
viruses

Commentary

External Quality Assessment for Next-Generation
Sequencing-Based HIV Drug Resistance Testing:
Unique Requirements and Challenges

Emma R. Lee 1, Feng Gao 2 , Paul Sandstrom 1,3 and Hezhao Ji 1,3,*
1 National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious

Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
emmar.lee@canada.ca (E.R.L.); paul.sandstrom@canada.ca (P.S.)

2 Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; feng.gao@duke.edu
3 Department of Medical Microbiology and Infectious Diseases, University of Manitoba,

Winnipeg, MB R3E 0J9, Canada
* Correspondence: hezhao.ji@canada.ca; Tel.: +1-204-789-6521

Received: 21 April 2020; Accepted: 14 May 2020; Published: 16 May 2020
����������
�������

Abstract: Over the past decade, there has been an increase in the adoption of next generation
sequencing (NGS) technologies for HIV drug resistance (HIVDR) testing. NGS far outweighs
conventional Sanger sequencing as it has much higher throughput, lower cost when samples are
batched and, most importantly, significantly higher sensitivities for variants present at low frequencies,
which may have significant clinical implications. Despite the advantages of NGS, Sanger sequencing
remains the gold standard for HIVDR testing, largely due to the lack of standardization of NGS-based
HIVDR testing. One important aspect of standardization includes external quality assessment
(EQA) strategies and programs. Current EQA for Sanger-based HIVDR testing includes proficiency
testing where samples are sent to labs and the performance of the lab conducting such assays is
evaluated. The current methods for Sanger-based EQA may not apply to NGS-based tests because
of the fundamental differences in their technologies and outputs. Sanger-based genotyping reports
drug resistance mutations (DRMs) data as dichotomous, whereas NGS-based HIVDR genotyping
also reports DRMs as numerical data (percent abundance). Here we present an overview of the need
to develop EQA for NGS-based HIVDR testing and some unique challenges that may be encountered.

Keywords: external quality assessment; next-generation sequencing; HIV; drug resistance testing;
minority resistance variants

1. Introduction

Next-generation sequencing (NGS) or high throughput sequencing has revolutionized DNA
sequencing methodology. This technology performs massive parallel sequencing of individual input
templates which generates incredible amounts of data per run [1,2]. In comparison, conventional
Sanger sequencing (SS) methods produce only a single consensus sequence per specimen, which
represents the dominant genotypes in the test sample (Table 1). The main advantage of NGS over SS is
its high sensitivity. In HIV drug resistance (HIVDR) genotyping, NGS could detect drug-resistance
mutations (DRMs) present at frequencies below 20%, also known as minority resistance variants
(MRVs), which are mostly undetectable by SS methods [1,3,4]. There is increasing evidence showing
that the presence of MRVs may be clinically relevant since they are associated with an increase in the
risk of treatment failure in patients who carry MRVs to the administered antiretroviral drugs [5–11].
As more labs are implementing NGS as the preferred platform for HIVDR genotyping, the need to
develop appropriate external quality assessment (EQA) strategies suitable for such assays is urgent.
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Table 1. Comparison of Sanger and next-generation sequencing (NGS)-based HIV drug resistance
(HIVDR) assays.

Item Sanger Sequencing NGS

Extraction Required Required
RT-PCR Required Required
PCR Required Required
Specific sequencing primers Multiple specific primers Not required
Library preparation Not required Required
Sequencing reaction Single reaction Massive parallel clonal sequencing
Data output One sequence per sample Thousands of sequences per sample
DRM frequency detection
threshold ~20% ~1%

Qualitative DRM detection Enabled Enabled
Quantitative DRM detection Not applicable Enabled

As with all other molecular clinical laboratory tests, NGS-based HIVDR assays must implement
quality management systems to ensure high-quality test results [12–16]. When a lab starts a new
clinical test, the test must be validated with quality assurance measures before the test can be
administered for patient care purposes (Figure 1). Generally, a lab can use a commercial kit that has
been approved by an appropriate regulatory agency (e.g., FDA), where performance specifications
have been validated by the manufacturer. Alternatively, if no commercial options are available, the
lab can independently develop its own test, specifically termed “Laboratory Developed Tests” (LDT),
or sometimes referred to as “home-brew” or “in-house” tests. There are several considerations involved
in LDTs, including target selection and data analysis approaches that are subjected to regulatory bodies
such as Clinical and Laboratory Improvement Amendments (CLIA) and Clinical and Laboratory
Standards Institute (CSLI) [17–19]. The assay must be validated by assessing multiple operational
characteristics including accuracy, precision, analytical sensitivity, analytical specificity, robustness,
reportable range and reference range [20]. Once the assay is validated and implemented, performance
monitoring needs to be conducted regularly to ensure that the test continues to meet performance
specifications. Performance monitoring includes internal and external quality controls, as well as
participation in an EQA program [14,20].

