
tubes containing coagulant, placed in the incubator 
containing ice. The sample was centrifuged at 1510×g 
for 10 minutes at 4°C, and the supernatant was 
quickly stored at -80°C until used. 

Sample preparation 
100 μL sample was taken out and placed in a 1.5 

mL centrifuge tube after thawing. 300 μL methanol 
solution containing internal standards (0.05 μg/mL 
L-2-chlorophenylalanine and 0.5 μg/mL ketoprofen) 
was added. After vortex oscillation for 1 min, 
centrifugation was performed at 16 200 × g for 10 min 
at 4°C. The supernatant was aspirated to the vial for 
analysis. 

QC sample preparation 
Quality control sample (QC sample) analysis 

could ensure the reliability of the experimental results 
in the process of collecting metabolomics data of all 
samples. 6 QC samples were detected to monitor the 
pressure change before and after each injection and 
the shift of the main peak retention time of the total 
ion flow diagram. After the instrument was stable, the 
sample analysis started. A QC sample was inserted 
into every ten samples to verify the stability of the 
instrument. Inserted a blank sample containing only 
solvent after each QC sample to avoid cross- 
contamination. 

UHPLC-Q-Orbitrap analysis 
UHPLC-Q-Orbitrap system: Ultimate 3000 

UHPLC (Thermo Fisher Scientific, USA), Q Exactive 
high resolution mass spectrometry (Thermo Fisher 
Scientific, USA); ACQUITY UHPLC®RBEH C18 (100 × 
2.1 mm, 1.7 µm) column (Waters Company, USA). 

Metabolomic analyses of plasma samples were 
as described previously [20]. The ultra-performance 
high liquid chromatography (UHPLC) system was 
used to separate the metabolites in plasma samples. 5 
µL was extracted from each sample and injected into 
the ACQUITY UHPLC®RBEH C18 column (100 × 2.1 
mm, 1.7 µm), and the column temperature was 40°C. 
The mobile phase was acetonitrile (A) with 0.1% 
formic acid aqueous solution (B), and gradient elution 
flow rate was 0.2 mL/min:0.0~1.0 min, 5%A; 1.0~9.0 
min, 5%~100%A; 9.0~12.0 min, 100%A; 12.0~12.1 min, 
100%~5%A; 12.1~15.0 min, 5%A. 

Heated electrospray ionization (HESI) was 

combined with high resolution mass spectrometry to 
UHPLC system. The temperature of auxiliary gas was 
300 °C and the flow rate was 10 arb. The ion source 
and capillary were 350 °C and 320 °C. The detection 
was performed in positive ion mode and negative ion 
mode with a resolution of 17 500 in full mass/DDMS2 
(data dependent mass spectrometry) scanning mode. 
The collision energy was set at gradient from 20 eV to 
60 eV. The spray voltage and sheath gas flow rate 
were 3.50 kV and 40 arb in positive ion mode, and 2.80 
kV and 38 arb in negative ion mode. The injection 
sequence of all samples was random. 

Data processing and statistical analysis 
Data were tested for normality using a Shapiro- 

