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Abstract: In this work, a single-crystalline silicon nanobelt field-effect transistor (SiNB FET) device
was developed and applied to pH and biomolecule sensing. The nanobelt was formed using a
local oxidation of silicon technique, which is a self-aligned, self-shrinking process that reduces
the cost of production. We demonstrated the effect of buffer concentration on the sensitivity and
stability of the SiNB FET sensor by varying the buffer concentrations to detect solution pH and alpha
fetoprotein (AFP). The SiNB FET sensor was used to detect a solution pH ranging from 6.4 to 7.4;
the response current decreased stepwise as the pH value increased. The stability of the sensor was
examined through cyclical detection under solutions with different pH; the results were stable and
reliable. A buffer solution of varying concentrations was employed to inspect the sensing capability
of the SiNB FET sensor device, with the results indicating that the sensitivity of the sensor was
negatively dependent on the buffer concentration. For biomolecule sensing, AFP was sensed to test
the sensitivity of the SiNB FET sensor. The effectiveness of surface functionalization affected the
AFP sensing result, and the current shift was strongly dependent on the buffer concentration. The
obtained results demonstrated that buffer concentration plays a crucial role in terms of the sensitivity
and stability of the SiNB FET device in chemical and biomolecular sensing.

Keywords: silicon nanobelt; FET sensor; pH sensing; alpha fetoprotein; ionic strength; Debye
screening length

1. Introduction

Chemical and biological sensors have attracted much attention because of their wide
applicability in daily life [1–4]. The demand for reliable, ultrasensitive, and portable
sensors is increasing in fields such as disease diagnostics, human health, and environmental
monitoring [5,6]. For example, the sensor-detection of trace amounts of cancer markers
benefits patients in receiving preventative health care and early-stage treatment that can
greatly increase cancer survival rates. Conventional methods of sensing biomolecules
use enzyme-linked immunosorbent assays and polymerase chain reactions [7–10], which
sense antigen or antibody levels and DNA fragments, respectively. Both methods require
fluorescent molecule labeling on the sensing targets. Other disadvantages include the
requirement of complicated pretreatment before sensing, unportable devices, and relatively
insensitive sensing.

pH values strongly affect human health, and fluctuations or variations of pH values
in the body can cause various diseases; therefore, pH monitoring is paramount for under-
standing human physiology and pathology [11]. In addition, pH plays a crucial role in
chemical and biological reactions [12,13]. For example, enzymes catalyze biomolecules
at optimal pH ranges, and enzyme activity is reduced if the pH value exceeds a certain
range. An extreme pH value results in enzyme denaturation [14]. Therefore, a sensitive,
rapid-response, cost-effective, and portable sensor system is urgently required for pH
monitoring in various applications [15]. Conventional techniques used for pH sensing
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employ electrochemical methods, including potentiometric, conductimetric, capacitive,
and resistive sensors [16,17]. The potentiometric method is most commonly used for pH
sensing and comprises a sensitive electrode and reference electrode. A redox reaction
occurs at the metal oxide on the sensitive electrode surface in a solution; thus, detection is
conducted through the measurement of the potential difference between the reference and
sensitive electrodes in a solution of an unknown pH [18]. The main disadvantages of the
potentiometric pH sensors are the difficulty of miniaturizing the reference electrode and
the instability of the potential during long-term operation.

Field-effect transistor (FET)-based sensors have drawn increasing attention on account
of their favorable properties [19–22]. Compared with the aforementioned conventional
methods, FET-based sensors are advantageous for their small dimensions, low cost, fast
response, label-free operation, and integration capability [23,24]. An FET-based sensor
detects chemical reactions or biomolecular bonds through measurement of the current or
voltage shift caused by the generation of excess charges, which exerts an electrical field
into the FET channel [25]. FET-based sensors can be applied in fields such as chemistry,
food processing, pharmaceuticals, environmental science, and biomedical engineering. The
fabrication of FET-based sensors is fully compatible with the manufacturing of modern com-
mercial metal–oxide–semiconductor (CMOS) FETs, and thus, they can be cost-effectively
mass produced [26].