EQA programs establish the comparison of assay performance amongst different participating
labs, helping to identify analytical or interpretive errors, flag areas that need improvement, and identify
training needs. EQA program uses methods such as proficiency testing (PT), re-testing, and on-site
evaluation to check a lab’s assay performance conducted by a third party agency [16]. PT is the most
commonly applied EQA approach for biomedical assays such as HIVDR testing. With a PT-oriented
EQA program, participant labs receive blind-coded samples, process the samples as they would do for
clinical specimens, and then submit the results to the EQA administrator for performance assessments.
The EQA program then analyzes the performance data based on established criteria and returns a
summary to each lab, which describes results of how the lab compared with the peers [16,21].



Viruses 2020, 12, 550 3 of 12

Viruses 2020, 12, x FOR PEER REVIEW 3 of 12 

 

 

Figure 1. External quality assessment workflow for clinical tests (Adapted from 

https://euformatics.com/validation-for-ngs-based-clinical-tests/). 

2. Ongoing EQA is Critical for SS-Based HIVDR Genotyping 

Currently, PT testing for SS-based HIVDR genotyping is offered by several international 

agencies or programs including the Virology Quality Assurance (VQA) programs funded through 

the National Institute of Allergy and Infectious Diseases (NIAID) in the U.S.; the HIVDR Typing 

Proficiency Program through the Quality Control for Molecular Diagnostics (QCMD) in Europe; the 

Therapeutics, Research, Education, and AIDS Training (TREAT) Asia Quality Assessment Scheme 

(TAQAS) in Asia; and the Japanese external quality assessment program (JESQ) in Japan [22–25]. 

Apart from JESQ which uses lyophilized in-vitro transcribed RNA as panel samples, other programs 

use clinical samples or viral isolates that have been well-characterized for viral load and DRMs using 

commercially available kits. 

The HIVDR genotyping assay is a complex multi-procedural process involving both sample 

processing in the lab and subsequent data analysis using sophisticated bioinformatics tools. All 

available EQA programs allow labs to perform their LDTs as well as the use of commercially available 

kits such as ViroSeqTM and TRUGENE TM HIV-1 genotyping systems. Sanger sequences are 

analyzed using specialized software such as RECall or others to create a consensus sequence for each 

PT specimen. The Stanford HIV Drug Resistance Database or International AIDS Society-USA (IAS-

USA) reference DRM list is then used for HIV DRM identification and clinical interpretation [26–28]. 

At present, most laboratories submit the Sanger sequences (in FASTA format), the HIV DRM reports 

and the specimen information report via web utility. The data is then compiled and assessed against 

the peers and proficiency scores for each lab are then determined. 

Typically, the EQA program would create a consensus sequence for each PT specimen based on 

the alignment of all submitted sequences derived from it using similar assays (LDTs or specific 

commercial assay). For instance, the VQA program requires an ≥ 80% absolute nucleotide agreement 

for the consensus sequence construction [22]. The QCMD from Europe creates a consensus based on 

the observations from ≥ 60% of the sequences [23], whereas TAQAS from Asia uses a ≥ 70% threshold 

[24]. Once constructed, the consensus sequences will then be taken as the reference against which the 

quality of the sequence submissions from individual labs will be assessed. Proficiency scores are 

calculated generally based on the number of disagreements from the consensus or reference 

sequence. Labs are also scored on their ability to detect HIV DRMs identified by the majority or 
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2. Ongoing EQA is Critical for SS-Based HIVDR Genotyping

Currently, PT testing for SS-based HIVDR genotyping is offered by several international agencies
or programs including the Virology Quality Assurance (VQA) programs funded through the National
Institute of Allergy and Infectious Diseases (NIAID) in the U.S.; the HIVDR Typing Proficiency Program
through the Quality Control for Molecular Diagnostics (QCMD) in Europe; the Therapeutics, Research,
Education, and AIDS Training (TREAT) Asia Quality Assessment Scheme (TAQAS) in Asia; and the
Japanese external quality assessment program (JESQ) in Japan [22–25]. Apart from JESQ which uses
lyophilized in-vitro transcribed RNA as panel samples, other programs use clinical samples or viral
isolates that have been well-characterized for viral load and DRMs using commercially available kits.