Wilk normality test. When the normal distribution 
was satisfied, an independent-samples t-test was 
applied. Otherwise, a non-parametric Wilcoxon test 
was performed. All metabolomics data were analyzed 
by Thermo Xcalibur™ software (Version 3.0, Thermo 
Scientific, USA). Specific parameters were as 
previously [18]. Finally, the generated data and the m 
/z value, retention time (RT) and peak area of each 
ion peak in each sample were collected. The peak 
areas represented the levels of metabolites. The data 
sets were imported into the multivariate statistical 
analysis software SIMCA (Version 14.0, Umetrics, 
Sweden). The principal component analysis (PCA) 
and orthogonal partial least square discriminant 
analysis (OPLS-DA) were performed to explore 
separation trend among groups. Through the 
establishment of the OPLS-DA model, variable 
importance in projection (VIP value) was obtained. 
Two hundred permutation tests used to evaluate 
whether the data was overfitted. P values were 
obtained using the independent-samples t-test. Also, 
in order to further screen the metabolites with 
significant difference between different groups, the 
false discovery rate (FDR) which was calculated by R 
language was conducted for metabolites with VIP 
value greater than 1 using SPSS 26.0 software (IBM, 
USA). Eventually, the metabolites were selected for 
identification when FDR < 0.05. The accurate m / z, 
ion chromatogram, retention time (RT) and other 
information were compared with ChemSpider and 
MassList database. The MS/MS data was compared 
with mzVault, Human Metabolome Database 
(HMDB, http://hmdb.ca/) and PubChem compound 
database. For some endogenous metabolites of which 
the standard substance could be obtained, the data 
were compared with the standard substance to 
determine its structure. When the data matched with 
the information in database, the metabolite was 
considered to be identified successfully. Moreover, to 
screen the metabolites of OELP malignant 
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transformation, fold changes and FDR of the potential 
biomarkers for comparisons of OELP versus HC and 
OSCC versus HC were calculated. Using 
MetaboAnalyst (www.metaboanalyst.ca) platform, 
the screened differential metabolites were analyzed 
by thermography to show the change of the 
metabolites, and receiver operating characteristic 
(ROC) curve was drawn for each identified 
differential metabolite. Area under the curve (AUC) 
was calculated by Medcalc. A metabolic pathway 
network was formed according to Kyoto 
Encyclopedia of Genes and Genomes (KEGG, 
https://www.kegg.jp/kegg/pathway.html) 
signaling pathway database. 

Results 
Demographic baseline characteristics 

The flowchart of the study was shown in Figure 
1. A total of 147 subjects were enrolled in training 
group including 72 patients with OSCC with a mean 
age of 66 ± 12 (yrs.; mean ± SD), 75 patients with 
OELP with a mean age of 61 ± 7 (yrs.; mean ± SD). 
There were no significant differences in gender, age, 
BMI and lifestyle habits of participants among these 
three groups. The data of 48 OSCC patients and 50 
OELP patients were used for biomarker discovery and 
the others for validating the effectiveness of the 
chosen biomarkers. The demographic baseline 
characteristics of these individuals were shown in 
Table 1. 

 

Table 1. Demographic baseline characteristics of patients with 
OSCC, OELP and healthy controls 

Characteristics OSCC patients 
(n=72)  

OELP patients 
(n=75) 

Healthy controls 
(n=47) 

Age (yrs.; mean ± SD) 66 ± 12 61 ± 7 65 ± 9 
Gender    
Male 35 38 23 
Female 37 37 24 
BMI 21.06±2.81 21.74±2.40 20.83±2.98 
Habit of chewing betel nut 7/72 5/72 4/72 
Habit of smoking (≥1 cigarette / d for more than half a year) 
Yes  32/72 31/75 18/47 
Habit of eating spicy food    
Yes 43/72 42/75 29/47 
Habit of eating very hot 
food 

   

Yes 15/72 18/75 14/47 
Clinical stage    
I 17   
II 21   
III 19   
IV 14   
Unknown 1   
BMI: Body mass index; Habit of chewing betel nut: often chewing betel nut; Habit 
of eating spicy food: often intake spicy food; Habit of eating very hot food: often 
intake very high-temperature food; OSCC: oral squamous cell carcinoma; OELP: 
oral erosive lichen planus; SD: standard deviation; confirmed by a 
histopathological examination. 

 

Primary metabolites analysis in blood samples 
To gain insights into the metabolic features of 

OELP progressed to OSCC, UHPLC/Q-Orbitrap 
HRMS was performed on blood samples of 48OSCC, 
50 OELP and 47 healthy controls (HC). A total of 3238 
ion peaks in positive ion modes and 2663 in negative 
ion modes were extracted. The metabolic dataset was 

 

 
Figure 1. Flowchart. OSCC: oral squamous cell carcinoma; OELP: oral erosive lichen planus; UHPLC/Q-Orbitrap HRMS: ultra-high-performance liquid chromatography 
quadrupole-Orbitrap high-resolution accurate mass spectrometry. 
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next analyzed by PCA. QC samples cluster tightly 
together indicating the good instrument stability and 
the reliability of the data. As shown in Figure 2A-B, 
the disease groups, including both the OSCC group 
and the OELP group, were clearly separated from HC, 
but there was not a sharp distinction between OSCC 

and OELP group. This result confirmed that it is 
difficult to distinguish OELP from early OSCC in 
clinical diagnosis, but the difference between healthy 
people and disease groups is very clear. Therefore, we 
further analyzed differential metabolites between 
OSCC and OELP group. 

