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Adult neurogenesis mainly occurs at the subventricular zone (SVZ) on the walls of the lateral ventricle and the subgranular zone
(SGZ) of the dentate gyrus (DG). However, the majority of newborn neurons undergo programmed cell death (PCD) during the
period of proliferation, migration, and integration. Stroke activates neural stem cells (NSCs) in both SVZ and SGZ. This process
is regulated by a wide variety of signaling pathways. However, the newborn neurons derived from adult neurogenesis are
insufficient for tissue repair and function recovery. Thus, enhancing the endogenous neurogenesis driven by ischemia and
promoting the survival of newborn neurons can be promising therapeutic interventions for stroke. Here, we present an overview
of the process of adult neurogenesis and the potential of stroke-induced neurogenesis on brain repair.

1. Introduction

Stroke is one of the leading causes of morbidity and mortality
worldwide. In addition, about two-thirds patients had neuro-
logic impairment and disability, based on a population study
of follow-up of stroke survivors at five years [1]. Therefore,
poststroke rehabilitation becomes a major therapeutic focus
for most poststroke patients. Unfortunately, the currently
available therapies are only rarely successful in improving
recovery from neurological deficits. It is well established that
de novo neurogenesis mainly occurs at two distinct regions in
the adult brain: the SGZ of the dentate gyrus of the hippo-
campus and the SVZ adjacent to the lateral ventricle [2, 3].
In pathological conditions such as stroke, increased neuro-
genesis has been reported in adult animal models and even
in stroke patients [4]. The proliferated neural progenitor cells
migrate to the injured striatum and cortex; however, most of
them failed to survive and rewire the brain. Taking advantage
of the neurogenic capacity of the brain and improving the
survival of endogenous neuroprogenitor cells shed light on
the restorative therapies for stroke and other brain insults.
Here, we review adult neurogenesis from a comprehensive

perspective and summarize the current status of research
on neurogenesis in poststroke therapy.

2. Adult Neurogenesis

Adult neurogenesis (AN) is a process that is continuously
producing new neurons which integrate into existing circuits
in adult age and have different mechanisms compared with
fetal and early postnatal development [5]. AN was first dem-
onstrated by Altman and Das in a rat brain in 1965 [6]. They
injected thymidine-H3 into adult rats and cats to tag the new-
born cells and found that the labeled glia cells and neurons
are present in various regions of the normal adult mamma-
lian brain. In the 1990s, bromodeoxyuridine (BrdU) was
applied to label newborn cells in neurogenesis research. With
the application of this new technique, two areas of the adult
neurogenesis were found: the DG and the SVZ. In the DG,
new neurons continue to be generated from NSCs in the
SGZ.NSCs also reside and proliferate in the SVZ and differen-
tiate into neuroblasts. These neuroblasts migrate through the
rostral migratory stream (RMS) to the olfactory bulb (OB)
and integrate into OB circuits. Recently, some noncanonical
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sites of adult neurogenesis, such asneocortex, striatum, corpus
callosum, amygdala, and hypothalamus, have been found in
different species [7].

The process of maturation of new neurons encompasses
the proliferation of resident NSCs and their subsequent dif-
ferentiation, migration, survival, and functional integration
into the preexisting circuitry [8]. AN is mediated by a series
of physiological and pathological processes at all these stages.
Moreover, programmed cell death (PCD) plays critical roles
in regulating the process from NSC proliferation to the inte-
gration of neural circuits. We focus on current knowledge of
the main neurogenic sites (SVZ and SGZ) of AN with their
specificities and address the potential roles of PCD as a
regulatory strategy.

2.1. AN in SVZ and SGZ

2.1.1. SVZ. In mammalian animals, new OB neurons are
derived from SVZ, on the walls of the lateral ventricles. The
SVZ have five main cell types: B1 astrocytes (type B1 cells),
B2 astrocytes (type B2 cells), transit-amplifying cells (type
C cells), neuroblasts (type A cells), and ependymal cells (type
E cells) (Figure 1). Microglia and oligodendrocyte precursor
cells (OPCs) also reside in the SVZ. Type B2 cells and epen-
dymal cells are important for maintaining and regulating the
niche of SVZ. Type B1 cells lie atop ependymal cells and
extend their processes further to blood capillary [9]. Besides,
most B1 astrocytes contact the ventricle by extending a thin
cellular process between ependymal cells [2]. Type C cells

