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Merging Clinical Data and Mechanical Descriptors

Alejandro Santos-Díaz,1 Raquel Valdés-Cristerna,2 Enrique Vallejo,3

Salvador Hernández,4 and Luis Jiménez-Ángeles5

1Bioengineering Department, Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México,
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5Engineering in Biomedical Systems Department, Faculty of Engineering, Universidad Nacional Autónoma de México,
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Cardiac resynchronization therapy (CRT) improves functional classification among patients with left ventricle malfunction and
ventricular electric conduction disorders. However, a high percentage of subjects under CRT (20%–30%) do not show any
improvement. Nonetheless the presence of mechanical contraction dyssynchrony in ventricles has been proposed as an indicator
of CRT response. This work proposes an automated classification model of severity in ventricular contraction dyssynchrony. The
model includes clinical data such as left ventricular ejection fraction (LVEF), QRS and P-R intervals, and the 3 most significant
factors extracted from the factor analysis of dynamic structures applied to a set of equilibrium radionuclide angiography images
representing the mechanical behavior of cardiac contraction. A control group of 33 normal volunteers (28 ± 5 years, LVEF of
59.7%± 5.8%) and a HF group of 42 subjects (53.12 ± 15.05 years, LVEF < 35%) were studied.The proposed classifiers had hit rates
of 90%, 50%, and 80% to distinguish between absent, mild, and moderate-severe interventricular dyssynchrony, respectively. For
intraventricular dyssynchrony, hit rates of 100%, 50%, and 90% were observed distinguishing between absent, mild, and moderate-
severe, respectively.These results seempromising in using this automatedmethod for clinical follow-up of patients undergoingCRT.

1. Introduction

Heart failure (HF) is a cardiovascular disease with one of
the highest morbidity, mortality, and hospital admissions
worldwide among those over 55 years of age [1–5]. According
to the American Heart Association, between 2009 and 2012
more than 5.7 million of patients, over the age of 20, suffered
from HF in the United States. Also, more than 915,000 new
cases are diagnosed annually with a mortality rate of 29.6%
after 1 year of diagnosis and 52.6% after 5 years of diagnosis
[6]. In a Sweden report, the case-fatality rate of HF within
5 years was of 59%, similar to 58% of the patients with the

most common types of cancer (lung, colorectal, prostate, and
bladder) [7]. However, HF affects not only individuals but
also government expenses accounting for 1-2% of the global
health budget [8, 9]. These mortality and financial statistics
highlight the public health care burden of HF.

HF is a syndrome affecting the performance of the heart
as a pump, which at the beginning reduces the capability
for exercising and progressively may develop into conditions
such as pulmonary and systemic congestion. It creates a
progressive deterioration in the structure and function of
the heart as well as development of arrhythmias, leading to
the first cause of morbidity and mortality among the disease
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[10, 11]. It has been shown that 30% of people with severe HF
show electric conduction disorders and develop ventricular
contraction dyssynchrony, with an increase in left ventricle
malfunction [12].

Today, HF is quantified into four levels according to the
patient’s functional classification where physical capability is
evaluated [13]. Functional class has an important prognostic
value and it is used as decision criteria for therapeutic inter-
vention, being pharmacological, surgical, or both. Periodic
evaluation of functional class allows following the evolution
and response to treatment [14].

Cardiac ResynchronizationTherapy (CRT) is an accepted
treatment for patients with HF, impaired left ventricular
function, and wide QRS complex. It is based on implantable
devices that send electrical impulses to the lower chambers
of the heart and help them beat together synchronously
[14]. Guidelines from the American College of Cardiol-
ogy/American Heart Association/Heart Rhythm Society rec-
ommend CRT for HF patients with a functional class III
or IV, left ventricle ejection fraction (LVEF) < 35%, and an
electrocardiogram trace with a QRS complex greater than 120
milliseconds [14, 15]. Efficacy of CRT has been demonstrated
in multiple trials, showing a significant improvement in 6-
minute walk distance, quality of life, peak oxygen uptake,
functional classification, hospital admissions, and mortal-
ity among patients with left ventricle (LV) malfunction,
and ventricular electric conduction disorders [16, 17]. The
improvement in LVEF seems to correlate with a better long-
term survival [18]. However, in HF patients under CRT,
reverse remodeling is able to predict long-term outcome with
higher reproducibility and predictive power than changes in
LVEF. Thus, reverse modeling defined as the changes in LV
end-systolic volume relative to baseline (≥15%) is currently
considered the strongest predictor of mortality and HF-
hospitalization [19].