 

 
Figure 2. Multivariate statistical analysis revealed distinct metabolic characteristics between OSCC and OELP. HC: red pots; OELP: green pots; OSCC: blue pots; QC: yellow 
pots. PCA score plots among OSCC, OELP and HC in (A) positive ion mode and (B) negative ion mode built with metabolites identified by LC-MS. The abscissa and the ordinate 
represented the first and second principal component. PCA score plots of the OSCC and OELP group in (C) positive ion mode and (D) negative ion mode built with metabolites 
identified by LC-MS. The abscissa represented and the ordinate represented the first and second principal component. OPLS-DA score plots of the OSCC and OELP in (E) 
positive ion mode and (F) negative ion mode. The model showed a clear trend of separation between OSCC and OELP. Cross-validation plots with a permutation test repeated 
200 times of the OSCC and OELP groups in (G) positive ion and (H) negative ion mode. It showed that the OPLS-DA models were not overfitting. PCA: principal component 
analysis; OPLS-DA: orthogonal partial least square discriminant analysis; HC: healthy control; OSCC: oral squamous cell carcinoma; OELP: oral erosive lichen planus. 
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Screening and identifying differential 
metabolites 

In order to further explore the unique metabolic 
characteristics between OSCC and OELP, PCA 
analysis were carried out. There was a clear trend of 
inter-group separation between the two groups. All 
samples were analyzed in both positive (Figure 2C) 
and negative (Figure 2D) ion modes. To better define 
the metabolic variations in OSCC and OELP, 
OPLS-DA analysis were performed. As shown in Fig. 
2E-F, green dots represented patients of OELP and 
blue dots represented patients of OSCC. R2Y = 0.932, 
Q2 (cum) = 0.870 in positive ion mode and R2Y=0.905, 
Q2 (cum) = 0.698 in negative ion mode. The results 
indicated significant separation between groups. Two 
hundred permutation tests were further performed, 
with R2 = (0.0, 0.519), Q2= (0.0, -0.450) in positive ion 
mode and R2 = (0.0, 0.666), Q2= (0.0, -0.503) in negative 
ion mode, which confirmed that these OPLS-DA 
models were not overfitting (Figure 2G-H). 

The differential metabolites were further 
screened by combining the P values or the fold change 
and VIP values of the OPLS-DA model. Volcano plots 
were drawn using fold change (FC) and P values. Red 
dots represented metabolites with P < 0.05 (- log10P > 
1.30) and FC > 2.0 (log2FC > 1.0). The sites with VIP > 
1 and P < 0.05 were regarded as candidate differential 
metabolites (Figure 3). After comparison with 
databases, a total of 20 endogenous metabolites 
between OSCC and OELP were identified. These 
endogenous metabolites included amino acids such as 
cysteine, glutamate, phenylalanine; lipids, such as 
lysophosphatidylcholine (LysoPC) and other 
small-molecule compounds. The details of these 
metabolites were given in Table 2. The heatmap of the 
differential metabolites were shown in Figure 4 which 
appeared the changes in metabolic signatures among 
OSCC and OELP. In order to better understand the 
relationship among metabolites, the metabolic 
pathway network diagram was shown in Figure 5. 

 

