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Abstract
Exceptionally well-preserved organic remains of thecamoebians (testate amoebae) were

preserved in marine sediments that straddle the greatest extinction event in the Phanero-

zoic: the Permian-Triassic Boundary. Outcrops from the Late Permian Zewan Formation

and the Early Triassic Khunamuh Formation are represented by a complete sedimentary

sequence at the Guryul Ravine Section in Kashmir, India, which is an archetypal Permian-

Triassic boundary sequence [1]. Previous biostratigraphic analysis provides chronological

control for the section, and a perspective of faunal turnover in the brachiopods, ammonoids,

bivalves, conodonts, gastropods and foraminifera. Thecamoebians were concentrated from

bulk sediments using palynological procedures, which isolated the organic constituents of

preserved thecamoebian tests. The recovered individuals demonstrate exceptional similar-

ity to the modern thecamoebian families Centropyxidae, Arcellidae, Hyalospheniidae and

Trigonopyxidae, however, the vast majority belong to the Centropyxidae. This study further

confirms the morphologic stability of the thecamoebian lineages through the Phanerozoic,

and most importantly, their apparent little response to an infamous biological crisis in Earth’s

history.

Introduction
The Permian-Triassic Boundary (PTB) extinction was a catastrophic event in Earth’s history,
where more than 90% of marine and 70% terrestrial life went extinct [2, 3]. Multiple studies have
examined the timing, nature and biogeographic extent of this extinction event, including the low
to middle palaeo-latitude sites in the Palaeotethys [4–13], part of Panthalassa around Japan [14],
and in the northern high latitudes [15–20]. However, the high southern palaeolatitude PTB
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successions have become a cynosure to study the extinction patterns of marine and non-marine
fauna [19, 21–27]. The Guryul Ravine PTB succession in the Kashmir Northwest Himalaya
belonged to the peri-Gondwanan region that covered the northern margin of Gondwana and the
southern margin of Palaeotethys/Neo-Tethys (Fig 1) (S1 Fig). Well-preserved marine [28–35]
elements have been recovered from this section, as well as some terrestrial [36] remains, which
provide an important biologic perspective of the PTB event (Fig 2).

Thecamoebians (testate amoebae) are eukaryotic heterotrophic protists that are polyphyletic
in origin, based on molecular RNA analysis [37]. In modern environments, they colonize fresh
to slightly brackish water aquatic environments (<4 psu) [38] and they form a simple secreted
(autogenous) or agglutinated (xenogenous) test (or shell) that can be preserved in the sedimen-
tary record following their death. Owing to their tight ecological zonation with respect to salin-
ity, pH, and moisture content, subfossil thecamoebian assemblages preserved in late Holocene
successions are used to reconstruct salinity [39, 40] and sea-level variations [41,42], precipita-
tion variability [43] and anthropogenic impacts on coastal and lacustrine environments
[44,45]. However, their pre-Quaternary fossil record is sparse, promoting some uncertainty in
our understanding on the evolution of important taxonomic lineages, and the group’s response
to critical environmental perturbations in Earth’s history.

The thecamoebian fossil record is currently dominated by Mesozoic observations [46–54],
with few in the Paleozoic and Tertiary [55–64] (Fig 3) (S2 Fig). The preservation of the theca-
moebians is like other organic-based microfossil groups, where agglutinated test have a better
preservation potential than more fragile autogenous test [46]. Some of the better-preserved fos-
sil thecamoebian assemblages have been recovered from both lacustrine and eustuarine succes-
sions that are nearly identical to modern forms [46,55,65,66], which suggests little
morphologic variability in the group over the Phanerozoic [47–49,50,56,57, 65–69] (S2 Fig).
The oldest fossil record of the thecamoebians is from the Neoproterozoic [65,70] with accounts

Fig 1. Palaeoposition of the Guryul Ravine Section in the northern peri-gondwanan region during the P-T transition (after Shen et al., 2006; base
map after Ziegler et al., 1997 under a CC BY license (3606870471810); with permission from [Elsevier], original copyright year- 2006).