Due to these advantages, several FET-based sensors have been adapted to chemical
and biological detection. Moreover, many types of semiconductor materials with quasi-
one-dimensional nanostructures, such as nanobelts and nanowires [27–30], have been
applied to FET-based sensors. FET-based sensors in conjunction with nanostructures have
demonstrated exceptional sensitivity as a result of their large surface-area-to-volume ratios.
Thus, the ultrasensitive, specific, and fast-response sensing of chemical and biological
targets has become feasible [31,32].

The dependence of buffer concentration and nanowire sensitivity is still controversial.
Some research groups claimed that the mechanism of chemical and biological sensing
using a FET-based sensor relies on the protonation or deprotonation phenomenon of the
functional groups at the solution–dielectric interface [33]. Therefore, the ionic concentration
in the buffer solution plays a vital role in the effectiveness of chemical and biological sensing.
High ionic concentrations reduce the sensitivity of FET-based sensors and in turn, their
applicability [34]. On the other hand, S. Zafar reported that the sensing mechanism of the
nanowire in ionic solution was complicated, and their sensing results showed that the pH
sensitivity was independent of the buffer concentration [35].

Therefore in this study, a single-crystalline (SC) silicon nanobelt field-effect transistor
(SiNB FET) device was fabricated as a chemical and biological sensor. The nanobelt was
formed using a local oxidation of silicon technique, a self-aligned process in which the
nanobelt can be reduced to a smaller size during formation without the use of expensive
advanced lithography. The fabrication of the SiNB FET device is fully compatible with
the industrial manufacture of CMOSs, allowing for cost-effective mass production. To
verify the effect of buffer concentration on the sensitivity of the SiNB FET, a buffer solution
of varying concentrations was employed to inspect the sensing capability of the sensor.
Our results might help to clarify the role of ions in the buffer solution when chemical or
biological sensing. In addition, the stability and repeatability of the sensor in different
solutions were also examined. For biomolecule sensing, alpha fetoprotein (AFP) was
employed as the detection target, and the sensitivity and stability of the sensor were also
tested in various buffer concentrations in detecting AFP target.

2. Materials and Methods

The SC SiNB FET sensor devices were fabricated in the Taiwan Semiconductor Research In-
stitute (Hsinchu). Analytical-grade ethanol (C2H5OH, 99.5%), (3-Aminopropyl)triethoxysilane
[H2N(CH2)3Si(OC2H5)3; APTES; 22.137 g/mol], and phosphate-buffered saline (PBS;
120 mM NaCl, 2.7 mM KCl, 10 mM phosphate buffer) were purchased from Sigma-Aldrich
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(St. Louis, MO, USA). Glutaraldehyde (OHC(CH2)3CHO; GA; 25%) was purchased from
MP Biomedicals (Santa Ana, CA, USA), and sodium phosphate monobasic monohydrate
(NaH2PO4·H2O) and sodium phosphate dibasic (Na2HPO4) were purchased from J. T.
Baker (Phillipsburg, NJ, USA). The antibody and antigen for AFP were purchased from
Blossom Biotechnologies (Taipei, Taiwan).

2.1. SiNB FET Device Fabrication

A schematic of the process of fabricating the SC SiNB FET sensor is illustrated in Figure
1. The SC SiNB FET devices were fabricated using commercially available 6-inch silicon-
on-insulator (SOI) wafers as the substrate (Figure 1a). The SOI wafer had a 50-nm-thick
SC silicon film and 150-nm-thick buried oxide film. First, a stacked film of SiO2 and Si3N4
layers was deposited on the SOI wafer (Figure 1b,c). Then, the SiO2/Si3N4 stack layers
and the SC silicon film beneath the stack layer were patterned and dry etched to define the
active region (Figure 1d). An oxidation process was subsequently conducted to oxidize the
SC silicon. The SC silicon exposed to air was then oxidized into SiO2 film. The SC silicon
film was capped underneath the Si3N4 layer to prevent oxidization because the Si3N4
capping layer prevents oxygen diffusion into the silicon film. In addition, lateral oxidation
of the silicon was observed at the edge of the Si3N4 capped SC silicon film, causing the
width of the SC silicon nanobelt to shrink (Figure 1e). As a result, the formed linewidth
of the SC silicon nanobelt was two-thirds smaller than the critical linewidth capable for
the lithography system. This lateral oxidation process has the capacity to easily and stably
form a small silicon nanobelt without the use of expensive and advanced exposure tools.