Table 2. Metabolites different between OSCC and OELP 

ID Name Formula Molecular RT VIP P FC AUC FDR 
1 Uric acid C5H4N4O3 168.02019 1.02 4.353 0.009 1.170 0.677 0.013 
2 Glutamate C5H9NO4 147.04588 1.03 1.86 1.48E-06 1.279 0.780 3.27E-03 
3 Acetyl carnitine C9H17NO4 203.12286 1.03 2.641 4.42E-05 0.715 0.738 1.89E-04 
4 Leucine C6H13NO2 132.08640 1.48 1.034 1.95E-07 1.438 0.810 2.35E-05 
5 Phenylalanine C9H11NO2 165.08591 1.95 3.949 3.83E-07 1.235 0.686 3.25E-06 
6 Phenylacetylglutamine C13H16N2O4 264.10388 3.97 2.304 0.003 1.910 0.711 0.017 
7 2,4-Dihydroxyacetophenone C8H8O3 152.03912 4.19 1.047 5.48E-18 1.393 0.766 6.72E-13 
8 Cysteine C3H7NO2S 121.01138 4.47 1.513 7.35E-14 54.585 0.905 9.48E-12 
9 Acetyl phenylalanine C11H13NO3 207.08211 4.62 1.003 6.34E-13 1.819 0.888 0.005 
10 4-Nitrophenol C6H5NO3 139.01865 5.28 1.940 3.78E-05 0.143 0.822 4.16E-11 
11 Indoxyl sulphate C8H7NO4S 213.00214 5.5 3.750 3.82E-05 1.610 0.700 0.013 
12 Octanoylcarnitine C15H29NO4 287.21664 5.51 1.694 2.33E-05 0.616 0.763 1.09E-04 
13 Glycitin C22H22O10 446.12964 6.08 1.042 6.21E-06 0.783 0.817 3.53E-05 
14 Decanoylcarnitine C17H33NO4 315.24832 6.26 2.509 3.98E-06 0.465 0.966 2.39E-05 
15 Monobutyl phthalate C12H14O4 222.08189 6.52 1.830 7.04E-20 1.975 0.834 0.006 
16 Cholic acid C24H40O5 408.28156 6.8 3.46 0.009 3.509 0.965 0.012 
17 9,10-Dihydroxyoctadecanoate C18H36O4 316.25436 8.08 1.102 0.002 0.821 0.685 7.40E-09 
18 9,10-Epoxyoctadecenoic acid C18H32O3 296.22800 9.22 4.275 0.004 0.708 0.680 0.003 
19 Oleoyl ethanolamide C20H39NO2 325.30487 9.57 1.019 2.16E-07 1.555 0.717 1.99E-06 
20 5-Octadecynoic acid C18H32O2 280.23303 10.17 9.646 7.30E-08 0.600 0.823 5.45E-04 
OSCC, oral squamous cell carcinoma; OELP, oral erosive lichen planus; FC, fold change; RT, retention time; VIP, variable importance in projection; FC, fold change; AUC, 
area under curve; FDR, false discovery rate, calculation based on Benjamini and Hochberg. 

 

 
Figure 3. The volcano plot of the OSCC vs. OELP in (A) positive ion mode and (B) negative ion mode. OSCC, oral squamous cell carcinoma; OELP, oral erosive lichen planus. 
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Figure 4. Heat map of 20 differential metabolites showing significant differences between the oral squamous cell carcinoma and oral erosive lichen planus (OELP) groups. Red 
and yellow represented higher and lower concentrations. The abscissa represented the number of subjects. The ordinate represented differential metabolites of the two groups. 
Pearson’s correlation-based clustering analysis was used for clustering analysis of 20 differential metabolites. OSCC, oral squamous cell carcinoma; OELP, oral erosive lichen 
planus. 

 
Figure 5. Metabolic pathway network diagram of differential metabolites in OSCC and OELP. The violet color represents downregulated metabolites, red color represents 
upregulated metabolites, the green color metabolites represent intermediary metabolites in the metabolic pathway of OSCC. OSCC, oral squamous cell carcinoma; OELP, oral 
erosive lichen planus. 

 

Pathway analysis 
To further explore the underlying molecular 

mechanism of OSCC, the metabolic pathways of the 
metabolites were analyzed by MetaboAnalyst (Figure 
6). The results showed that amino acid metabolism, 
including phenylalanine, tyrosine and tryptophan 
biosynthesis, D-Glutamine and D-glutamate 
metabolism, phenylalanine metabolism; primary bile 
acid biosynthesis and arginine biosynthesis were 

associated with OSCC. Phenylalanine, tyrosine and 
tryptophan biosynthesis and D-Glutamine and 
D-glutamate metabolism had a major impact on 
OSCC. 

