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Ab seeds and prions: How close the fit?
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ABSTRACT. The prion paradigm is increasingly invoked to explain the molecular pathogenesis of
neurodegenerative diseases involving the misfolding and aggregation of proteins other than the prion
protein (PrP). Extensive evidence from in vitro and in vivo studies indicates that misfolded and
aggregated Ab peptide, which is the probable molecular trigger for Alzheimer’s disease, manifests all
of the key characteristics of canonical mammalian prions. These features include a b-sheet rich
architecture, tendency to polymerize into amyloid, templated corruption of like protein molecules,
ability to form structurally and functionally variant strains, systematic spread by neuronal transport, and
resistance to inactivation by heat and formaldehyde. In addition to Ab, a growing body of research
supports the view that the prion-like molecular transformation of specific proteins drives the onset and
course of a remarkable variety of clinicopathologically diverse diseases. As such, the expanded prion
paradigm could conceptually unify fundamental and translational investigations of these disorders.
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Since the initial clinicopathologic characteri-
zation of Kuru and the discovery that human
spongiform encephalopathies are transmissible,
researchers have hypothesized that these
extraordinary maladies might share etiologic
features with other neurodegenerative diseases
such as Alzheimer’s disease (AD) and
Parkinson’s disease.1,2 A key mechanistic com-
monality is the pathologic accumulation of spe-
cific misshapen proteins within the brain.3 In
the prion diseases, this process can be initiated
by infection, i.e., the invasion of the body by
exogenous seeds of misfolded, aggregated
prion protein (PrPSc), which proliferate by the
templated corruption of na€ıve PrP molecules
and ultimately impair brain function. However,
most human prion diseases are not instigated
by infection, but rather begin with the endoge-
nous generation of PrPSc, which then multiplies
by the same molecular mechanism as that
induced by exogenous PrP-prions.4

Emerging data support the hypothesis that
other neurodegenerative disorders similarly
involve the endogenous misfolding, aggrega-
tion, and systematic spread of disease-specific
proteins within the brain, reminiscent of PrP-
prions.3,5,6 Unlike PrP-prions, however, these
diseases are not infectious in the sense of trans-
missibility from one person to another under
ordinary conditions.3,7 Hence, despite impor-
tant molecular similarities, the fact that prions
are defined as infectious agents has generated
debate in the scientific community as to
whether the term ‘prion’ should be expanded to
include pathogenic proteins that are not infec-
tious by conventional definitions.3

One of the proteins in question is the Ab
peptide, an amyloidogenic cleavage product of
the Ab-precursor protein (APP) that misfolds
and aggregates in the brains of patients with
AD.8 The accumulation of aberrant Ab appears
to be the earliest critical event in the AD pro-
teopathic cascade;9 this is closely followed by
the multimerization of misfolded tau protein,
which constitutes neurofibrillary tangles and
contributes strongly to cognitive dysfunction.10

These two proteins thus have been the focus of
therapeutic efforts to modify the course of AD,
with most of the effort to date concentrated on
the putative prime mover, Ab.8 The extent to

which Ab seeds resemble PrP-prions has
important implications for the strategic consoli-
dation of research efforts in fields that hereto-
fore have been largely separate. In this
commentary, we address the broader question
of whether the term ‘prion’ is appropriate for
Ab given the current scientific evidence, and
what additional experiments are necessary for
incorporating Ab (and other pathogenic pro-
teins) into the prion paradigm. While studies of
prion-like proteins in yeast and other organisms
have yielded many important insights into
prion biology,11-13 we confine our present
discussion to disease-associated proteins in
mammals.