After the nanobelt shrinking process, the SiO2/Si3N4 stack layers were removed. As+

ion implantation at a dosage of 1016 and energy of 10 KeV and rapid thermal annealing
were conducted to form the source/drain region (Figure 1f). The stacked Al–Si–Cu/TiN
metal films were deposited using the sputter system, followed by contact pad defining
and metal etching (Figure 1g). To protect the sensor device, TEOS SiO2 and Si3N4 films
were deposited sequentially (Figure 1h), and the sensing area was etched back to expose
the nanobelt for sensing (Figure 1i). Finally, the fabricated SC SiNB FET devices were spin
coated with a photoresist (PR) layer and stored in an N2 ambient environment to prevent
nanobelt oxidation and contamination.
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Figure 1. Schematic of the SC SiNB FET fabrication process. Figure 1. Schematic of the SC SiNB FET fabrication process.

2.2. Surface Modification of the SC SiNB FET Device

Prior to surface modification, the PR layer was removed by immersing the device in
acetone for 10 min. The device then underwent ultrasonic cleaning for 10 min with ethanol,
followed by a rinse process using high-purity deionized (DI) water. PR removal is essential
for sensing because the PR residue reduces the efficiency of surface modification, leading
to device instability. In addition, the PR removal process also cleans the sensor surface,
preventing contamination. Next, an oxygen plasma treatment was conducted for 15 min to
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modify the sensing area and ensure an OH− rich surface. The sensor devices were then
immediately immersed in an APTES and ethanol mixed solution (2:98) for 30 min at 37 ◦C.
The samples were rinsed with DI water and heated at 120 ◦C for 30 min. This process
induces an APTES reaction with the surface silanol groups, and hence, silanol and amino
groups are both modified on the nanobelt surface. The silanol and amino groups on the
surface are vital in pH sensing because of their proton donor and acceptor roles. Figure 2
illustrates the process of surface modification on the nanobelt surface.
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2.3. Preparation of Buffer Solutions of Varying pH

The buffer solution used in this study was formed from NaH2PO4·H2O and Na2HPO4.
Each powder was dissolved into DI water to form a 1-mM solution. A pH meter (6173 pH;
Jenco Electronics, Grand Prairie, TX, USA) with ±0.01 precision was used to measure the
pH of the buffer solution. Initially, the pH meter was calibrated using standard solutions
(pH 7.00, 4.01, and 10.01; Jenco Electronics, Grand Prairie, TX, USA). In the next step, a
NaH2PO4·H2O solution of pH 4.3 was used as the base solution, and a Na2HPO4 solution
of pH 9.0 was titrated to adjust the buffer solution to various pH values ranging from
6.4 to 7.4.

2.4. Surface Modification and Biografting for AFP Sensing

In this study, AFP was employed as the target for biosensing. To sense AFP using
the SC SiNB FET, a surface modification process was undertaken. After oxygen plasma
cleaning and the APTES process described in Section 2.2, the sensor was immersed in
2.5% GA solution for 30 min at room temperature, followed by rinsing with DI water and
nitrogen drying. This functionalization process was used to link the GA in the amino
groups, thus exposing aldehyde groups on the SiNB FET surface for AFP biografting. The
antibody for AFP (anti-AFP) was diluted to 500 ng/mL with PBS and then placed on the
SiNB FET surface for 10 min to ensure efficient binding, followed by a rinse with PBS
to remove excess anti-AFP. The device was immersed in bovine serum albumin solution
to block unreacted terminals. The AFP antigen of 10 ng/mL was then injected into the
microfluidic channel and run through the sensor region to bind with anti-AFP; this was
followed by a rinse with PBS solution to remove unreacted AFP. The microfluidic channel
was made of polydimethylsiloxane (PDMS) and its fabrication has been described in a
previous paper [36]. The real-time electrical response of the SC SiNB FET sensor was
measured simultaneously using an Agilent 4156C instrument (Agilent Technologies, Santa
Clara, CA, USA).