The HIVDR genotyping assay is a complex multi-procedural process involving both sample
processing in the lab and subsequent data analysis using sophisticated bioinformatics tools. All available
EQA programs allow labs to perform their LDTs as well as the use of commercially available kits such
as ViroSeqTM and TRUGENE TM HIV-1 genotyping systems. Sanger sequences are analyzed using
specialized software such as RECall or others to create a consensus sequence for each PT specimen.
The Stanford HIV Drug Resistance Database or International AIDS Society-USA (IAS-USA) reference
DRM list is then used for HIV DRM identification and clinical interpretation [26–28]. At present, most
laboratories submit the Sanger sequences (in FASTA format), the HIV DRM reports and the specimen
information report via web utility. The data is then compiled and assessed against the peers and
proficiency scores for each lab are then determined.

Typically, the EQA program would create a consensus sequence for each PT specimen based
on the alignment of all submitted sequences derived from it using similar assays (LDTs or specific
commercial assay). For instance, the VQA program requires an ≥ 80% absolute nucleotide agreement
for the consensus sequence construction [22]. The QCMD from Europe creates a consensus based on the
observations from ≥ 60% of the sequences [23], whereas TAQAS from Asia uses a ≥ 70% threshold [24].
Once constructed, the consensus sequences will then be taken as the reference against which the quality
of the sequence submissions from individual labs will be assessed. Proficiency scores are calculated
generally based on the number of disagreements from the consensus or reference sequence. Labs are
also scored on their ability to detect HIV DRMs identified by the majority or reference sequence.

https://euformatics.com/validation-for-ngs-based-clinical-tests/
https://euformatics.com/validation-for-ngs-based-clinical-tests/
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Each participant lab then receives an assessment report that includes sequence alignments, homology
tables, mutation outputs and total scores [22–25,29].

3. The Development of EQA for NGS-Based HIVDR is Essential

As described above, SS-based HIVDR assays have been widely applied for decades with
well-defined EQA strategies in place and many sophisticated EQA programs currently in operation.
In contrast, implementation of NGS-based HIVDR testing in clinical HIVDR monitoring is still in its
infancy, although such technologies have been broadly applied in the research settings since 2007 [30,31].
Through years of research and development efforts, many NGS HIVDR assay protocols with proven
performance have been established for effective sample processing, and some bioinformatics pipelines
have also become readily available for general end-users [32–35]. Besides these LDTs, the Vela
Sentosa®SQ HIV-1 Genotyping platform has been approved as the first commercial NGS assay
for clinical HIVDR typing by regulatory agencies, including the U.S. Food & Drug Administration.
Despite these, the EQA component that helps to ensure consistency and high-quality results is still
missing for NGS-based HIVDR assays.

It is acknowledged that several recommendations have been made for standardizing NGS-based
clinical tests [2,12–15,36,37]. However, none of these guidelines are specific for NGS assays targeting
viral pathogens with significant intra-host diversity. Some effort had been made to conduct EQA on
NGS HIVDR assays using the consensus sequences derived from the NGS reads, to approximate SS
outputs, by employing the existing PT panels and EQA strategies originally designed for SS-based
HIVDR assays [38]. This approach may serve as a transitional resolution for EQA on NGS HIVDR tests.
However, it oversimplifies the complexity and richness of NGS HIVDR data when millions of NGS
reads are taken into account in the quantitative assessment. Fully validated EQA strategies specific to
NGS-based HIVDR testing remain to be established.

4. EQA for NGS-Based HIVDR Assays: Unique Requirements and Challenges

The rapid replication of HIV and the lack of HIV reverse transcription proofreading machinery
results in a high mutation rate and highly diversified viral populations or “quasispecies” within a host.
Thus, there is a high genetic variability of HIV viruses that already exist among the infected subjects.
Consequently, because the HIVDR genotyping assay needs to analyze such a complex, heterogeneous
viral population, it will not be as straightforward as sequencing prokaryotic and eukaryotic genomes
which have significantly less genetic variation. NGS enables analysis of individual HIV genomes in
a quasispecies population with high resolution. However, the high volume and complexity of NGS
data further convolute the EQA effort that aims to operationalize NGS HIVDR assays for clinical
applications. Some unique requirements and challenges in EQA development for NGS-based HIVDR
assays are highlighted below.