COMPARING Ab SEEDS TO PRP-
PRIONS

The defining property of prions is the self-
propagation of alternatively folded protein con-
formations by the templated corruption of like
proteins.5 By this molecular definition alone,
the seeds of Ab and many other proteins can be
defined as prions. However, other traits have
been invoked to characterize infectious PrP-
prions, including the tendency to form amyloid,
folding into heterogeneous strains, resistance to
inactivation, and spread by cellular transport
mechanisms. These features define the broad
limits of prion pathobiology within the context
of the core definition – ‘proteins that acquire
alternative conformations that become self-
propagating’5 - and as we and others have
found, many of the ancillary qualities associ-
ated with prions also are not unique to the prion
protein. Here we consider, point by point, how
key attributes of Ab seeds compare to those of
PrP-prions.

Ab seeds and PrP-prions are rich in
b-sheet and prone to forming amyloid

PrPSc has an enhanced tendency to form
amyloid,6,14 a general state in which a b-sheet-
rich misfolded protein polymerizes into fibrils
that yield a characteristic X-ray diffraction pat-
tern, and that further coalesce into masses with
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distinctive histologic staining patterns.14,15

Although the misfolded state imparts important
functional capacities to PrP-prions, the forma-
tion of amyloid is not mandatory for the induc-
tion of disease.16-18 Indeed, PrP-prions are
heterogeneous entities; PrP can assume alterna-
tive conformations with varying properties
(‘strains’; see below), and PrPSc assembles into
a spectrum of bioactive multimers that range
from small oligomers to large amyloid fibrils.19

Using the dye Congo red, Divry first
reported the amyloid nature of senile plaques
in AD nearly a century ago.20 In the 1980s,
the amyloidogenic protein in Alzheimer pla-
ques and cerebral amyloid angiopathy (CAA)
was identified as what is now known as
Ab,21,22 and around the same time the amyloid
deposits that are present to varying degrees in
prion diseases were found to consist of PrP.23

In addition to Congo red, newer amyloid-spe-
cific dyes such as the luminescent conjugated
oligothiophenes (LCOs) have been used to
characterize deposits of Ab and PrP in tissue
sections.24-26 These dyes derive their selectiv-
ity for amyloid from their interaction with the
b-sheet-rich regions of misfolded protein com-
plexes, and as such they have been helpful in
defining polymorphic amyloid strains.26,27

Although misfolded Ab frequently forms amy-
loid in AD, as in prion disease, amyloid per se
is not obligatory for the manifestation of
Alzheimer’s disease (more on this below).

Ab seeds and PrP-prions are resistant to
inactivation

Owing to the stability conferred by the amy-
loid state, PrP-prions can be remarkably resis-
tant to physicochemical degradation, a quality
that contributes to their persistence and infec-
tivity, and therefore has important public health
implications.28 Both PrP-prions and Ab seeds
are resistant to inactivation by heat and formal-
dehyde.28-31 Furthermore, both agents are
extraordinarily long-lasting in the living brain;
when Ab seeds were infused into the brains of
APP-knockout mice (which are incapable of
replicating the seeds), some seeding-competent
Ab remained even after 6 months in the

recipients.32 Similarly, PrP-prions have been
reported to retain their infectivity after nearly
20 months in the brains of hosts incapable of
replicating prions.33 Additionally, aggregated
Ab is resistant to degradation by proteases,34

similar to PrP-prions (for which this property is
exploited in the diagnostic detection of dis-
ease).35 However, analysis of the Ab-inducing
species revealed that small, soluble seeds har-
bor considerable amyloid-inducing activity,
and that these small seeds are readily inacti-
vated by proteinase-K,34,36 comparable to the
high specific activity,19 and proteinase K-sensi-
tivity of oligomeric forms of PrP.37

Ab Seeds and PrP-prions Propagate by
Molecular Templating

Earlier in vitro studies demonstrated that
preformed Ab seeds are able to convert mono-
meric Ab into extended fibrils by molecular
conformational templating (i.e., seeding).38 A
series of experiments in transgenic mouse mod-
els expressing human-sequence APP showed
that infusion of small amounts of brain extracts
containing aggregated Ab can induce the for-
mation of plaques and CAA in vivo, and that
aggregated Ab is essential for the seeding
effect (see ref.39 for review). Similar to PrP-
prion seeding, the Ab-seeding effect can be
achieved de novo in rodent models in which
such pathology is not normally seen within the
average lifespans of the animals.40,41