Establishment of a diagnostic panel 
Binary logistic, ROC analysis and VIP were used 

to evaluate integrated biomarkers. ROC curve was 
used to assess the diagnostic performance of each 
metabolite. Subsequently, the metabolites of AUC > 
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0.900 were used to establish a diagnostic panel. The 
panel with reasonably high accuracy and sensitivity 
exhibited well-established performance. All 95% 
confidence intervals were given in the form: (95%CI 
lower, upper). Ultimately, decanoylcarnitine (Figure 
7A), cysteine (Figure 7B) and cholic acid (Figure 7C) 
were selected to serve as a useful biomarker panel for 
the diagnosis of OSCC from OELP. The FC of 
decanoylcarnitine, cysteine and cholic acid in the 

observation group were 0.465, 54.585, 3.509, 
respectively (Table 2), the difference was statistically 
significant (P < 0.05). ROC analysis showed that the 
diagnostic capability of biomarker panel (95%CI 
0.904, 0.999, P < 0.0001) (Figure 7D) was much higher 
than those of previous biomarkers of OSCC, including 
decanoylcarnitine (95%CI 0.841, 0.968, P < 0.0001), 
cysteine (95%CI 0.933, 0.999, P < 0.0001), and cholic 
acid (95%CI 0.921, 0.999, P < 0.0001). 

 

 
Figure 6. The disturbed metabolic pathways showed various metabolic changes in OSCC and OELP group. OSCC, oral squamous cell carcinoma; OELP, oral erosive lichen 
planus. 

 
Figure 7. Receiver operating characteristic curves of multiple logistic regression models with (A) decanoylcarnitine, (B) cysteine, (C) cholic acid and (D) biomarker panel. (E) The 
prediction accuracy of the diagnostic panel in validation set. OSCC, oral squamous cell carcinoma; OELP, oral erosive lichen planus; QC, quality control sample; AUC, area under 
curves; 95%CI, 95% confidence interval. 
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Table 3. Metabolites different between OSCC and HC 

ID Name Formula Molecular RT (min) VIP P FC AUC FDR 
1 Uridine C9H12N2O6 244.06227 1.00 1.028 1.02E-10 0.718 0.882 8.53E-10 
2 Chiro-inositol C6H12O6 180.05553 1.01 1.283 0.027 1.093 0.742 0.049 
3 Lactate C3H6O3 90.02322 1.01 1.158 0.026 1.089 0.632 0.047 
4 Taurine C2H7NO3S 125.00639 1.01 1.906 3.35E-13 0.662 0.906 4.07E-12 
5 Glutamate C5H9NO4 147.04501 1.02 1.907 1.96E-13 0.650 0.912 2.52E-12 
6 Uric acid C5H4N4O3 168.02017 1.02 2.858 8.53E-10 0.882 0.620 0.021 
7 Acetylcarnitine C9H17NO4 204.12285 1.02 1.662 1.23E-05 0.682 0.774 2.9E-03 
8 Citric acid C6H8O7 192.01939 1.27 3.304 1.37E-08 0.616 0.872 8.67E-07 
9 Phenylalanine C9H11NO2 165.08591 2.10 2.277 3.10E-05 0.784 0.785 0.003 
10 Octanoylcarnitine C15H29NO4 287.21661 5.50 1.003 1.52E-06 0.671 0.801 7.67E-06 
11 Glycocholic acid C26H43NO6 465.30295 6.21 1.333 9.60E-05 2.588 0.779 3.27 E-04 
12 Decanoylcarnitine C17H33NO4 315.24823 6.25 1.033 9.68E-06 0.604 0.812 3.54E-05 
13 Cholic acid C24H40O5 408.28140 6.80 2.060 0.010 4.751 0.779 0.021 
14 Glycoursodeoxycholic acid C26H43NO5 449.30765 6.93 2.325 0.004 1.763 0.726 0.009 
15 N-Succinyl-2,6-diaminoheptanedioate C11H18N2O7 289.10617 7.20 1.788 5.92E-12 0.485 0.899 6.01E-11 
16 16-HETE C20H32O3 320.25098 8.03 1.016 8.12E-13 0.393 0.810 7.50E-06 
17 LysoPC(16:0) C24H50NO7P 495.33951 8.68 12.443 1.81E-20 0.565 0.970 1.19E-17 
18 LysoPC(18:1) C26H52NO7P 521.35571 8.87 11.090 4.10E-19 0.663 0.950 6.38E-19 
19 9,10-Epoxyoctadecenoic acid C18H32O3 296.22832 9.22 3.145 0.002 0.660 0.706 0.008 
20 Arachidonic acid C20H32O2 304.23315 10.03 5.301 6.77E-09 0.635 0.845 4.45E-08 
21 Oleamide C18H35NO 281.27872 10.14 2.071 3.50E-23 0.092 0.502 4.01E-05 
OSCC, oral squamous cell carcinoma; HC, healthy control; FC, fold change; RT, retention time; VIP, variable importance in projection; FC, fold change; AUC, area under 
curve; FDR, false discovery rate, calculation based on Benjamini and Hochberg. 