doi:10.1371/journal.pone.0135593.g001
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Fig 2. Permian Triassic Boundary (PTB) study section at Guryul Ravine, Kashmir (after Kapoor 1996) Red Triangles pointing to the levels of
reported occurrence of thecamoebians along with previously studied faunal elements. Conodont biozones after Algeo et al., 2007. PTB- Permian-
Triassic boundary; LPME- Late Permian Mass Extinction. Occurrence of thecamoebians.

doi:10.1371/journal.pone.0135593.g002
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also available from the Carboniferous [71]. Early Permian thecamoebians from the Tethys
Himalaya are presented by Kumar et al. [66], and Late Permian thecamoebians have recently
been recorded from the Raniganj Formation of the Godavari Graben [68]. Thus far, the theca-
moebian fossil record is represented by eleven modern families: Arcellidae, Centropyxidae, Pla-
giopyxidae, Difflugidae, Hyalophenidae, Phyrganellidae, Euglyphidae, Cyphoderiidae,
Amphitremidae, Trigonopyxidae and Trinematidae [46, 66, 69].

This paper presents the first account of the thecamoebians straddling the PT Boundary at
the Guryul Ravine PTB Section in India, and the only one record of Late Permian thecamoe-
bians from the Northwest Himalayan region of Jammu and Kashmir. These results provide
direct evidence for the successful crossing of the thecamoebian (testate amoebae) group across
the PT Boundary extinction event.

Geological Setting
The Guryul Ravine Section lies in the northernmost Indian state of Kashmir [72] (Fig 4), the
geology of which has been extensively reviewed by by Nakazawa et al. [27], Kapoor [1] and
Tewari et al [36]. During the Late Permian and Early Triassic, the Kashmir region of the Indian
sub-continent was located in northern Gondwana, at 35°S palaeolatitude along the southern mar-
gin of the Tethys Sea [73,74]. The depositional setting of the Late Permian Zewan Formation was
a shallow marine environment with relatively high terrigenous sediment supply, whereas the
Early Triassic Khunamuh Formation was deposited during a transgressive episode [74]. Marine
sediments of the Guryul Ravine accumulated above pre-existing volcanic rocks [1]. Isotopic evi-
dence of Proemse et al., 2013 [75] indicates relatively oxic conditions in the shallowmarine
regions of the Northwest margin of Pangea throughout the Late Permian Mass Extinction
(LPME). However, the organic carbon flux study of Algeo et al., 2013 [76], and others [74,77] on
the PTB sections have suggested that the well-oxygenated conditions were briefly interrupted by
periods of anoxia in the Late Permian-Early Triassic shallowmarine environments. The Guryul
Ravine Section represents a continuous gradational sequence across the PT Boundary, whereas
depositional hiatuses present in other Kumaon and Spiti Himalayas sections preclude a continu-
ous record of paleoenvironmental changes during the PT Boundary Event. Our study of organic
matter at the Guryul Section [36], reveals the prevalence of amorphous organic matter (AOM),
which perhaps suggests a regional prevalence of anoxic conditions.

Fig 3. Thecamoebian fossil record of the families Arcellidae and Centropyxidae Thecamoebians preserved in sediments noted by a circle,
whereas thecamoebians preserved in amber are noted by a triangle. The basal part of the figure depicting ecology of the generaCentropyxis and Arcella
through time has been modified in the light of this study and other published data. (a) Wolf, 1995; (b) Kumar et al., 2011; (c) Farooqui et al., 2014; (d)
Wightmann et al., 1994; (e) Medioli et al., 1990a; (f) Schönborn et al., 1999; (g) Poinar et al., 1993; (h) Schmidt et al., 2004;(i) Waggoner, 1996b; (j) van
Hengstum et al., 2007; (k) Porter and Knoll, 2000 and (*) denotes this study. The geological time axis is not to scale. The figure has been modified after van
Hengstum et al. 2007 (with written permission from the original author van Hengstum).

doi:10.1371/journal.pone.0135593.g003
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Stratigraphically, both the Zewan and Khunmuh Formations have been further sub-divided
into members and units, respectively, based on lithological and paleontological characteristics.
The Zewan Formation is divided into four Members (A-D) [1] (Fig 2). Carbonate rocks and
sandy shale comprise Member A, Member B is shale with low carbonate content, Member C is
thick bedded sandy limestone, sandy shale and muddy sandstone, and Member D is calcareous
muddy sandstone. Only Members A, C and D are rich in marine fossils. An abrupt change in
sedimentation to intercalated grey to black limestone and black shale demarcates the onset of
the Khunamuh Formation. This Formation is divided in to six members E-J (Fig 2), with the
lower units in Member E marking the PT Boundary Event. Member E is sub-divided into Units
E1, E2 and E3. The Unit E1 contains mixed faunal elements of Late Permian and Early Triassic
age. The PT Boundary has been placed at the base of the conodont Hindeodus parvus zone at
the contact of E1 and E2 (Fig 2).