4.1. PT Panel Design for NGS-Based HIVDR Testing

PT, as part of EQA for NGS-based HIVDR testing, is imperative for the validation of such assays.
The panel composition for current SS-based EQA programs is plasma, serum or dried blood spots
consisting of donor specimens, clinical isolates or infectious molecular clones [22–24,39], as well as
lyophilized in-vitro transcribed RNA as panel samples [25]. Similar sample types could be adapted for
NGS-based proficiency panels which are well quantitatively characterized for the relative abundance
of DRMs found in each sample.

Table 2 summarizes some PT sample options for NGS-based HIVDR assays and their advantages
and disadvantages when being utilized for EQA purposes. The use of various infectious molecular
clones (IMC) that have defined DRMs could be mixed at different ratios to generate DRMs at different
frequencies. The mixed IMC could be accurately characterized by single genome sequencing [40] or
by parallel allele-specific sequencing [41]. One of the challenges in using IMC is that spontaneous
mutations may be introduced during propagation [42], although such mutations are generally rare
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and random [43]. The use of plasmid mixtures harboring well-characterized DRMs holds the most
promise, where true frequencies of HIV DRMs would be consistent. Although not a true clinical
sample, plasmids and plasmid mixtures with confirmed ratios could be established and used as
reference materials for detecting DRMs with varied abundance, particularly at lower frequencies,
and for monitoring systematic error [32,44]. Alternatively, in vitro transcription of viral RNA from
a construct that contains a T7 promoter could be used to generate bulk RNA templates for use as
reference materials, similar to those used in the JEQS program [25,45–47]. These templates could
be spiked into appropriate mediums such as plasma, serum or blood. Theoretically, the transcripts
would be clonal with low error due to the T7 RNA polymerase (nucleotide substitution error rate at
10−4–10−5) [48,49]. The templates could be characterized with NGS and the consensus could be used as
the reference material sequence. Deviations from the reference material sequence would be interpreted
as RT-PCR/PCR error, PCR bias and sequencing error [3,50].

Table 2. Sample suggestions for proficiency testing (PT) panels for NGS-based HIVDR testing.

Sample Type Advantages Disadvantages

Donor Specimens (plasma, serum, DBS)

Real specimens Unpredictable DRMs
Quasispecies population* Unknown DRM frequency

Limited supply
Complicated and expensive to acquire

Clinical Viral Isolates

Quasispecies population Unpredictable DRMs
Known DRMs Unknown DRM frequency
Unlimited amount Viral culture required
Reusable Expensive and complicated to prepare

Minor DRMs may arise during
viral culture

Infectious Molecular Clones

Culture of clone-derived isolates Homogenous population with defined
DRMs

Clone mixtures can be produced Viral culture required

Abundant Supply Minor DRMs may arise during
viral culture

Known DRMs
Any DRMs in any genes
Any DRM frequency

Plasmids, Plasmid Mixtures,
Synthetic RNA

Known sequences Homogenous population

Known DRMs Plasmids are DNA-based and are
not suitable

Any DRMs in any genes for RNA related protocol validations
Any DRM frequency Plasmids underestimate PCR bias
Ideal for low-frequency DRMs
Ideal for NGS standard
Ideal for monitoring systematic error
Economical
Unlimited amount
Stable for storage and transportation

* Quasispecies refers to a swarm of highly related but genetically different viral variants that arise in a host during
replication [51].

One of the disadvantages of using IMC, plasmids and in vitro-generated RNA is that these sample
types are homogenous viral populations and do not represent authentic clinical specimens that usually
contain highly diversified HIV genomes. As a result, the use of such samples oversimplifies the
NGS-based HIVDR assay. Plasmids, because they are DNA-based, completely omit the RT-PCR step
found in the early steps of the assay. On the other hand, the use of traditional Sanger-based PT samples
which better represent clinical specimens are difficult to characterize, and the ground truth of the exact
frequencies of the DRMs they harbor may not be reliably determined. Therefore a careful combination
of real samples, plasmids, IMC and/or in vitro generated RNAs that contain DRMs of interest and at
known abundance may be required to assess the full scope of the NGS-based HIVDR assays.
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4.2. Data Collection for NGS-Based HIVDR Testing

The data collected from the participating labs are the only information source for all EQA programs.
In SS-based HIVDR EQA programs, laboratories are required to submit the consensus sequences, the
HIV DRM reports for the panel specimens and an assay summary or specimen information report.
The assay summary includes information about wet-lab methods such as extraction, RT-PCR, PCR,
sequencing protocols and software used to analyze sequencing data. While these satisfy all the EQA
needs for SS-based HIVDR assays, additional information is required for NGS-based HIVDR assays.
Some EQA data collection considerations are summarized in Figure 2.
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Figure 2. External quality assessment (EQA)/PT for NGS-based HIVDR testing: data collection
considerations. (UMI: unique molecular identifier; AAVF: amino acid variant file; AAV: amino acid variant).