 

Table 4. Metabolites different between OELP and HC 

ID Name Formula Molecular RT VIP P FC AUC FDR 
1 LysoPC(18:1) C26H52NO7P 521.34786 9.22 1.523 1.87E-17 0.668 0.838 2.94E-16 
2 Oleamide C18H35NO 281.27872 10.14 2.108 5.63E-25 0.069 0.760 3.18E-23 
3 Chiro-inositol C6H12O6 180.05556 3.25 1.509 0.006 0.908 0.783 0.013037 
4 Paraxanthine C7H8N4O2 180.05556 3.25 1.500 8.26E-08 16.416 0.742 2.98E-05 
5 Cysteine C3H7NO2S 121.01138 4.47 1.986 2.38E-37 0.418 0.949 1.11E-08 
6 2,4-Dihydroxybenzoic acid C7H6O4 154.01843 6.34 1.496 0.007 0.243 0.766 0.32 
7 Arachidonic acid C20H32O2 304.23322 10.03 3.621 1.98E-04 1.159 0.808 5.65E-04 
8 Uridine C9H12N2O6 244.06238 1.00 1.034 6.86E-11 0.794 0.836 6.89E-04 
9 Indolelactic acid C11H11NO3 205.06627 4.73 1.010 1.14E-05 1.032 0.812 3.77E-04 
10 Monobutyl phthalate C12H14O4 222.08189 6.52 1.216 2.58E-17 0.900 0.736 8.62E-08 
11 Malic acid C4H6O5 134.01326 1.07 1.073 4.76E-22 0.948 0.840 1.01E-20 
12 Lactate C3H6O3 90.02323 1.01 1.060 0.005 1.068 0.682 0.012 
13 Glutamate C5H9NO4 147.04507 1.03 2.550 4.79E-28 0.871 0.893 2.26E-26 
14 Histidine C6H9N3O2 155.06137 0.94 2.105 1.81E-13 13.344 0.916 1.20E-12 
15 Uric acid C5H4N4O3 168.02016 1.02 5.045 9.81E-06 1.088 0.782 3.26E-05 
16 Citric acid CH8O7 192.01939 1.27 3.934 9.63E-13 0.863 0.938 5.74E-12 
17 N-Succinyl-2,6-diaminoheptanedioate C11H18N2O7 290.10620 7.19 1.609 6.79E-11 0.496 0.843 3.51E-10 
18 Taurine C2H7NO3S 125.00637 1.00 2.011 1.55E-15 0.892 0.907 1.32E-14 
OELP, oral erosive lichen planus; HC, healthy control; FC, fold change; RT, retention time; VIP, variable importance in projection; FC, fold change; AUC, area under curve; 
FDR, false discovery rate, calculation based on Benjamini and Hochberg. 

 
 
According to the ROC curve, the Youden’s index 

was calculated. The best cut-off value was 0.664. It 
was used to distinguish OSCC from OELP in the 
verification set. Samples above the cutoff value were 
diagnosed as patients with OSCC and below the 
cutoff value were diagnosed as patients with OLP. 
Only one case was wrong when the diagnostic panel 
was used to diagnose the validation set. The results 
presented that the panel achieved a diagnostic 
accuracy of 97.9% (Figure 7E). 