Pioneering faunal work at the Guryul Ravine PTB Section was carried out by [28], who
identified four faunal divisions: I to III in the Zewan Formation (Late Permian) and IV in the
Unit E1 of the Khunamuh Formation (Early Triassic) (Fig 2). The faunal divisions I and II cor-
respond to the units A and B, respectively, and contain bryozoans, brachiopods and foramini-
fers. The faunal diversity of division II is less than that of division I. The faunal division III is

Fig 4. Location and geological map of the study area also depicting geological section of Guryul Ravine and the recovered thecamoebians
(modified after Bhat and Bhat, 1997).

doi:10.1371/journal.pone.0135593.g004
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displayed by the litho units C and D and shows the dominance of gastropods and bivalves over
brachiopods. The faunal division IV is displayed by bivalves and ammonoids. Brachiopods,
bivalves and conodonts have also been recovered from this faunal division, which provide
chronological control for the section (Fig 2).

Material and Methods
This study is a part of Birbal Sahni Institute of Palaeobotany (BSIP) Project Number 2.3 enti-
tled “Mega- and microfloristics of the Permo-Carboniferous sediments of Kashmir region:
Evolutionary, biostratigraphical, palaeoecological and palaeophytogeographical implications”
under Thrust Area 2—“Phanerozoic Terrestrial and Coastal Ecosystems: Biostratigraphical,
Palaeoenvironmental, Palaeoecological And Palaeobiogeographical Aspects”. All necessary
permits were obtained from the Director, BSIP for the field visit and the described study, which
comply with all relevant regulations.

A total of nine bulk sediment samples (GR1 to GR9) were collected from C and D members
of Zewan Formation and E Member of Khunamuh Formation (Fig 2), which were processed-
following the palynological procedure used by Kumar et al, [66]. Samples were first treated
with 30% hydrochloric acid followed by wet sieving on a 20 μm-mesh to concentrate microfos-
sils, with the recovered residue mounted on slides with canada balsam. Prepared slides were
then studied under a high power light Microscope Leitz Laborlux D to study morphological
features of the recovered thecamoebian tests.

The absolute abundance of the number of recovered forms of different species has also been
studied (Fig 5). Morphological data of all the examined individuals has been given in tabular
form. (Table 1). The slides are deposited in the repository of the Birbal Sahni Institute of
Palaeobotany, Lucknow (www.bsip.res.in/Museum.html) vide museum statement no. 1354.
The museum accession numbers of the slides are 14869, 14971–14976 and 14881. Existing

Fig 5. Relative abundance of recovered thecamoebians showing high diversity within the genera Centropyxis. Unit E2 displays maximum diversity.
The scale represents number of forms present.

doi:10.1371/journal.pone.0135593.g005
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taxonomic guides fromMedioli et al. [78–80], Smirnov et al. [81] and Ogden and Hedley [82]
were followed for thecamoebian identification.

Results and Systematics
A total of 24 thecamoebians were recovered from the Guryul Ravine Section, most of which
can be confidently assigned to the modern genera Centropyxis, Arcella, Cucurbitella, and Cyclo-
pyxis. From the Zewan Formation in the Late Permian (C Member, Sample GR-2 on Fig 2),
Centropyxis aculeata, C. aculeata var. spinosa and Centropyxis aculeata var. discoides were
recovered. The Centropyxis aculeata tests preserved in the Member C show very less Brown
Degraded Organic Matter (BDOM). In the Early Triassic Khunamuh Formation, thecamoe-
bians were recovered fromMember E in the Units E2 (Sample GR-8) and E3 (Sample GR-9).
In E2, Centropyxis aculeata, Centropyxis aculeata var. spinosa, Centropyxis aculeata var. dis-
coides, forms belonging to Centropyxis constricta-complex, Centropyxis Stein 1857, Centro-
pyxis platystoma, Cucurbitella tricuspis, Cyclopyxis eurystoma and an unidentified individual
from Unit E2. Arcella and centropyxids were recovered from the Unit E3 Unit of the Khuna-
muh Formation. The thecamoebian forms preserved in the Unit E2 and E3 show fairly large
amount of BDOM. Similarly, our sedimentary dispersed organic matter study of the GR section
shows very low BDOM content in the Member C as compared to the Units E2 and E3 having