Misfolded Ab and PrP Aggregate into
Variant, Inducible Strains

The identification of structurally and func-
tionally distinct prion strains has helped to
explain how the pathobiology of these mole-
cules is influenced by their architecture, beyond
the linear amino acid sequence. PrP-prions can
misfold and assemble into seeds with varying
structural and functional features that can be
passed on to subsequent generations of
prions.42 Different prion strains also spur spe-
cific spatiotemporal patterns of PrP-deposition,
while at the same time producing distinct

Ab SEEDS AND PRIONS: HOW CLOSE THE FIT? 217



neurodegenerative phenotypes that are encoded
by their biochemical fingerprint.43

Analogously, Ab can misfold and assemble
into strain-like structural variants both in vitro
and in vivo.29,44-52 To determine whether the
structural properties of Ab can be seeded in
new hosts, cross-seeding experiments were
undertaken in two transgenic mouse lines that
develop phenotypically dissimilar patterns of
Ab distribution and plaque size as they age.29

Intracerebral inoculation of brain extract from
one mouse line into the other engendered
seeded plaques that were morphological
hybrids of the predominant plaques generated
by the donor and the host.29 Subsequent experi-
ments using conformation-sensitive LCOs
showed that the fluorescence spectra emitted by
cross-seeded plaques differed from the spectra
emitted by endogenous, unseeded plaques in
the same transgenic mouse lines.51

These findings were confirmed and extended
in an ex vivo hippocampal slice culture model
in which the morphology and LCO-spectral sig-
natures of seeded plaques were influenced by
the mouse line that furnished the initial seed as
well as the isotype of Ab added to the
medium.53 The strain-like differences in seeded
plaques on the hippocampal slices were associ-
ated with different ratios of the two commonly
generated Ab isoforms of 40 and 42 amino
acids (Ab40 and Ab42), as had been seen in
the in vivo cross-seeding experiments.51 Other
studies have found that Ab40 and Ab42 differ-
entially influence the strain type, and that dis-
tinct strain-like features of synthetic Ab seeds
created in vitro are retained after in vivo
passage.48

Ab deposits in humans with AD can differ in
terms of morphology,54 ligand binding,55 solid-
state nuclear magnetic resonance signature,56

and biophysical attributes such as conforma-
tional stability.52 In an initial study, brain sam-
ples from two AD patients with dissimilar
clinical histories were used to seed the aggrega-
tion of synthetic Ab40 in vitro, and the result-
ing Ab fibrils showed distinct nuclear magnetic
resonance and electron-microscopic character-
istics.50 The authors proposed that a single,
dominant Ab structure is propagated by seeded
nucleation in each brain, and that this

molecular structure influences clinical progres-
sion. In a larger cohort of patients, these find-
ings were extended to show different molecular
configurations of Ab assemblies in rapidly pro-
gressing AD cases compared to normally pro-
gressing cases.56 Similarly, different rates of
cognitive decline have been correlated with dis-
tinct conformations of Ab42.57 These experi-
ments suggest that rapidly progressing AD may
be associated with a particularly virulent strain
of misfolded Ab.

An alternative Ab strain also has been impli-
cated in a hereditary type of AD linked to a
mutation within the Ab sequence (E22G; the
“arctic” mutation). These patients harbor Ab
plaques with a core largely devoid of amyloid;
when brain extracts from arctic AD patients
were injected into APP23 transgenic mice
(which express the non-mutant sequence of
human Ab), cerebral blood vessels were sur-
rounded by unusual fuzzy Ab deposits, unlike
the CAA in mice seeded with extracts from
non-arctic AD cases.49,58 In addition to rein-
forcing the Ab-strain hypothesis, studies of arc-
tic-mutant Ab underscore the important (and
often unrecognized) point that, while Ab aggre-
gation is central to AD, classical amyloid
deposits are not obligatory for the clinical
expression of the disease. Collectively, these
experiments show that, like PrP-prions, particu-
lar strains of aggregated Ab can be propagated
in vitro and in vivo by molecular templating.
While the existing evidence strongly indicates
that Ab structure is associated with disease
phenotype, the critical link between the patho-
physiological traits and molecular architecture
of Ab have not yet been fully defined.