The recommended data collections aim to facilitate an objective assessment of the lab’s capacity
and quality in performing NGS-based HIVDR assay by (1) gauging the initial HIV template input and
the subsequent sensitivity for HIV DRM detection it may enable (data from Step 1); (2) evaluating
how different NGS platforms may affect the final assay outcome (data from step 2); (3) assessing
NGS consensus sequences with specified minor allele identification threshold(s) (data from Step 3);
(4) assessing NGS-specific EQA data using quantitative HIVDR reports and comprehensive amino acid
variant files (AAVFs) or equivalent, which report all amino acid variants at all frequencies for each
specimen (data from Step 3) (Figure 2). Given the ultra-deep sequencing capabilities of NGS platforms,
theoretically, NGS-based HIVDR assays could detect all HIV amino acid variations at all frequencies
that are above the assay error rate. However, the assay sensitivity limit is ultimately determined by the
initial HIV viral input copies, therefore, collecting assay details from Step 1 is essential. The use of
unique molecular identifiers (UMIs) is highly recommended when possible, as UMIs can detect the
number of actual templates used in the initial RT-PCR reaction and can correct for PCR and sequencing
errors [52–54].

4.3. EQA: Data Assessment and Scoring Strategies for NGS-Based HIVDR Testing

In 2018, a joint project involving ten labs in Canada, USA, Mexico and Europe was conducted to
assess whether panels from the NIAID’s HIV VQA program could be used for NGS-based proficiency
testing [38]. Two panels, each containing five specimens (real donors or plasma spiked with clinical
viral isolates), at various viral loads ranging from 3656 to 29,139 copies/ml were distributed to the
participant labs and were processed using their independent LDTs for NGS-based HIVDR typing.
Consensus sequences derived from all labs using varied NGS platforms were collected at different
frequency thresholds specifically, 5%, 10%, 15% and 20% and were compared. Results from the sequence
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homology analysis which was assessed using the current VQA scoring methods showed high nucleotide
concordance at all examined thresholds [38]. To evaluate the DRM frequency readouts, raw NGS
reads (FASTQ files) from six of the ten labs were processed through the HyDRA pipeline [32], and
the HIV DRM reports derived from the NGS reads were compared (Table S1). Figure 3, which was
previously presented at XXVII International HIV Drug Resistance and Treatment Strategies Workshop
in Johannesburg, South Africa (October 2018), shows the DRM frequency readouts for all the DRMs
found in the two panels at a median threshold of 5%. The frequency of the DRMs widely fluctuates,
especially when their abundance was below 90% [55]. The volatility of the DRM frequency results
implies that innovative statistical scoring and assessment methods will have to be developed to assess
the NGS HIVDR assay outputs from different labs, especially when dealing with the following issues.
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Figure 3. Variation of HIV drug resistance mutations (DRM) frequencies derived from NGS-based
HIVDR assays. Six labs received two Virology Quality Assurance (VQA) panels (10 specimens in total)
and processed the samples using their own laboratory developed tests (LDT) for NGS-based HIVDR
typing. The NGS data (FASTQ files) derived from each of the six labs were analyzed using the HyDRA
pipeline [32]. This scatter plot shows the median and interquartile range for HIV DRM frequencies
between 1%–100% from each of the six labs. For certain DRMs, some labs did not detect the presence of
the DRM and were excluded from the analysis.