Table 1. A list of examined thecamoebian forms and their morphological details. The morphological features (hypostome shape and dimensions, num-
ber of visible spines) have been subjected to post-depositional compression and compaction and are thus incomparable to the recent forms. All the morpho-
metric measurements are in μm.

Examined Specimen (Position in
the Figs)

Shell
Length

Maximum Shell
width

Pseudostome length of long axis,
short axis

Spines

1. Centropyxis. aculeata var. spinosa
(7 A)

90 90 33 4 visible

2. C. aculeata var. discoides (7 J,K,L) 104 100 44,33 3 visible: 1 complete, 2 broken

3. C. aculeata var. spinosa (7 E) 120 102 37 4 visible: 3 complete, 1 broken

4. C. aculeata var. spinosa (8 A,B) 117 120 50,29 3 visible: 1 not clear

5. C. aculeata var. spinosa (7 B,C) 90 85 36,30 3 visible

6. C. aculeata var. Spinosa (7 D) 140 147 64,50 9–10 visible

7. C. aculeata var. Spinosa (7 F) 130 120 45,32 4 visible

8. Cucurbitella tricuspis (6 C) 56 56 19 Absent

9. C. aerophila (6 E,F) 60 60 25,20 Absent

10. C. aerophila (6 G) 55 50 22,13 Absent

11. Centropyxis platystoma (6 A,B) 87 45 30 Absent

12. Centropyxis aculeata (8 C,D) 114 114 53,21 3 broken

13 C. aculeata (8 G,H) 85 85 26,19 4–5: Not clearly visible

14. C. aculeata (8 E,F) 120 109 40,30 4–5:

15. C. aculeata (8 I,J) 96 90 38,23 5

16. C. aculeata (8 K,L) 138 98 47,50 4

17. C. aculeata var. discoides (7 G,H) 112 109 40 1 visible

19. C. aculeata var. discoides (7 I) 111 120 46 1 broken

20.Cyclopyxis eurystoma (6 H,I) 37 37 19 Not clearly visible

21.Centropyxis Stein, 1857 (6 D) 61 53 27,21 1 broken

22. Centropyxis sp. 54 54 20,14 Absent

23. Arcella (6 J) 80 80 16 Pores are visible around the
aperture

24. Unidentified 37 37 2 apertures diameter 15, 20

doi:10.1371/journal.pone.0135593.t001
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relatively high BDOM [36]. In the Early Triassic Khunamuh Formation, occurrence of theca-
moebians in the Unit E3 is relatively low in comparison to the Member C and Unit E2. One
form that appears to have two apertures remains unidentified (incertae sedis) (Fig 6K and 6L),
which may or may not be an artifact of taphonomic processes. The recovered thecamoebians
can be organized into the following systematics:

Phylum Amoebozoa [83]
Subphylum Lobosa [84,85]
Class Tubulinea [86,87]
Order Arcellinida [88]

Family Arcellidae [89]
Genus Arcella [89] (Fig 6J)

Family Centropyxidae [90]
Genus Centropyxis [91]
Centropyxis [91] (Fig 6D)
Centropyxis aculeata [92] (Fig 7C–7L)
Centropyxis aerophila-complex [93] (Fig 6E–6G)
Centropyxis aculeata var. discoides [94] (Fig 8G–8L)
Centropyxis aculeata var. spinosa (Fig 8A–8F; Fig 7A and 7B)

Family Hyalospheniidae [95]
Genus Cucurbitella, [96]
Cucurbitella tricuspis [97] (Fig 6C)