Discovery of malignant transformation 
biomarkers 

In order to gain additional insight into the 

metabolic features when OELP progressed to OSCC, 
plasma metabolomic analysis was performed to 
distinguish metabolites in OSCC, OELP and healthy 
controls. An additional group of 47 healthy volunteers 
were recruited as healthy controls (HC), who were 
well matched with aspects of age, gender, and body 
mass index (BMI) of the patients. 47 healthy controls 
with a mean age of 65 ± 9 (yrs.; mean ± SD). The 
demographic baseline characteristics were shown in 
Table 1. The metabolites of OSCC and HC were listed 
in Table 3 and OELP and HC were listed in Table 4. 
Both OSCC and OELP patient groups showed 
decreased FC in uridine, taurine, glutamate, citric acid 
and LysoPC (18:1). There was a significant difference 
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(FDR < 0.05) between disease group and HC. 
However, the OSCC group showed a more 
pronounced decreased compared to OELP. Altered 
metabolites could possibly contribute to cancer 
progression. The metabolic pathway analysis was 
performed respectively and some common disturbed 
metabolic pathways were found. D-Glutamine and 
D-glutamate metabolism, primary bile acid 
biosynthesis, alanine, aspartate and glutamate 
metabolism, taurine and hypotaurine metabolism and 
arachidonic acid metabolism may be associated with 
the malignant change of OELP (Figure 8). 

Discussion 
Despite the continuous advancement of 

diagnostic and treatment modalities in the past 20 
years, the 5-year survival rate of OSCC has not 
substantially improved [21]. Besides, there are no 
specific symptoms in the early stage of the disease, 
and it is difficult to make a diagnosis by pathological 
biopsy in the early stage. These could result in a series 
of consequences such as pain, bleeding, infection and 
even death. Thus, our research group has been 
seeking a diagnostic method which is accurate, 
convenient, and less harmful. We focused on blood 
samples because the blood contained metabolites that 
could be used for successful identification of 
diagnostic biomarkers. The imbalance of metabolites 
might be associated with pathological mechanism of 
OSCC. 

One of the central results of our study was that 
some biomarkers decreased more in OSCC compared 
to OELP. Previous studies only showed that 
biomarkers in OSCC or OELP by comparing healthy 
controls, but few studies have focused on the 

metabolic alterations precede malignant 
transformation of OELP into OSCC. In our study, we 
found that the level of uridine, taurine, glutamate, 
citric acid and LysoPC (18:1) were lower in OELP than 
in OSCC. Uridine was generally thought safe and 
harmless, but recent studies found that uridine 
homeostatic disorder was carcinogenic. Uridine could 
be used to synthesize deoxyuridine triphosphate 
(dUTP). While dUTP was likely to cause errors in 
DNA replication. DNA damage may cause or greatly 
increase a person’s susceptibility to cancer [22, 23]. It 
also made a person who had a higher likelihood of 
OSCC. In addition, uridine synthesis originated from 
glutamine and glutamine could be synthesized from 
glutamate and ammonia [24]. Glutamate was 
regarded as a potential diagnostic biomarker of OSCC 
in a previous study [25]. Amino acids are an 
important unit of energy source for basic metabolic 
pathways in human beings. The abnormalities in 
amino acid metabolism may be a unique sign of OSCC 
[26]. There was no doubt that proliferation of OSCC 
cells required more energy consumed than OELP. 
Therefore, compensatory mechanisms promoted 
excessive consumption of amino acids to maintain the 
normal physiological function in the body, which 
could further aggravate metabolic disorders and 
exacerbate the disease. Taurine could cause tumor cell 
apoptosis [27], showing anti-cancer effects [28]. In our 
study, taurine was greatly reduced in OSCC patients, 
which may be related to the proliferation of OSCC 
cells. The proliferation of OSCC cells may in turn 
inhibit the anti-tumor effect of taurine. From HC to 
OELP to OSCC, the decrease of uridine, glutamate 
and taurine may be used for the mass synthesis of 
damaged-DNA. Cancer cells display diverse 

 

 
Figure 8. The disturbed metabolic pathways showed various metabolic changes in (A) OELP and HC group and (B) OSCC and HC group. OSCC, oral squamous cell carcinoma; 
OELP, oral erosive lichen planus; HC, healthy control. 
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metabolic reprogramming including reductive 
carboxylation in the citric acid cycle to use glutamine 
into intracellular lipid storage [29]. Hence, citric acid 
and LysoPC(18:1) may be considered as the biomarker 
for the transformation of OELP to OSCC because 
progression of OSCC could exhaust more energy. 
Collectively, our data indicated a microenvironment 
that was conducive to the rapid proliferation of cancer 
cells was gradually formed in OSCC patients. 