In spite of this, reports on the benefits of CRT show that
30–40% of the patients fail to respond to the therapy [15],
when applying the conventional criteria. It was suggested that
the extent of the viable or infracted myocardium, the LV
lead placement, and the presence of mechanical contraction
dyssynchrony in ventricles could be related to the success of
CRT [20, 21].

Different modalities of medical imaging based on the
analysis of mechanical contraction of ventricles have pro-
posed indicators to quantify ventricular contraction dyssyn-
chrony, for example, Doppler Tissue Imaging (DTI) that has
been used extensively to evaluate left ventricle dyssynchrony
and predict its response [22]. Simple DTI uses the basal
segments of a four-chamber view from the apical third to
measure the delay between septal and lateral walls con-
traction. It was hypothesized that a delay higher than 65
milliseconds predicts a favorable response to CRT and to the
final systolic volume of left ventricle. However, the multicen-
ter study, PROSPECT Trial, showed that the dyssynchrony
measure, based on DTI, did not achieve the right sensitivity
and specificity to identify CRT responders [23].

With the use of Cardiac Magnetic Resonance (CMR)
several methods have been proposed to evaluate left ventri-
cle dyssynchrony [24]. Some of them use cine myocardial

tagging and strain imaging, a technique that presents a tridi-
mensional map that changes in color reflecting the timing
and distribution of circumferential strains duringmechanical
contraction and relaxation. In a patient with ventricular
contraction abnormality, the map will show heterogeneity in
color codingmainly related to the septum and the lateral wall
[16]. Nevertheless, the time processing to achieve this map is
too high and it might suffer from meaningful degradation.
Furthermore, CMR evaluations can be performed safely
only in patients with particular pacemakers and implantable
cardioverter-defibrillator systems by using a protocol based
on device selection, appropriate device reprogramming, and
close monitoring during the scan. Thus, MRI should only be
performed in patients with adequate subspecialist supervi-
sion and monitoring staff, where the potential benefit clearly
outweighs the risks [25].

Gated SPECT myocardial perfusion is a radionuclide-
based imaging method that allows assessment of left ven-
tricular (LV) mechanical dyssynchrony using Fourier phase
analysis [26, 27]. This technique fits the temporal evolution
of the LV to the first harmonic of the Fourier Transform
and extracts the phase angle that represents the time of the
onset of mechanical contraction across the LV. The standard
deviation and width (encompassing 95% of the samples) of
the phase histogram have been validated as indices of LV
dyssynchrony showing a moderate correlation with electrical
dyssynchrony and preliminary results suggest that they can
be used in predicting CRT response [28, 29].

Equilibrium Radionuclide Angiography (ERNA) is an-
other nuclear medicine option to evaluate ventricular func-
tion anddyssynchrony. It represents the spatial distribution of
a radiotracer and relates pixel intensity to ventricular volume.
Fourier phase analysis applied to ERNA images consists of
adjusting each pixel’s intensity temporal evolution (time-
activity curve or TAC) to the first harmonic component of the
Fourier Transform (FT).Then, phase angles representative of
the TAC behavior is extracted from these components, and a
map (phase image) representing the ventricular contraction
sequence is constructed [30]. Several indices, taken from
the statistical distribution of the phase angles, have been
proposed to detect abnormal contraction patterns [31].