Family Trigonopyxidae [98]
Genus Cyclopyxis
Cyclopyxis eurystoma [98] (Fig 6H and 6I)

Discussion
Despite the overall low recovery of fossil thecamoebians from the Guryul Ravine Section, their
recovery at such a critical environmental transition has significant taxonomic and ecological
implications. Many of the preserved individuals are intact organic linings as a result of the paly-
nological preparation procedures, and like individuals preserved inMesozoic amber, allows for
an examination of the autogenous (or secreted) mucopolysaccharide test structure. In contrast,
other fossil thecamoebians that are typically sieved from bulk sediments, preferentially congregate
individuals with agglutinated (or xenogenous) test and damaging many of the organic structures.
Structures like inner shell lining, apertural bridges, and also test ornamentation (i.e., spines on the
fundus) are all evidenced in the collection from the Guryul Ravine Section (Figs 6–8). In addition,
pores around the periphery of the aperture in the autogenous test of Arcella are not commonly
preserved in fossil Paleozoic thecamoebians. However, they have been documented in Permian
examples by Kumar et al. [66] and Farooqui et al. [68] (Fig 6J). Such test characteristics are easily
observed in the modern thecamoebian lineages and yet rarely observed in fossil examples.

The most significant result of this study is providing direct evidence that very common the-
camoebian genera successfully crossed the PT Boundary (e.g., Centropyxis and Arcella). Previ-
ously, this could be inferred based on their preservation in both Late Paleozoic and Mesozoic
amber deposits, but the Guryul Ravine Section provides individuals on other side of the
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Fig 6. A,B.Centropyxis platystoma (Penard, 1890) Elongated shell, apertural view, 3- shows inner linning of the test, slide no. 14974. C.
Cucurbitella tricuspis (Y53/4), slide no.14974. D.Centropyxis Stein, 1857, (Q40/3), test agglutinated and small in size, silde no.14881. E-G.
Centropyxis aerophila-complex Foissner and Korganova, 2000 (E,F: S11/4; 7: E35/4), E,F- apertural and dorsal view, respectively, G- apertural
view, slide nos. (E,F) 14976, (G) 14973. H,I. Cyclopyxis eurystoma (Deflandre, 1929) (R15/3) H-Ventral view and I-dorsal view, test is small in size,
slide no. 14976. J. Arcella Ehrenberg, 1832 (T63/4), slide no.14971. K,L. Incertae sedis (U18/2), test shows two apertures, K-aperture one, L-
aperture two, test small in size, slide no. 14976.

doi:10.1371/journal.pone.0135593.g006
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boundary at the same paleogeographic locale. These observations attest to the resiliency of the
thecamoebian group to global climatic events through the Phanerozoic.

An important omission in this collection is the lack of Difflugia preserved in the Guryul
Ravine Section. Many specimens comprise the genus Difflugia, which are abundant in late
Holocene freshwater environments. It is possible that taphonomic issues prevented their pres-
ervation, but this seems unlikely given the preservation of more fragile autogenous Arcella
tests. In other fossil thecamoebian collections that have been sieved out of bulk sedimentary
samples, individuals of Difflugia have been more common than Centropyxis [46]. It is possible
that this generic bias is related to sample processing techniques (sieving vs. chemical palyno-
logical processing).