are shaped like a smooth ellipse and have large nuclei with
deep invaginations [2]. Type A cells have an elongated cell
body with smooth contours. They have one or two processes
and join to other type A cells by small junctional complexes.
Nestin, SRY-box 2 (Sox2), and brain lipid-binding protein
(BLBP) have been considered as NSC markers. Distal-less
homeobox 2 (DLX2), epidermal growth factor receptor
(EGFR), and mammalian achaete-scute homolog 1 (MASH1)
are mainly expressed on type C cells [10]. Doublecortin
(DCX), β-III-tubulin (TuJ1), and polysialylated neural cell
adhesion molecule (PSA-NCAM) are the unique markers of
type A cells [2].

NSCs in the SVZ correspond to type B1 cells. Asymmet-
ric division of type B1 cells produce self-renewed type B1
cells and type C cells [11, 12], which symmetrically divide
into type A cells [13]. After birth in SVZ, type A cells form
elongated, chain-like aggregates, which are ensheathed by
astrocytes [14–16]. These neuroblasts migrate through RMS
at the anterior SVZ [17]. The migration of neuroblasts fol-
lows a salutatory manner: first, a leading process extended;
then, swelling formation and centrosome migration; and last,
somal translocation [16, 18–20]. The RMS carries the neuro-
blasts into the OB where these neuroblasts detach from the
RMS and then migrate radially to the outer layer and differ-
entiate into various subtypes of olfactory neurons.

There are two principal types of adult-born OB neurons:
periglomerular cells (PGCs) in the glomerular layer (GL)
and granule cells (GCs) in the granule cell layer (GCL). Deep
GCs and calbindin (CalB)+ PGCs are derived from ventral
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Figure 1: Neurogenesis in SVZ. The SVZ is shown in the left. Type B1 cells (B1, blue) lie atop ependymal cells (E, green) and extend their
processes to blood capillary (BV). Type B1 cells divide to produce type C cells (C, pink). Type C cells then give rise to type A cells (A,
red). Type B2 cells (B2, dark blue) also reside in the SVZ. The coronal section in the upper right is shown the diversity of newborn OB
interneurons. Deep GCs and CalB+ PGCs are derived from ventral NSCs, whereas superficial GCs and TH+ PGCs are derived dorsal
NSCs. NSCs from the medial wall produce CalR+ GCs and CalR+ PGCs.
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NSCs, whereas superficial GCs and tyrosine hydroxylase
(TH)+ PGCs are derived from dorsal NSCs. NSCs from
medial wall produce calretinin (CalR)+ GCs and CalR+

PGCs [21] (Figure 1).

2.1.2. SGZ. The adult neurogenic niche of the hippocampus
resides in the SGZ, a thin band of cells lying between the hilus
cells and the granule cell layer in the DG. NSCs first develop
into radical astrocytes (type 1 cells) that, in turn, generate
intermediate neural progenitors (type 2 cells). These cells
are immature neuroblasts that can be further differentiated
into neuroblasts. Neuroblasts can be further divided into
more differentiated cells (type 3 cells) [22, 23]. Type 3 cells
progressively acquire characteristics of neurons. During the
stage of immature to mature, elaborate dendritic arborization
grows to the middle of the molecular layer and axon elongate
toward CA3 [23] (Figure 2).

Type 1 cells are located in the SGZ and have a triangular-
shaped soma. A strong apical process extended into the
molecular layer of DG is the typical characteristic of type 1
cells. Type 1 cells have some astrocyte features that may
contact blood vessels through the end-feet [22]. Recently,
another class of type 1 cells has been identified. These newly
identified type 1 cells are characterized by short, horizontal
processes [24]. Type 2 cells have a unique morphology that
is distinct from type 1 cells: they lack the strong apical process
and have a round or ovoid nucleus. Type 3 cells have variable
morphologies. The processes of type 3 cells are short and the
orientations alter from horizontal to vertical (Figure 2). Type
1 cells express GFAP, nestin [25, 26], BLBP, and Sox2. Type 2
cells have both neural and glial features that express neuronal
(DCX and PSA-NCAM) and glial marker (nestin, BLBP) [27].

DCX, PSA-NCAM, NeuroD, and Prox1 are mainly expressed
on type 3 cells.