ERNA allows serial evaluations for both ventricles func-
tionwith high accuracy and temporal resolution [30]. Fourier
phase analysis applied to ERNA has been used to evaluate
interventricular and intraventricular dyssynchrony with high
accuracy and reproducibility [32, 33]. An early study showed
the prognostic value of intraventricular dyssynchrony as
an independent predictor of a cardiac event in idiopathic
dilated cardiomyopathy patients [34] and recently has been
described as highly predictive for acute volumetric response
to CRT in HF patients [35, 36]. However, Fourier phase
analysis of ERNA images using only one Fourier Transform
harmonic has its limitations, since it assumes periodic TACs
and a smooth transition between the first and last frame of the
dynamic images series.These drawbacks aremore prominent
in the regions with severe contraction pattern abnormalities.

Factor Analysis of Dynamic Structures (FADS) have also
been suggested as a valuable tool to detect abnormalities in
ventricular contraction [37, 38]. It is applied to ERNA images
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Figure 1: (a) depicts a ERNA study consisting of a k-images series, with frames having 𝑖 × 𝑗 pixels. (b) shows the time-activity curve extracted
from a particular Region of Interest (ROI). (c) depicts a bidimensional array constructed from the image series. Figure adapted from [40].

to extract those TACs associated with the physiological
behavior of a particular region and assumes that there are
pixel clusters with the same temporal evolution, which define
their morphology. Therefore, FADS determine the TACs
(coefficients) of pixel groups with the same behavior, in
addition to their geometry and spatial location (factors) [39].
In previous works carried out by our group, we analyzed the
contribution and spatial distribution of the most significant
factors of a dynamic series of ERNA images. We introduced
an alternative method to reconstruct a map for the sequence
of ventricular contraction. In [40] it was noted that more
than 90% of the information contained in an image series was
represented by the threemost significant factors (3-MSF) and
that the eigenvalue of the third factor increases significantly
whenever an abnormality of the contraction pattern was
analyzed. Also, a detailed analysis of the scatter plots of
the 3-MSF displayed the importance of the third factor to
adequately separate regions having an abnormal contraction
pattern. In [41] we proposed a normality index of ventricular
contraction based on the likelihood between the probability
density function model of the 3-MSF extracted from FADS
of a control group and a sample of healthy subjects. Based
on the previous work, the primary objective of this study was
to propose an automated classification model of severity in
ventricular contraction dyssynchrony. This model includes
clinical data (LVEF, QRS, and P-R intervals) and the 3-
MSF extracted from FADS of ERNA images representing
the mechanical behavior of cardiac contraction. We believe
that combining clinical data and ventricular mechanical

descriptors may be helpful to select HF patients most likely to
respond to CRT and will allow following a specific treatment.

2. Methods

2.1. ERNA Images Analysis and FADS. An ERNA study is
a set of images representing the spatial distribution of a
radionuclide inside the ventricular cavities at a specific time
of the heart cycle and relates pixel intensity with ventricular
volume.

Let 𝑋TAC(𝑝, 𝑞) = 𝑋(𝑝(𝑖, 𝑗), 𝑞) be a bidimensional array
(Figure 1(c)), a whole frame is stored in one column. For the
𝑘th frame of the acquired image series (𝑞 = 𝑘), the value
of the (𝑖, 𝑗)th pixel (Figure 1(a)) is located in the row 𝑝 =
(𝑖 − 1) × 𝑁 + 𝑗. ERNA images were acquired with 16 frames
of 64 × 64 pixels each one; thus 𝑝 ∈ {0, 1, . . . , 4095} and
𝑞 ∈ {0, 1, . . . , 15}. One row in 𝑋TAC(𝑝, 𝑞) represents a time-
activity curve (Figure 1(b)).