2.5. Measurement and Analysis of the SC SiNB FET Devices

The electrical measurement of the SiNB FET sensor devices was conducted using the
Agilent semiconductor parameter analyzer. The drain current (ID) versus gate voltage
(VG) and ID versus drain voltage (VD) were characterized to evaluate the performance of
the devices. To measure the real-time electrical response of the SiNB FET sensor, constant
VD and VG were applied to the device during measurement, and the synchronous ID was
recorded every 5 s to avoid thermal drifting of the FET device. The recorded current could
observe the response of the SC SiNB FET sensor in the buffer solution. Cross-sectional
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images of the silicon nanobelt were captured through transmission electron microscopy
(TEM; JEM-2010F; JEOL, Tokyo, Japan).

3. Results and Discussion
3.1. Basic Characteristics of the SC SiNB FET Device

The cross-sectional TEM images of the SC silicone nanobelt are depicted in Figure 3.
The nanobelt exhibited a bending shape, which was caused by the invasion of the SiO2 film
into the side wall of the SC silicon during lateral oxidation. This phenomenon is known
as the bird’s beak effect of lateral oxidation [36]. As a result, the residual SC silicon film
was bent and shrunk to a width smaller than the critical size for the lithography technique.
In this case, a 350-nm lithography technique was employed, and finally, the size of the
SC nanobelt was shrunk to 150 nm wide and 30 nm thick using lateral oxidation. The
electron diffraction pattern illustrated in the inset of Figure 3b provided crystallographic
information, validating the formation of SC.
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the local oxidation technique. (b) Enlarged image of the SC nanobelt. Inset is the deflection pattern
of the silicon nanobelt.

The NB sensor behaved as an electrical field-effect device in which the electron carriers
laterally traveling through the 1.6-µm-long nanobelt were effectively controlled by the
longitudinal electrical field from the gate voltage. Therefore, the performance of the SC
SiNB FET sensor device was assessed through the application of different drain voltages
(VD) and gate voltages (VG), and the drain current (ID) was measured accordingly. In this
study, VG was applied using backside gate potentials. Figure 4 depicts the basic electrical
characteristics of the SC SiNB FET sensor devices. The behaviors of the SiNB FET device
were consistent with that of the n-channel MOS FET devices. The ID with respect to the
VG at different VD is presented in Figure 4a. The on−off current ratio of this SC SiNB
FET was determined using the ratio of the highest and lowest ID in Figure 4a and could
achieve up to six orders of magnitude if the device was operated at VD = 1 V. The threshold
voltage (VT) could be determined when the SC SiNB FET was operated in the saturation
(SAT) regime. The drain current of the SC SiNB FET in the SAT region can be calculated as
follows [37]:

ID,SAT =
mWµe f f Cox

L
(VG −VT)

2 (1)

where m is a function of the doping density in the channel and is generally 0.5 for low-
doping densities, µeff is the effective mobility of the carriers, Cox is the oxide capacitance
per unit area, W is the channel width, and L is the channel length. From Equation (1), a
plot of the root of ID (ID

1/2) versus VG can be drawn, and VT is extracted by extrapolating
the curve to 0 ID [38]. Thus, the VT of the SiNB FET device was approximately −0.25 V,
as illustrated in the inset of Figure 4a. The subthreshold swing (S.S.), which indicates the
controllability of the gate of the device, is defined as the VG that must be applied to increase
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the ID by 10-fold. The S.S. of the SiNB FET device can be derived from Figure 4a and is
defined as

S.S. =
(

∂logID
∂VG

)−1
(2)

The S.S. of the SC SiNB FET device could be extracted from the subthreshold region
of the ID–VG curve and was approximately 286 mV/decade. This value was higher than
that of commercial FET chips because the backside gate was employed in the SC SiNB FET
device; thus, the buried 150-nm-thick oxide film served as the gate oxide of the device.