2.2. PCD for the Regulation of Adult Neurogenesis. PCD is the
death of a cell in any form, mediated by an intracellular pro-
gram that mainly occurs during embryo/adult development
and in some pathologic conditions [28]. The majority of
adult-born neurons are eliminated by apoptosis. There are
three main functions of PCD during adult neurogenesis: (1)
regulate of the size of the NSC pool, (2) correct the errors
during proliferation and migration, and (3) form correct syn-
aptic contacts. The roles of all three functions are to optimize
the neural system.

Neuroblasts from SVZ migrate through RMS to the OB
and differentiate into GCs and PGCs. GCs are mature at
15–30days and PGCs at 4weeks after birth. There are around
30,000 newborn interneurons integrated into OB neural cir-
cuits daily in adult mice [10, 14, 29, 30]. However, 50% of
NSCs, neuroblasts, and newborn interneurons undergo apo-
ptosis to eliminate redundant and false connected cells. The
survivals integrate into neural circuits and persist up to
19months [30, 31]. Hippocampal NSCs proliferate and dif-
ferentiate into granule neurons in the DG. In addition, about
30–70% of the newborn cells die of PCD in the first 2weeks
after birth. The remaining forms functional synapses on
CA3 pyramidal neurons at 2weeks after birth, and this pro-
jection becomes stable at 4weeks [32]. About 4weeks after
birth, dendritic processes of newborn neurons extend toward
and into the molecular layer and an axon project into the
hilar area [33]. At 2months, the number of DG neurons in
bax−/− mice has no difference compared with that in wild-
type (WT) mice, whereas at 12months, the number of DG
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Figure 2: Neurogenesis in SGZ. The SGZ is a thin band of tissue that lies between the granule cell layer (GCL) and the hilus cells in the DG.
Type 1 cells are triangular-shaped NSCs and usually extend a strong apical process into the molecular layer (ML). Type 1 cells (blue) generate
type 2 cells (green). Type 2 cells are immature neuroblasts that can be further differentiating into type 3 cells (yellow). Type 3 cells
progressively acquire characteristics of granule neurons. During the stage of immature (pink) to mature (red), large parts of the dendritic
tree and axon elongate toward CA3.
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neurons is doubled in bax−/−mice [34]. In adult humans, 700
new neurons are added to the hippocampus per day and with
a continuous decline during aging [35]. These data indicate
that PCD is important for the renewal of neural circuits
and occurs at all stages during adult neurogenesis.

2.2.1. PCD of NSCs.Growth factors secreted in the SVZ niche
are essential for the survival of NSCs. Thus, NSCs that lack
neurotrophic signals are more sensitive to apoptosis stimuli.
NSCs from adult bax−/−bak−/− mice show resistance to a
series of apoptotic stimuli and are accumulated in the SVZ
and SGZ. Bax single-deficient NSCs are resistant to apoptosis
induced by staurosporine [36]. While in Mcl1 conditional
knockout mice, NSCs in the SVZ are more vulnerable to apo-
ptotic cell death. However, overexpression of Mcl-1 reduces
the apoptotic rate by about 50% in NSCs from the SVZ
[37]. Regarding all above results, Bcl-2 family proteins play
an essential role for the apoptosis of NSCs and regulate the
size of the NSC pool. In the DG, bim or puma deficiency sig-
nificantly enhanced the survival of adult-born cells but have
no change on NSC differentiation [38]. Puma deficiency also
increases the survival of SVZ NSCs. Puma is required for
p53-induced apoptosis in NSCs of DG [39, 40]. Besides, loss
of Trp53 enhances slow and fast proliferation in SVZ popula-
tions and associates with their differentiation toward neuro-
nal and glial cell lines [41]. However, opposite results are
found in the mice knockout Trp53 and p53 deficiency
induces apoptotic brain lesion. These p53-deficient mice have
thinner isocotex and enlarged ventricle compared with wild-
type mice [42]. Therefore, the exact role and mechanism of
p53 in regulating the PCD of NSCs remain unclear. Adult
hippocampal NSCs undergo autophagic cell death instead
of apoptosis on deprivation of insulin [43–45].

2.2.2. PCD during Migration and Integration. Errors during
migration also induce apoptosis in the adult-born neuro-
blasts. In bax-deficient mice, a large number of abnormal
neuroblasts accumulate in the RMS [10]. A similar result
exists in newborn cells with increased mTOR activity. Het-
erotopia and ectopic neuroblasts are observed in the RMS
and the OB. Moreover, these heterotopia cells survive and
integrate to the OB network. They have increased dendritic
complexity, altered membrane biophysics, and increased
frequency of GABAergic synaptic inputs [46]. However, the
effects and functions of these heterotopia and ectopic
survived interneurons are still unknown.