Previous studies on metabolomics in OSCC 
included healthy individuals who were regarded as 
controls for OSCC group [30]. Although it was a 
common method when identifying diagnostic 
biomarkers, it didn’t consider potential malignant 
lesions which could alter metabolic features. 
Currently, approximately 28 000 000 of OELP occur in 
the world [31] and 1.1% of OLP may transform into a 
malignant cancer [32]. Selecting OELP patients as a 
control group in OSCC studies could minimize 
confounding factors related to benign diseases. 

Another important finding in this study was a 
biomarker panel of OSCC and OELP. As we know, 
any single diagnostic biomarker had limited 
diagnostic accuracy (Figure 7A-C). When we 
combined the four biomarkers together as a 
“diagnostic panel”, the panel offered superior 
diagnostic performance and showed significantly 
higher sensitivity (Figure 7D). Further understanding 
of these biomarkers may provide more insight into 
the pathogenesis of OSCC and serve new therapeutic 
interventions. A previous study showed that the level 
of acylcarnitine decreased in esophageal squamous 
cell carcinoma [33]. Carnitine could affect metabolic 
mechanisms in numerous ways. Acyl-coenzyme A 
synthetases could catalyze the thioesterification of 
coenzyme A (CoA) to acyl-CoA esters while 
Acyl-CoA esters could be converted to acyl-carnitine 
esters by carnitine acyltransferases [34]. Therefore, the 
decrease of decanoyl carnitine may result from the 
inhibition of the enzymes’ activity and levels by 
OSCC cells. In addition, the incidence of lymph node 
metastasis and bone metastasis were associated with 
acyl carnitine [35]. It was possible that decanoyl 
carnitine could favor the identification and 
demarcation of OELP and OSCC. Amino acid was an 
important source of energy storage, and its abnormal 
metabolism may be an important characterization of 
cancer [26]. Cysteine had been regarded as a 
biomarker of oral cancer in both blood and saliva [36]. 
Also, cysteine was the precursor for the formation of 
glutathione. Glutathione could regulate the redox 
state and immune response in the system [37]. The 
decrease of cysteine may be related to the inhibition of 
immune system and a disorder in fatty acid oxidation 
metabolism by OSCC. Cholic acid could activate the 

TGR5 receptor which can induce OSCC cell 
proliferation [38]. This result was in line with the 
increase of cholic acid production in our study. The 
result suggested that a microenvironment which was 
suitable for carcinogenesis was gradually formed in 
the body of OSCC patients for promoting the tumor 
growth. 

Taken together, we used UHPLC-Q-HRMS to 
analyze the differential metabolites in the plasma of 
patients with OSCC and OELP. We found that 
metabolic characterization and metabolic pathways in 
OSCC patients were significantly different from those 
in OELP. These changes in endogenous metabolites 
and abnormal metabolic pathways may be related to 
the pathogenesis of OSCC, which could be used for 
the diagnosis of OSCC. This study provided a basis 
for clinical molecular diagnosis and had important 
significance for clinical diagnosis and treatment of 
OSCC. In the future, more patients, including those 
with cancers, precancerous lesions and healthy 
controls, will be recruited to further verify the clinical 
applicability of the biomarkers described in this 
study. 

Conclusion 
In this study, a panel of metabolites that consist 

of decanoylcarnitine, cysteine and cholic acid was 
identified for the diagnosis of OSCC. The metabolites 
uridine, taurine, glutamate, citric acid and 
LysoPC(18:1) were found to be potential biomarkers 
indicating malignant transformation of OELP. 
Biomarkers based on plasma metabolomics could be 
very helpful for diagnosis of OSCC. 
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