Figure 4b presents the ID, with respect to the VD at different VG ranging from 0 to 4 V,
of the SC SiNB FET device. The ID increased slightly with VD, indicating that the applied
VD was not the dominant factor for controlling the drain current; instead, the changing VG
considerably altered the current. Therefore, the selection of a suitable applied gate voltage
is essential to operate the SC SiNB FET device under the optimal conditions for subsequent
pH sensing. Notably, the ID at the SAT region performed differently from normal FET
devices, possibly because of the series resistance caused by its nanobelt structure. Figure 4c
illustrates the cumulative probability of VT of the SiNB FET devices (n = 30). The VT of the
devices was estimated to be −0.23 ± 0.04 V, indicating the stability and reproducibility of
the SiNB FET devices formed using lateral oxidation of silicon technology.
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3.2. pH Sensing of the SC SiNB FET Device

The prepared buffer solution with various pH values was used to examine the pH-
sensing capability of the SC SiNB FET sensor. The sensor surface was initially functionalized
with APTES to generate terminal silanol (SiOH) and amino (NH2) groups on the nanobelt
surface. The functionalization of APTES ensured that the ions were recognized in the
solution. These terminated silanol and amine groups are sensitive to the changes in pH
values, which enhanced the sensitivity of the pH sensing. Figure 5 illustrates the protona-
tion and deprotonation phenomenon of the nanobelt surface when different dissociation
constants (pKa) of the buffer solution were sensed. When a buffer solution with low pKa
was added to the surface, either the terminal NH2 groups were transformed to NH3

+ or
the SiO− groups were transformed to SiOH; conversely, the NH3

+ was transformed to
NH2 or the SiOH was transformed to SiO− when a high-pKa buffer solution was added to
the sensor. The net charge on the nanobelt surface, which was caused by the first-order
chemical kinetics of the bond dissociation of the NH2 and SiOH terminal groups, induced
an additional electrical field resulting in the accumulation or depletion of the carriers in
the nanobelt channel, thus affecting the ID of the SC SiNB FET devices.
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Figure 5. Schematic of protonation and deprotonation of the silicon nanobelt surface.

Figure 6a presents the ID of the SC SiNB FET device when infused with a buffer
solution of different pH values on the sensor surface. The pH values of the buffer solution
were increased from pH 6.40 to 7.39 with 0.2 in step, and the solution was maintained
at a 1X concentration. A buffer solution of pH 6.4 was infused into the detection region
by using a microfluidic channel and, after an approximate 50 s wait until the current
achieved equilibrium, the solution was expelled and a new solution of pH 6.6 was injected
immediately. The other buffer solutions with pH ranging from 6.8 to 7.39 were also infused
sequentially using the same procedure. Consistent with the n-channel MOS FET behavior,
the ID current decreased stepwise as the pH of the buffer solution increased. Figure 6b
depicts the current exhibiting linear dependence on the pH value of the buffer solution.
The devices responded linearly to the pH changes, and the pH sensitivity of the SiNB FET
sensor, extracted from Figure 6b, was approximately 10 nA/pH.
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Figure 6. (a) Drain current of the SiNB FET sensor under varying solution pH values ranging from
6.40 to 7.39. (b) Calibration curve of the drain current as a function of solution pH.

In addition to linear sensitivity, the stability of pH sensing of the SC SiNB FET sensor
was evaluated by repeatedly infusing the buffer solution to the sensor in a set cycle of
pH 6→8→6→4→8. Figure 7 describes the real-time response of the SiNB FET sensor in
different buffer solutions. The drain current remained at 13 nA when a pH 6 solution
was injected, and it decreased to 1.8 nA in response to a pH of 8. The current returned to
approximately 13 nA in a pH 6 buffer solution and then increased sharply when this was
replaced with a pH 4 solution. Finally, the current returned to the same level when pH 8
was infused to the sensor. The sensor maintained a stable current level at the same pH
value despite sensing the carrying pH of the buffer solutions. This result demonstrated
that the SC SiNB FET sensor is reliable for pH sensing.
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3.3. Effect of the Buffer Ion Concentration on the SC SiNB FET

The ion concentration of the buffer solution plays a crucial role in the sensitivity of
the SC SiNB FET biosensor. In an ionic solution, the species with positive or negative
charges induces an electrical double layer, and thus, the effective charge to the biosensor
is reduced [39]. A parameter describing the effective distance of the ionic solution to
influence the nanobelt carrier concentration, known as the Debye screening length (λD),
can be simplified as follows [40]:

λD = 0.32× (I)−1/2 (3)

where I is the ionic strength of the solution and is calculated as

I =
1
2

n

∑
i=1

cizi
2 (4)

where ci and zi are the concentration and charge of the ion species, respectively. The
equations indicate that the Debye length decreases with an increased ion concentration.