The FADS assumes that TAC curves from an ERNA study
are a linear transformation of factors describing the dynamics
of independent regions. FADS enhances pixel groups with
a similar time evolution and additionally describes the
geometry and spatial location of these pixel groups. Thereby,
this model can be described by

𝑋TAC (𝑝, 𝑞) = ΓC
T, (1)

where 𝑋TAC is the bidimensional array of the series of 𝑘
images from the ERNA study, C is the eigenvector matrix,
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Table 1: Clinical features from studied population. (1) Patients without ischemic cardiomyopathy and QRS > 120ms. (2) Patients without
ischemic cardiomyopathy and QRS < 120ms. (3) Patients with ischemic cardiomyopathy and QRS > 120ms. (4) Patients with ischemic
cardiomyopathy and QRS < 120ms. ∗Normality values reported in literature [43].

Group LVEF% QRS [ms] P-R [ms] Number of subjects
Control 59.7 ± 5.8 80∗ 140∗ 33
(1) Non-Isch. QRS > 120ms 22.1 ± 7.4 150.9 ± 30.1 178.18 ± 34.9 11
(2) Non-Isch. QRS < 120ms 23.3 ± 8.2 88.6 ± 8.8 191 ± 23.8 10
(3) Isch. QRS > 120ms 22.6 ± 10.6 139.0 ± 23.8 191 ± 23.8 10
(4) Isch. QRS < 120ms 32.9 ± 9.3 95.0 ± 12.4 176.36 ± 43.9 11
LVEF: left ventricle ejection fraction.

extracted fromcovariancematrix of𝑋TAC, which contains the
FADS coefficients, and Γ is the principal components matrix
(factors matrix from FADS).

2.2. Studied Population. A control group of 33 healthy vol-
unteers was used in this study (21 males and 12 females)
with mean age of 28 ± 5 years, LVEF of 59.66% ± 5.85%,
and low probability for coronary artery disease [42]. After
performing a thorough clinical evaluation, cardiac function
was considered as normal, and this set of ERNA images were
used as reference of normal contraction pattern.

A HF group of 42 subjects (32 males and 10 females) with
mean age of 53.12 ± 15.05 years, LVEF < 35%, was studied, all
of them clinically indicated for an ERNA study and followed
at Instituto Nacional de Cardiologı́a. Table 1 summarizes the
main clinical features of control and HF groups.

All participants were volunteers and gave informed con-
sent to participate in the study according to the Helsinki
declaration [44].

QRS and P-R intervals were taken from the clinical file
of each participant, particularly from the closest electrocar-
diogram trace before the ERNA study. For the control group,
electrocardiogram traces were not available so normality
values reported in literature were assumed. All individuals
gave their informed consent to participate in this study.

2.3. ERNA Images Acquisition. ThesameGeneral ElectricMil-
lennium MPR/MPS� gamma camera was used for all ERNA
images acquisition.The camera contains a single headwith 64
photomultiplier tubes and it is equipped with a low-energy
high-resolution parallel-hole collimator; the calibration of
the energy peak was centered at 140KeV and the detector
uniformity was guaranteed at less than 5%. Images were
digitized at a 64 × 64-pixel resolution and 1.33 as zoom factor.

Erythrocytes were tagged applying an in vivo/in vitro
modified technique with 740 to 925 MBq of Tc-99m, using
an UltraTag� RBC kit [45, 46]. Electrocardiogram trace was
continuously monitored to synchronize images acquisition
with the Rwave. To eliminate ventricular extrasystoles during
acquisition, a beat acceptance window was defined at ±20%
of the average heart rate. Images were taken in an anterior left
oblique projection to attain the best definition of left and right
ventricles simultaneously. A total of 16 frames were obtained
with a density of 300,000 counts per frame; however, in the
analysis the last frame of each study was eliminated due to

the low quality of the image as a result of the R-R interval
variability during the acquisition, which leads to a low signal-
noise ratio.

ERNA studies of control population were taken from
a database acquired at 16 frames whereas patient studies
were acquired at 32; to adjust dimensions between frames,
a reduction was made for patient group in which the two
consecutive frames were averaged (1 and 2, 3 and 4, . . ., 31 and
32) for having homogeneous sets at 16 images.