The most extensive apoptosis of newborn neurons occurs
during the integration into neural circuits. 30–70% of imma-
ture neurons are eliminated by apoptosis during the forma-
tion of synaptic contacts [29, 31, 47]. This phenomenon
can be interpreted by a neurotrophic hypothesis that the
neurotrophic substance released for the survival of neurons
is limited; thus, newborn neurons need to compete for these
trophic signals [48, 49]. Competition for neurotrophic
signals not only occurs between homogeneous neuroblasts
and immature neurons but also is observed between imma-
ture neuron and preexisted mature neuron for new synaptic
connections. Using fluorescent retrograde tracers and
BrdU-labeling techniques, it is proved that newborn neurons

in the DG extend axons into CA3 of hippocampus and may
influence the normal hippocampal function [23, 31, 50, 51].
In bax−/− mice, apoptosis is inhibited in immature and
mature neurons of DG, and the size of DG neurons enlarges
continuously with age [34]. Synaptic connections with effer-
ent and afferent neurons are both observed in this the DG
[10]. All these results proved that the immature neurons
can extend axons to mature neurons and make contacts.
Thus, the apoptosis of adult-born cells is to keep the balance
of mature and immature neurons and maintain the integrity
of neuronal circuits [52]. However, some opposite data have
shown that in bax-deficient mice, the pattern separation
function of the hippocampus is enhanced. However, knock-
out bax seems to have no effects on other major hippocampal
functions [53]. It seems that pattern separation is regulated
by immature DG neurons. Other hippocampal functions,
such as aligning internal spatial representation to external
landmarks, are mediated by mature DG neurons [54]. A sim-
ilar phenomenon has also been found in the cell replacement
of OB. In bax−/−mice, the normal olfactory learning behavior
is improved, and the perturbations of newborn cell migration
result in imbalance of neural circuits that destroy the olfac-
tory learning ability. Besides, the bax-deficient mice show
no significant changes on olfactory sensation [55, 56]. Based
on above results, we may conclude that the immature
neurons and mature neurons have different roles in neural
circuits, and apoptosis is the key regulator that keeps the
balance of adult-born neurons and the preexisting ones.

2.2.3. PCD of Mature Neurons. Although the majority of cell
types that undergo PCD are immature neurons and neuro-
blasts, mature neurons also have lower levels of PCD in the
OB and DG. The purpose of PCD in mature neurons is to
renew the preexisting neural circuits [30, 57]. At about 15–
30 days after birth, newborn cells differentiate into mature
neurons in the OB. Thereafter, about 50% newborn neurons
undergo apoptosis. Cells that survive the first 3months per-
sist up to 19months [31]. One fourth of the DG neurons
born at the peak of DG development on postnatal day 6 died
in the first 1 to 6months [58]. The production of adult-born
neurons and elimination of mature neurons are critical for
the maintenance of a constant number of neurons in DG
and for the regulation of hippocampal functions [34].

3. AN and Stroke Recovery

Adult NSCs in neurogenic regions can be activated by differ-
ent stimuli such as learning [59] and running [60] and also
can be activated in the disease processes including seizure
[61], mechanical lesions [62], and ischemic insult [63]. These
results raised the possibility that functional deficits induced
by stroke may be cured through neuronal replacement by
endogenous NSCs. In well-studied rodent models of stroke,
cerebral ischemia and hemorrhage have been shown to
stimulate proliferation of endogenous progenitor cells and
differentiate into neural system cells, including neurons,
astrocytes, oligodendrocytes, and ependymal cells [64].
Evidence for stroke-activated neurogenesis has also been
reported in the stroke patients [65]. Accumulating evidence
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has convincingly demonstrated that stroke-induced neuro-
genesis in SVZ and SGZ and other noncanonical stem cell
niches have also been confirmed in the adult brain.