Ab Seeds and PrP-prions Translocate
within and to the Brain

Intraocular injection of PrP-prions has
shown that the agent can be conveyed from one
part of the nervous system to another by neuro-
nal transport mechanisms.59-62 Similarly, Ab
seeds introduced focally into the brain induce
Ab aggregation that propagates systematically
to interconnected regions.63,64 In vitro studies
indicate that the trafficking of Ab seeds is
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mediated by neuronal uptake, transport and
release mechanisms.65,66 Within cells, soluble
Ab is concentrated in the acidic environment of
endosomes/lysosomes, where it assembles into
higher molecular weight seeds.67 There is also
evidence that membrane-associated, non-fibril-
lar Ab in mitochondria has robust seeding
capacity.68 Notably, placement of Ab seeds
into the peritoneal cavity is capable of inducing
Ab deposition in the brain,69,70 though the
mechanisms involved in the translocation of
the seeds from periphery to brain are uncertain.
These findings demonstrate the extensive
mobility of Ab within and outside of the CNS,
with implications for the iatrogenic induction
of Ab aggregation in humans (below).

Ab Seeds can Induce Ab Deposition in
Humans

Despite longstanding experimental evidence
for the prion-like seeding of Ab in vitro and in
vivo, the relevance of the seeding paradigm to
humans has been uncertain. Recent studies
aimed at bridging this gap have involved the
opportunistic evaluation of Ab pathology in tis-
sues from patients who had been treated with
human cadaver-derived growth hormone or
dura mater implants.71-75

In the first such investigations, the patients
who were analyzed had died of iatrogenic
Creutzfeldt-Jakob disease (iCJD) years after
having received cadaveric growth hormone or
dura mater; hypothesizing that the treatment
materials were also likely to have harbored Ab
seeds from donors who had died with AD (or
incipient AD), the researchers demonstrated
that recipients who contracted iCJD also had
significantly greater cerebral Ab deposition
than did control patients.71-74 The link between
cadaveric growth hormone treatment and Ab
deposition was subsequently confirmed in a
larger cohort of iCJD patients; significantly,
increased Ab deposition also occurred in hor-
mone recipients who died of causes other than
CJD, indicating that the Ab deposition is not
caused by the prionopathy.75

A noteworthy caveat in these analyses is that
the patients with Ab pathology did not have

AD-like tauopathy at the time of death, and
thus they did not fulfill the pathologic criteria
for fully developed AD. This is surprising for
two reasons; first, experimental work has dem-
onstrated that aggregated Ab is capable of
inciting tauopathy in experimental animals,76

and that Ab can cross-seed tau assembly to pro-
duce potent, in vivo-active tau seeds.77 Second,
pituitaries that contained Ab seeds are likely to
have contained tau seeds as well,78 and tau
itself can be induced to misfold and polymerize
in a prion-like fashion;79 hence, if tau seeds
survived the purification process and entered
the brain (neither of which is known), a direct
tau seeding effect would have been expected.
Further scrutiny of the cadaveric growth hor-
mone and dura mater recipients will be needed
to determine whether tauopathy might also be
inducible in humans.