Figure 8 presents the drain current of the solution pH under different buffer solution
concentrations. The buffer solution was modulated to concentrations of 0.1X, 1X, and
10X, and the sensing response was recorded from pH 4 to 8 by using the SiNB FET sensor.
The Debye lengths of the buffer concentrations of 0.1X, 1X, and 10X were estimated to be
2.3, 0.7, and 0.2 nm, respectively. As illustrated in the figure, the sensing response was
strongly dependent on the ionic concentration of the buffer solution. The sensitivity of
the SC SiNB FET sensor at concentrations of 0.1X, 1X, and 10X was estimated to be 42.2,
10.8, and 7.9 nA/pH, respectively. Table 1 lists pH sensitivity comparison of the relevant
reported results using nanowire based FET sensors [41–45]. Sensitivity for pH sensing was
ranging from 42 mV/pH to 56 mV/pH because of the Nernst limit. Some works reported
that the sensitivity could be improved to exceed the Nernst limit by special structures such
as dual-gate operation. As real-time measurement is used for pH sensing in this study,
thus the best sensitivity is 42.2 nA/pH, which is around 57.2 mV/pH.
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Table 1. Comparison of pH sensitivity using nanowire based FET sensors.

pH Sensitivity Nanowire Materials Ref.

178 mV/pH Poly-Si nanowire [41]
56.3 mV/pH (single gate)

143.7 mV/pH (double gate) Si nanowire [42]

55.8 mV/pH Si nanowire [43]
42 mV/pH Si nanowire [44]

48.34 mV/pH CuO [45]
42.2 nA/pH (for 0.1X buffer) Si nanowire Our work

3.4. Real-Time Detection of AFP at Various Buffer Concentrations

To examine the effect of ionic concentration on the SC SiNB FET device for biomolecule
sensing, AFP was employed as the sensing target. AFP is a valuable indicator of hepatocel-
lular carcinoma (HCC), the most common cancer in Taiwan [46]. AFP concentration is a
powerful indicator in the assessment of HCC prognosis because the serum AFP concentra-
tion is markedly increased in patients with HCC [47]. We have detected AFP of various
concentrations by using the SC SiNB FET sensors [36]. The best sensitivity of this sensor,
which was obtained by biasing at a maximum of transconductance, was around 1.02, and
the detection limit was estimated to be 100 fg/mL. Figure 9 presents the real-time drain
current shift of the SC SiNB FET biosensor device when sensing 10 ng/mL AFP under
different buffer concentrations. The SiNB FET sensor without surface modification served
as a negative control in this experiment, and the current shift remained almost the same
under varying buffer concentrations (the black line). By contrast, for the biosensor with
APTES and GA surface modification, the drain current was strongly dependent on the
buffer concentration. At first, 10X PBS but without AFP was injected into the sensors to
measure the basic current. As presented in the figure, the difference of the current shift in-
creased with decreasing buffer concentration, even when the AFP concentration remained
the same (blue line). This result indicates that the Debye screening length is related to the
sensitivity of the SC SiNB FET sensor even at the same biomolecule target concentration.
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4. Conclusions

An SC SiNB FET was successfully fabricated for solution pH sensing. To enhance the
sensitivity of the sensor, a lateral oxidation technique was employed to reduce the width
of the silicon nanobelt from 350 to 150 nm. The pH detection results demonstrated that
the SiNB FET sensor exhibited a stepwise change and linearity for solutions from pH 6.4
to 7.4 and remained stable, returning to the same current level at the same pH value after
sensing different buffer solutions. The sensitivity of the SiNB FET sensor was dependent
on the Debye screening length of the buffer solution. When the Debye length decreased
and the ion concentration of the buffer increased, the sensitivity of the SiNB FET sensor
decreased. This finding was also demonstrated in the real-time detection of AFP antigen
by using the SiNB FET sensor. The obtained results indicated that the SC SiNB FET served
as a sensitive and reliable sensor platform for pH and biomolecule sensing.
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