2.4. Labels for Study Population. Interventricular (LV-RV,
between right and left ventricles) and intraventricular (iLV,
inside left ventricle) dyssynchrony were visually evaluated by
three nuclear cardiologists using the Fourier phase images
[47] with prior knowledge of LVEF, QRS, and P-R interval of
the control and HF groups. Dyssynchrony degree was coded
as absent (A), mild (M), moderate (Md), and severe (S). Both
LV-RV and iLV dyssynchrony labels were determined as the
mode of the expert evaluations. In the cases where the mode
was undetermined, the label was considered as the median of
experts codes.

2.5. Classification Algorithm. In this study linear support
vector machines (LSVM) of type C-SVM were implemented
using the e1071 package in R based on LibSVM [48, 49].

Feature vectors utilized in the SVM were built with
information obtained from FADS plus LVEF, QRS, and P-
R intervals from each participant. There were defined two
classification systems, one for iLV dyssynchrony and other for
LV-RVdyssynchrony.The configuration of the characteristics
vectors in each case is shown on Figure 2.

The first three values of the vector correspond to LVEF
(normalized percentage calculated from ERNA [25]), QRS,
and P-R intervals, respectively (measured in milliseconds).
According to the findings in [30] the following data are the
values from curves describing first and second coefficients of
FADS for iLV dyssynchrony case and second and third coef-
ficients of FADS for LV-RV dyssynchrony. More information
from this analysis was not incorporated because it has been
demonstrated that the three most significant factors contain
more than 95% of information of the ERNA images [41].

Cardiologist suggested combining the classes of dyssyn-
chrony severity into the following way: one stage to dis-
tinguish healthy participants (absent dyssynchrony) versus
nonhealthy participants (present dyssynchrony) and a second
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Figure 3: Classification scheme for each type of dyssynchrony. x:
feature vector (including LVEF, QRS, P-R, and FADS information).
LVSM: linear support vector machine. WLSVM: weighted linear
support vector machine.

stage to distinguish in betweennonhealthy participants, those
who have a mild dyssynchrony versus those with a moderate
or severe dyssynchrony (nonmild). The distinction between
the latter two is not necessary.

Once the features were defined, the classification scheme
was selected; two binary linear SVM (LSVM) coupled in
cascade were implemented: the former to classify absent
versus present dyssynchrony patterns and the latter (for cases
with dyssynchrony) to distinguish mild or moderate-severe
dyssynchrony. The proposed scheme is shown in Figure 3.

On iLV dyssynchrony, for the first LSVM, we had
balanced classes with absent/present dyssynchrony subjects
(45%/55%); however for the second SVM a weighted lin-
ear SVM (WLSVM) was used due to an unbalance in
mild/moderate to severe cases (15%/85%). On LV-RVdyssyn-
chrony, for the first LSVM, we also have balanced classes
of absent/present dyssynchrony subjects (44%/56%) and for
the second WLSVM we also have unbalanced mild/nonmild
classes (26%/74%).

Data were divided into training and testing groups on a
70%/30% proportion. Cross-validation was used in order to

evaluate the LSVM performances; it consisted of dividing the
training data into subgroups and alternating them as training
and testing sets to finally compute the average of classification
results [50].

The last step in SVM’s implementation is to test the
classifier’s performance with a set of cases nonseen into the
training stage. Finally, the confusion matrix was built com-
paring the results from automatic model with those achieved
by the physicians, rows of matrix show true labels (expert’s
classification), and columns show themodel’s prediction.The
global classification results are shown in an extended table at
the end of results section.

3. Results

3.1. Factor Analysis of Dynamic Structures. Figure 4 shows
the three most significant factors computed from FADS for
a healthy participant and one from the HF group. For the
first one, the maximum values in the first factor (F1) are
located within the ventricular area, whereas in the second
(F2) the maximum values are found in the atrial area and
the minimum ones in the ventricular region. In the third
factor (F3) the maximum values are distributed with a
nonanatomical region associated. On the second, images of
abnormal contraction pattern show a similar behavior for
factors F1 and F2 with maximum values in ventricular region
for the first one, whereas the second one showsmaximumand
minimum values in atrial and ventricular areas, respectively.
Nevertheless, the third factor (F3) shows a distribution of
both maximum and minimum values within the ventricular
cavities region.