3.1. Classical Neurogenic Niches after Stroke: SGZ and SVZ.
In models of transient global cerebral ischemia, cerebral
blood flow is reduced throughout the whole brain [66]. The
hippocampus CA1 area plays an important role in cognitive
processes such as learning and memory and is more sensitive
to hypoxia-ischemia insults than other areas of the brain
[67, 68]. Remarkable increased progenitor proliferation in
hippocampal SGZ has been observed in many species, such
as mice, rats, gerbils, and monkeys, after global cerebral
ischemia [69–71]. Liu et al. first reported increased hippo-
campal neurogenesis after transient global ischemia in
gerbils in 1998 [63]. Newborn cells with neuronal features
were first seen 26 days after ischemia, migrated from the
SVZ to the granule cell layer, and survived for at least
7months [63]. Since this initial publication, many follow-
up studies have confirmed stimulation of neurogenesis in
the SGZ across various species of global ischemia [69–71].
Nakatomi et al. further revealed that ischemia-induced adult
neural progenitors in DG can replace CA1 pyramidal
neurons form functional synapses and integrated into the
existing brain circuitry [72]. Tanaka and his colleagues
visualized that the neuronal progenitor cells in the DG pro-
liferated, migrated, and differentiated into mature neurons
by retroviral vector expressing enhanced green fluorescent
protein (EGFP) [73]. Increased NSC proliferation has also
been reported in the SVZ following global ischemia [74].
Promoting endogenous neurogenesis in SGZ may contrib-
ute to replace the CA1 neuron loss and improve function
recovery after global ischemia. However, it is also worth to
point that some studies cannot reproduce the evidence that
SGZ neural stem cell migrate into CA1 as previously
reported by Nakatomi and coworkers. In contrast, the
CA1 area merely displays gliogenesis [71, 75].

In focal brain ischemia, middle cerebral artery occlusion
(MCAO) is the most frequently used focal brain ischemia
model, which produces consistent infarcts in the ipsilateral
hemisphere of the cerebral cortex, hippocampus, and stria-
tum [76]. Neurogenesis was increased bilaterally in both
SVZ and SGZ after unilateral MCAO, indicating that endog-
enous neuronal precursors might be in response to contralat-
eral ischemia as well [77]. The vast majority of adult
neurogenesis in mammalian species occurs within the SVZ.
SVZ are a paired brain structure situated throughout the
lateral walls of the lateral ventricles. Significant enhanced
proliferations of NSCs in the SVZ were observed in the first
7–14days after MCAO in mice [78] and rats [77, 79, 80]. A
fluorescent tracing of proliferating cells in the SVZ showed
that these cells directly migrate from birth site to striatum
in the post-MCAO rat brain [81]. In the normal brain, most
of the SVZ neuroblasts migrate through the RMS into the OB
and differentiate into interneurons. Ischemia may revoke the
normal migratory pattern of SVZ NSCs and lead these cells
to migrate toward the injured areas and aid in spontaneous
recovery [82]. In the damaged striatum, neuroblasts were
continuously generated from SVZ precursors as early as

1week and last to 16weeks after insult [82]. The SVZ was
the principal source of the neuroblasts migrated laterally
toward the injured striatal regions and integrated into neuro-
nal networks receiving synaptic input and firing action
potentials after MCAO [83, 84]. Inspiringly, Kreuzberg and
his colleagues found MCAO also induced SVZ-derived neu-
roblasts migrated to the cortex, differentiated into mature
neurons, and survived for at least 35 days [78]. These results
highlight the role of the SVZ NSCs in neuronal regeneration
after focal cerebral ischemia and its potential as a new
therapeutic target for various neurological disorders.

3.2. Adult Neurogenesis from Noncanonical Sites. Above
studies have shown convincing evidence of neuroblasts
migrating from the SVZ or SGZ to the ischemic areas. How-
ever, several studies have proposed the possibility that there
exist other stem cell niches in the adult brain [85, 86]. In fact,
this noncanonical site of adult NSCs has been found in
rodent striatum [87], hypothalamus [88], neocortex [87],
amygdala [87], substantia nigra [89], and brainstem [90]. In
addition, endogenous brain repair occurs in, but not
restricted to, neurogenic regions. It is reported that astrocytes
surrounding the infarct core lesion can be activated to gener-
ate neurons [91, 92]. Pericytes and OPCs have also been
reported to differentiate into neurons following brain injury
[93]. These data indicate that stem cell niches are much
extensive. These existed multiple neurogenesis sites may be
important for brain repair after injury [94].