4.3.1. Inconsistencies in Detecting DRMs

The data shown in Figure 3 demonstrates that the DRM frequency outputs from each lab participant
are inconsistent. In most cases, all labs were able to detect the DRMs present in the VQA samples,
albeit at different frequencies. However, there were cases where one or two labs could not detect
a DRM, which was otherwise identified by the majority of the labs. One suggestion, raised at the
2019 International Symposium on NGS HIVDR, was that DRM frequency readouts obtained from
each lab would not be directly assessed. Instead, the threshold for the NGS consensus sequences
should be lowered from 20% to 5%, and the ability of whether the lab could qualitatively detect the
presence of the DRM in the group consensus would be assessed. However, even with this method of
evaluating NGS data, the challenge of whether a lab receives a penalty for not detecting a mutation
at the suggested 5% threshold is complex. Whether the pre-characterization of the panel samples
would be considered as the standard, or the standard should base on the consensus of the participants’
results has not been resolved. If the consensus of the participants’ results from PT is set as the standard
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for evaluating whether a mutation is truly present, the percentage that comprises the consensus is
debatable. For example, would the current VQA measure of 80% of participant results comprise the
consensus, or would the value of 80% need to be lower to assess MRVs? This method of assessment
could use the proposed “assessment panel” described previously by H. Ji et al. (2020) and current EQA
scoring strategies could be applied.

4.3.2. Large Variations in DRM Frequencies

One of the main advantages of NGS is that the relative abundance (% frequency) of DRMs
can be determined. To assess the accuracy of the detected relative abundance, one would require
the proposed “verification panel” with samples for which DRMs and exact frequencies have been
well-characterized [56]. However, large variations were observed in DRM frequency readouts from
different NGS assays while SS EQA panel specimens were tested. Notably, the higher the median
frequencies are, the lower inter-lab variations were observed (Figure 3). If frequency measurement is
taken into account, would it be assessed in the frequency intervals (e.g. 5%–20%, 20%–90%, 90%–100%)
with different respective deviation thresholds, or would one general deviation be used for assessment
for all frequencies? We believe it is fair to apply a higher acceptable deviation cut-off for those DRM
frequencies at lower frequency brackets for EQA purposes. The difficulty in determining a method to
assess frequency read-outs also highlights the need for more comprehensive studies to better define
practical deviation cut-off values for various DRM frequency levels. This type of research would also
aide in the development of an appropriate statistical method for DRM frequency assessment and help
to identify whether participants can consistently detect MRVs.

4.3.3. Variations in Wet-Lab Methods, NGS Platforms and Bioinformatics Pipelines

Current SS-based EQA strategies for HIVDR genotyping accept LDTs, however, NGS-based
HIVDR assays introduce more variations as different NGS technologies and diverse bioinformatics
pipelines are utilized [32–35,57–63]. NGS platform-specific EQA strategies may not be necessary,
although sequence-specific errors for different NGS systems exist [58]. Many different bioinformatics
pipelines have been developed for HIVDR testing [32–35,57,59–63]. Recently, we compared and
assessed the performance of five pipelines to detect amino acid variants within specimens and found
they were highly concordant. All pipelines demonstrated high sensitivity detecting variants even
at a 1% threshold. Specificity, on the other hand, was much better at a 2% threshold versus a 1%
threshold. Results from this study imply that a 2% threshold may be a more reliable cut-off for drug
resistance mutation calling and reporting when NGS technologies are utilized [64]. As addressed
previously, careful documentation of all wet-lab and dry-lab steps may aide in EQA and appropriate
remedial recommendations.

5. Conclusions

NGS is a powerful tool with the ability to detect variants at low-frequency levels that were
otherwise undetectable by Sanger sequencing. Research continues to define the clinical importance
of MRVs and inform how drug regimens for HIV treatment should be modified when MRVs for DR
are detected. The current EQA strategies for SS-based HIVDR testing are insufficient for NGS-based
testing because of the drastically different outputs between the two technologies. Unlike SS, NGS can
identify MRVs and provides numerical data on the frequencies of DRMs. Well-characterized panels,
including the use of clinical specimens, plasmids and in vitro generated HIV RNA templates, are
required to assess the ability of a lab to detect MRVs accurately. Although large variations occur in
DRM frequencies when comparing different labs performing NGS-based HIVDR testing on the same
panels, continued efforts are being made to develop appropriate assessment methods to address this
issue. Future studies to include a larger group to not only assess DRMs but all amino acid variations
(AAVs) will provide more information on the comparability between labs and how consistent they are
in detecting MRVs. Meanwhile, accommodation of both LDTs and commercial NGS assays, such as the
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Sentosa®SQ HIV-1 assay, in the perspective EQA programs would be essential. The implementation
of EQA for NGS-HIVDR is challenging, but with the urgent need for more accurate assays to detect
MRVs and the continued efforts from the field, the thoughts can become a reality.
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