In general, there are very few studies on thecamoebians from deep-time sequences. The ear-
liest record of thecamoebians is likely from Neoproterozoic marine sediments of Chuar group,
Grand Canyon, which were originally described as Vase Shaped Microfossils (VSM’s) [65].
Since modern thecamoebians are not found in marine settings, this perhaps suggests a marine
origin for the group with their ecological shift to lacutrine or brackish environments in the
Early to Middle Paleozoic. During the Carboniferous when land plants greatly diversified and
formed widespread swamp depositional environments, thecamoebians were preserved in the
resultant organic-rich coal deposits now presently located in Nova Scotia, Canada [99, 69, 56].
The recovered fossil thecamoebians from the PT Boundary at the Guryul Ravine Section can
be interpreted in one of two ways. The thecamoebians were transported to the locality along
with other terrigenous material from the adjacent coastal zone, or perhaps they represent an in
situ or primary assemblage. The implications of the later interpretation would be that some
members of the thecamoebian group also occupied marine habitats in some capacity through
the entirety of the Paleozoic. For example, the two Late Permian occurrences of Centropyxis,
one from the fresh water sediments of the Raniganj Formation, Godavari Graben [68] and the
other from the marine sediments of Zewan Formation (this study) suggest that the genus occu-
pied both fresh water as well as marine environments during this time. Similarly, the genus
Arcella has been reported from Carboniferous freshwater coals [56] and from the Late Permian
sediments of Raniganj Formation at Lingala-Koyagudam coal belt, Godavari graben [68],
whereas this study presents the occurrence of Arcella from the marine Early Triassic Unit E3. If
indeed thecamoebians occupied marine environments throughout the Paleozoic, however, it
remains puzzling why more occurrences of marine thecamoebians have not been reported in
the global palynological surveys of Paleozoic marine sediments. Therefore, it remains impor-
tant to continue documenting fossil thecamoebians to accurately resolve their Paleozoic paleo-
ecological tolerance to salinity and evolutionary history.

Another important observation based on this PT Boundary collection is the variability in
the absolute number of spines ornamented onto the tests in the species Centropyxis. The taxon-
omy of these species remains complex, in part because of the intragradational character in the
external morphology of many thecamoebian species [100,101]. Some authors consider dividing
this genus into species based on the absolute number of spines ornamenting the test or their
geometric orientation [102,103]. Most thecamoebian workers agree with the notion of consid-
erable phentoypic plasticity in the Centropyxis genus, and recognize that the most important
variability for paleoecologic work is taxonomic consistency. Here, the recovered centropyxids

Fig 7. (A, B)Centropyxis aculeata var. spinosa, (H20/2), A- apertural view (lobate aperture), B- Dorsal view showing spines on the folded dorsal
surface, slide no. 14976. C, D.Centropyxis aculeata (R36/3), C- dorsal view showing broken spines at the margin, D- apertural view shows ventral
margin of the aperture connected to the dorsal face by bridges (shown by arrows) slide no.14869. E-L,Centropyxis aculeata (E,F: Q22/3; G,H: P31/
4; I,J: R41/2; K,L: N18/2) (E,G,I, K apertural views; F, H, J, L dorsal views showing spines), test covered with sand grains and BDOM from the
vicinity, sand grains impart grey colour to the tests, slide nos.(E,F) 14975, (G,H) 14869, (I,J) 14975, (K,L) 14972. Scale bar: 20 μm.

doi:10.1371/journal.pone.0135593.g007
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are also phenotypically diverse, with multiple numbers of spines that we divide into morpho-
types, or variants, based on the absolute number of spines. For example, the diagnosis of Cen-
tropyxis aculeata var. spinosa includes an individual with>3 spines ornamenting the posterior
of the test [103]. The ability to discern such taxonomic detail is remarkable given the age of the
specimens, and indicates that phenotypic plasticity in the number of spines is a long-lived char-
acteristic in this genus. Even in modern thecamoebians, however, the functional ecology of this
test ornamentation remains unknown.

Conclusions
This study documents exceptionally well-preserved thecamoebians across the PT Boundary
event from the Guryul Ravine Section in Kashmir, India. The site was paleogeographically situ-
ated at the northern margin of Gondwana, and the recovered thecamoebians are from the Late
Permian Zewan and the Early Triassic Khunamuh Formations. The Guryul Ravine Section is
an archetypal PT Boundary sequence, and the thecamoebians provide an additional faunal sig-
nature to the previously documented foraminifera, brachiopods, bivalves, ammonoids and
conodonts. The recovery and preservation of the thecamoebians from the Guryul Ravine Sec-
tion is not only new to this section but for any PTB section worldwide. The preservation of
these fragile microfossils was likely enhanced by punctuated local or regional anoxic/dysoxic
conditions, which are evinced by the presence of amorphous organic matter in this section
[36]. Even the intraspecific variability within the Centropyxis genera could be observed in the
recovered individuals. Thecamoebians have a poorly resolved fossil record, but the results pre-
sented here confidently indicate that some of the most common modern thecamoebian genera
successfully transitioned across the PT Boundary extinction event with apparently little eco-
logic challenge.
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