4. Targeting AN as Therapeutic Strategy
for Stroke

AN has arisen great interest as it can be applied for new
therapies to replace damaged neurons and treat severe neuro-
logical deficits after stroke and other neurological diseases.
However, the endogenous neurogenesis failed in producing
adequate amounts of newborn neurons that can survive
and integrate to restore the function recovery. Stimulating
or enhancing the endogenous neurogenesis driven by ische-
mia can be a promising therapeutic intervention for stroke.
The vast majority of the newborn neurons die between 2
and 5weeks, which may be caused by the unfavorable envi-
ronment that is exposed to the detrimental injury niche,
lacking appropriate trophic support and failed connections
with other neurons after stroke [95]. Reducing endogenous
toxic substances, inhibiting inflammatory responses, and
promoting the release of growth factors and neurotrophic
signals have been suggested as effective manipulations to
improve AN.

A wide variety of signaling pathways are related to NSC
activity during proliferation, migration, differentiation, and
their maintenance in the adult neurogenic regions. As sur-
vival is the first factor of newborn neurons, neuroprotective
agents or manipulations attempt to benefit from neuronal
survival preserving the property to support neurogenesis in
long term [96]. Administration of EPO (5U/g) significantly
preserves hemispheric brain volume 6weeks after stroke
and directs cell fate toward neurogenesis and away from glio-
genesis [97]. The PI3 kinase/Akt pathway showed to play an
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important role in neuronal survival as well as adult neuro-
genesis. Mutation that produces constitutive activation of
the Akt pathway through PTEN deletion induces a robust
increase in poststroke neurogenesis [98]. Studies that tar-
geted NOTCH, WNT, and sonic hedgehog (SHH) signaling
showed the great potential of these approaches in stroke
treatment [99–102]. In addition, many growth factors have
been identified to protect NSCs and enhance neurogenesis
after stroke. Basic fibroblast growth factor (bFGF), epidermal
growth factor (EGF), BDNF, bone morphogenetic protein
(BMP), glial cell-derived neurotrophic factor (GDNF), trans-
forming growth factor- (TGF-) α, ciliary neurotrophic factor
(CNTF), and platelet-derived growth factor (PDGF) have all
been proposed to play essential roles in the adult neurogenesis
response to ischemia stroke [103–111]. Recently, some
cytokines and hormones such as chemokine, complement,
estrogen, and granulocyte-colony stimulating factor (G-CSF)
have been proved to benefit against a stroke-induced brain
and behavioral pathology [112–116]. The chemokine
stromal-derived factor 1 (SDF1) is induced in peri-infarct
blood vessels and serves as a tropic signal formigrating neuro-
blasts to localize to the ischemic area. Administration of SDF1
improves poststroke neuroblast migration and behavioral
recovery [114]. Though great progress has been made, the
search for strategies and pharmacological agents to enhance
endogenous neurogenesis despite a detrimental milieu
remains a challenge and is the focus of intense investigation.

5. Concluding Remarks

Majority of stroke patients suffer from serious morbidity and
never regain full functional independence. The limited result
of stroke treatment has driven the search for stem cell thera-
pies directed at restoring neurological function. However,
both technical and ethical issues limit the development of
exogenous stem cell therapy [4]. The finding of endogenous
neural stem cells in the mammalian brain is a breakthrough
and provides a promising approach to repair the damaged
lesion after stroke. Great efforts have been made to augment
the innate neurogenic capacity of the adult brain, including
increasing the survival of NSCs in the neurogenic regions,
strengthening their mobilization, and integrating into dam-
aged neural circuits. However, there are issues raised about
the AN after stroke. First, little is known regarding the intrin-
sic properties and the modulation of the NSC fate. Additional
research is needed to identify the NSC fate determinants,
which modulate the differentiation of NSCs toward specific
cell types. Second, the integration of newborn neurons into
preexisting neural circuits and the related functional recovery
should be studied and improved in future researches [117].
Third, most animal studies of stroke are performed in young
adult animals; however, human stroke most frequently
occurs in aged patients. Neurogenesis both in the SVZ and
SGZ drops precipitously with age, and the effects of age on
AN should be considered. Forth, for efficient repair, it may
be necessary to provide endogenous and/or graft new cells
to form synthetic extracellular matrix so that they can reform
appropriate brain structure [118]. The discoveries reported
in this review may pave the way for targeting AN as future

therapeutic interventions for stroke as well as other central
nervous system diseases.
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