A contribution of factors associated with each coefficient
showed that more than 99% of information (see Table 2) is
contained in the first three most significant factors.

3.2. Patient Classification by Nuclear Cardiologists. There was
a significant agreement evaluated with Kendall’s coefficient of
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Figure 4: Distribution of the three most significant factors (F1, F2, and F3) computed from a normal and an abnormal ERNA set of images.

Table 2: Contribution of first three most significant factors for
control and HF groups.

Group Contribution (%)
Control 99.77 ± 0.08

HF 99.78 ± 0.11

HF: heart failure.

concordance between three nuclear cardiologists. They only
knew the clinical data (LVEF, QRS, and P-R intervals) and the
Fourier phase image to tag each case of LV-RV dyssynchrony
(0.8, 𝑝 < 0.001) and iLV dyssynchrony (0.59, 𝑝 < 0.001) into
absent, mild, moderate, or severe classes.

Labels of cardiac dyssynchrony degree for the studied
population computed as the mode of 3 nuclear cardiologists
evaluations (see Section 2.4) are shown in Table 3.

3.3. Classification Model

3.3.1. Training and Testing Sets. SVM performance was eva-
luated by a 10-fold cross-validation procedure from the
training set. Table 4 shows the mean accuracy and standard
deviation for each stage on classification model described in
Section 2.5.

3.3.2. Optimal Classification Model. The support vector
machines were built from a unique training set and results
shown in Table 4 are an amount of trials and average values
from many SVM’s performances that allow us to observe
a trend on how this kind of algorithm works solving this
particular problem.The values of parameters gamma (𝛾) and
cost function (C) were chosen as those that achieved the best
performance for each classifier; in the first SVM (iLV) these
values were 0.15 and 65 whereas for the second (LV-RV) they
were 0.05 and 10, respectively.

For LV-RV dyssynchrony the testing set was formed with
10, 4, and 10 participants from absent, mild, and moderate-
severe labels, respectively, whereas for iLV dyssynchrony the
testing set was formed with 11, 2, and 11 participants from
absent,mild, andmoderate-severe labels, respectively. Table 5
shows the results of the classification of testing set.

The categories best classified were absent for both LV-
RV and iLV with the 100% and 90% of true positive rates,
respectively, and moderate-severe for iLV dyssynchrony with
a 90.91% hit rate.

The SVM proposed that merge FADS and clinical data
have hit rates of 90%, 50%, and 80% to distinguish between
absent, mild, or moderate-severe interventricular dyssyn-
chrony, respectively. For intraventricular dyssynchrony, hit
rates of 100%, 50%, and 90% differentiated between absent,
mild, or moderate-severe, respectively, in a testing set. In all
cases, the mean accuracy reached was at least of the 75%
to distinguish mild and nonmild dyssynchrony and 96% to
distinguish absent and present dyssynchrony.

4. Discussion

The findings regarding spatial distribution of the 3-MSF
confirm the results of Jiménez-Ángeles et al. [40], where
the same maximum and minimum values distribution over
the mentioned factors was described. For that study, the
population was one group of control participants and two
groups of patients with a clinically established diagnosis.
One included patients with dilated cardiomyopathy and the
other patients with complete left bundle branch block. For
results shown in the present work, the clinical group was not
classified by a particular cardiomyopathy; the condition that
all patients share is heart failure. Additionally, results from
Table 2 justify using only the 3-MSF for the construction of
the automated classification model.

The SVM included information obtained from FADS as
features, whereas the labels were assigned using phase image
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Table 3: Labels of cardiac dyssynchrony degree for all subjects computed as the mode of 3 nuclear cardiologists visual evaluations.

Dyssynchrony LV-RV iLV
(Number of subjects) (Number of subjects)

Absent 33 34

Present Mild 11 6
Moderate/severe 31 35

LV-RV: interventricular dyssynchrony and iLV: intraventricular dyssynchrony.