The implications of these findings for the
risk of AD in surviving recipients of human-
derived growth hormone and dura mater trans-
plants are ambiguous. A study of growth hor-
mone recipients in the US found no evidence of
an increased incidence of AD as of 2008,78 but
the growth hormone preparations in the US
included a stringent purification step after 1977
that likely eliminated most PrP-prions.80 Since
no cases of iCJD have occurred in US patients
treated after 1977, it is possible that these recip-
ients also would be less likely to have been
exposed to Ab (or tau) seeds. In addition,
because the analyzed recipients of tainted bio-
logics had died of CJD or other causes at rela-
tively young ages,71-75 it is not possible to
know whether they would have developed AD
after a longer incubation period, especially
given that Ab deposition begins in the AD
brain decades before the emergence of cogni-
tive decline.81 It is worth noting that the kinet-
ics of protein misfolding and aggregation are
likely to be important for the effective trans-
mission of proteopathies, and differences in
kinetics could explain the potency of exoge-
nous PrP-prions at eliciting disease compared
to Ab in similar exposure scenarios.

Improvements in the production and prepa-
ration of biologic agents have essentially elimi-
nated the risk of iatrogenic CJD.80 However,
longer-term follow-up of patients who received
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cadaveric growth hormone and dura mater
transplants during this problematic period is
needed to establish the risk of AD with cer-
tainty. In light of evidence for the seeded
induction of Ab deposition and the cerebral
invasion of peripheral Ab seeds in animal mod-
els,69,70 there is also a need for more extensive
surveillance of Ab pathology that might be
linked to other sources such as blood and blood
products.

The Most Effective Ab Seeds and PrP-
prions are Generated in Vivo

Finally, it is worth highlighting the puzzling
observation that both Ab seeds and PrP-prions
are most potent when generated in living tis-
sues. Initial investigations of Ab seeding in
mouse models demonstrated that brain extracts
containing aggregated Ab strongly induce Ab
deposition, whereas synthetic Ab that was pre-
aggregated in vitro was ineffective within the
same incubation timeframe.29 Subsequent stud-
ies employing a longer incubation period
showed that synthetic Ab seeds can induce
deposition in APP-transgenic mice, albeit with
low potency relative to brain-derived seeds.82

Generating efficacious PrP seeds in vitro also
has been a persistent challenge, but aggregation
of recombinant PrP in the presence of specific
co-factors can markedly increase their infectiv-
ity.83 Likewise, when synthetic Ab is aggre-
gated on living tissue slices in culture, the
resulting Ab seeds induce robust Ab deposition
in vivo.53 Determining why proteinaceous
seeds that develop in living tissues are more
potent than seeds aggregated in vitro is an
important objective for future research.

CONCLUSIONS AND OPEN
QUESTIONS

The original definition of prions as proteina-
ceous infectious particles84 has hindered the
expansion of the prion concept to other proteo-
pathies, in part because of concern that these
diseases might be perceived as contagious under
everyday circumstances.3 For this reason, and

because prion-like mechanisms are increasingly
recognized in many realms of biology,11-13,85-89

we have argued that ‘proteinaceous nucleating
particles’ would serve as a more inclusive (and
less alarming) definition of prions.3 Ab seeds
undoubtedly meet the key criteria to qualify as
prions, and evidence is growing that the prion
paradigm includes several other proteopathies as
well.3,5,6,79 However, many issues require reso-
lution; among these: What is the connection
between seeding capacity and toxicity? How do
the conformation and size of aggregating pro-
teins influence their pathobiology? How is Ab
linked to tauopathy in the AD cascade? Do dif-
ferent Ab strains explain the resistance of non-
human species (and perhaps some humans) to
AD?90 What factors influence the conversion of
pathogenic proteins to a prion-like state? How
are the proteins processed and transferred by
cells? And given growing evidence for prion-
like processes in a wide spectrum of diseases,
how can the expanded prion principle help to
unify the search for new therapeutic objectives?

ABBREVIATIONS
Ab amyloid-b
AD Alzheimer’s disease
APP Ab-precursor protein
CAA cerebral amyloid angiopathy
CJD Creutzfeldt-Jakob disease
iCJD Iatrogenic Creutzfeldt-Jakob disease
LCO luminescent conjugated oligothiophene
PrP prion protein

PrPSc prion protein scrapie, PrP in a pathogenic
conformation
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