Table 4: Mean accuracy of classifiers.

Classes LV-RV iLV
Dyssynchrony Dyssynchrony

Absent/present
96.10% ± 9.33% 99.96% ± 0.82%

(LSVM)
Mild/moderate-severe

78.17% ± 23.26% 75.55% ± 23.98%
(WLSVM)
LSVM: linear support vector machines and WLSVM: weighted linear
support vector machine.

Table 5: Classification results for testing set showed as percentage
and number of subjects in parenthesis.

Dyssynchrony Absent Mild Moderate-severe Total

LV-RV 90% 50% 80% 79.17%
(9/10) (2/4) (8/10) (19/24)

iLV 100% 50% 90.91% 91.67%
(11/11) (1/2) (10/11) (22/24)

analysis. This may introduce variability within the model for
using different sources of information; however, contraction
pattern evaluation in clinical practice uses it. Although FADS
have been shown to be superior to Fourier phase image [38,
40], it is still a method under evaluation.

In general terms it can be noted that SVM algorithm
offers good results getting a classification hit rate close to 80%
for LV-RV dyssynchrony, having 1 false positive on the first
stage (absent versus present) and four mistakes for second
stage (mild versus moderate-severe). The hit rate for iLV was
100% on the first stage (absent versus present) and had 2
mistakes for the second stage (mild versus moderate-severe).
It is possible to raise the hit rate for the mild class if the
number of patients in this group is increased. Thus, it will
be defined better, the latter being relevant in order to dictate
the corresponding follow-up and clinical treatment. As HF
patients were collected from Mexican National Center of
reference, normal ormild abnormalities are the least frequent
cases and they are not necessarily indicated for a nuclear
medicine study. Hence, this study opens an opportunity for
multicenter trials to confirm our preliminary results.

The classification model herein presented was built on
the agreement of three nuclear cardiologists who classified in
mild and moderate-severe the left ventricular and interven-
tricular dyssynchrony in a double-blind way using only the
phase image and clinical data from each patient. Thus, it is
built on clinical agreement.

4.1. Study Limitations. In spite of the relatively low simple
size in this study, it presents an automated method for
classifying the severity of cardiac contraction dyssynchrony
with a reliable performance that warrants further prospective
studies. Also, age difference between the control group and
patient population is too discrepant and that may influence
the results. Inclusion criteria for the control volunteers were
chosen considering a low pretest likelihood of coronary
artery disease, no known history of cardiac disease, and nor-
mal sinus rhythm in the electrocardiogram signal. However,
all of these features increase their prevalence and incidence
with age [42, 51]. In order to have a representative sample
of healthy participants that meet all the inclusion criteria
with clinical indication for ERNA, image acquisition was
performed at rest. Port et al. reported the effects of age on the
LVEF, end-diastolic volume, and regional wall motion using
ERNA at rest and exercise in 77 healthy volunteers between
20 to 95 years of age concluding that age did not appear to
influence any of these measurements at rest [52].

Additionally, recent studies have indicated that regional
scar tissue and global scar burdenmay also be related to non-
response to CRT [52]. Data on scar tissue and/or segmental
wall motion abnormalities was not systematically available
and was not incorporated in the classification algorithm.

5. Conclusion

Using a reproducible, minimally invasive, and low-cost
nuclear medicine method such as ERNA plus relevant clin-
ical information extracted from the ECG, we have pro-
posed an automated classification method for severity of
cardiac dyssynchrony with reliable performance. Its main
features include an improved analysis of the severity in left-
intraventricular and interventricular dyssynchrony, differen-
tiation of mild and nonmild HF patients, and the inclusion of
nuclear cardiologists expertise to define the categories. Thus,
this model seems promising in the clinical follow-up of CRT
or in a particular treatment.
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[40] L. Jiménez-Ángeles, R. Valdés-Cristerna, E. Vallejo, D.
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