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Gene expression profiles of a cellular population, generated by
single-cell RNA sequencing, contains rich information about bio-
logical state, including cell type, cell cycle phase, gene regulatory
patterns, and location within the tissue of origin. A major chal-
lenge is to disentangle information about these different biolog-
ical states from each other, including distinguishing from cell
lineage, since the correlation of cellular expression patterns is nec-
essarily contaminated by ancestry. Here, we use a recent advance
in randommatrix theory, discovered in the context of protein phy-
logeny, to identify differentiation or ancestry-related processes in
single-cell data. Qin and Colwell [C. Qin, L. J. Colwell, Proc. Natl.
Acad. Sci. U.S.A. 115, 690–695 (2018)] showed that ancestral rela-
tionships in protein sequences create a power-law signature in the
covariance eigenvalue distribution. We demonstrate the existence
of such signatures in scRNA-seq data and that the genes driving
them are indeed related to differentiation and developmental
pathways. We predict the existence of similar power-law signa-
tures for cells along linear trajectories and demonstrate this for
linearly differentiating systems. Furthermore, we generalize to
show that the same signatures can arise for cells along tissue-
specific spatial trajectories. We illustrate these principles in diverse
tissues and organisms, including the mammalian epidermis and
lung, Drosophila whole-embryo, adult Hydra, dendritic cells, the
intestinal epithelium, and cells undergoing induced pluripotent
stem cells (iPSC) reprogramming. We show how these results can
be used to interpret the gradual dynamics of lineage structure
along iPSC reprogramming. Together, we provide a framework
that can be used to identify signatures of specific biological pro-
cesses in single-cell data without prior knowledge and identify
candidate genes associated with these processes.
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Advances in single-cell RNA sequencing (scRNA-seq) have
led to the identification of diverse and heterogeneous cel-

lular populations (1–3). Sampling a large number of non-
synchronized single cells also enables reconstruction of tissue
structure (4–6), the cell cycle (7), and differentiation pathways
(reviewed in refs. 8 and 9). Trajectory inference in particular,
including inferring developmental trajectories or lineage rela-
tionships between cells, is a fast-moving research field and in-
cludes dozens of methods that have been proposed to approach
this challenge [e.g., in refs. 10–17 and recent benchmarking
analysis (9)]. In general, these inference approaches rely on the
assumption that single-cell expression profiles span a low di-
mensional manifold in high dimensional expression space, which
represents an underlying biological process and the progression,
or “phase,” of single cells along that process. Therefore, in
principle, it is possible to both reconstruct the process and re-
cover the locations of single cells along it. Using rich single-cell
data, it has also been possible to infer regulatory interaction
networks within single cells and infer their variation across dif-
ferent perturbations and conditions [e.g., refs. 11 and 18 and
recent benchmarking study (19)]. However, the biological picture
is more complicated: The expression profile of each cell contains
multiple signatures, simultaneously encoding information about

its location within a tissue and its microenvironment, multiple
temporal processes, and differentiation pathways as well as in-
ternal patterns of regulatory interactions, along with technical or
experimentally driven signals (2). Despite recent advances (e.g.,
refs. 20–25), disentangling these different biological processes
from each other and from signals attributed to the experimental
procedure in single-cell expression data is still a major challenge.
The key insight of this paper is that different biological pro-

cesses may exhibit different geometric, or topological, structures
in gene expression space, which induce distinct patterns in the
covariance spectrum of single-cell data (which can relate both
different cells and different genes to each other). While biolog-
ical processes such as differentiation, the cell cycle, and spatial
relationships induce correlations between different cells, regu-
latory interactions induce correlations between different genes.
This is directly analogous to protein sequence data that exhibit
both phylogeny-driven correlations between different sequences as
well as correlation between different amino acids in individual se-
quences arising from physical structural interactions. Qin and
Colwell (26) demonstrated that phylogenetic correlations between
sequences lead to a characteristic signature in the eigenvalue dis-
tribution of the sequence covariance matrix, specifically a power-
law tail of large eigenvalues, in which the exponent of the power law
is determined by the underlying branching process.
Here, we demonstrate that this same phenomenon occurs in

scRNA-seq data, in which lineage or developmental signals give
rise to unique covariance structures, reflecting either cell-to-cell
or gene-to-gene correlations between the vectors representing
the gene expression profiles for each cell or between the vec-
tors representing the expression of each gene across all cells,
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respectively. Specifically, we find power-law tails of large ei-
genvalues in the spectra of the gene–gene covariance matrix of
the data. We demonstrate this phenomenon for various types of
single-cell data, including mammalian lung and epidermis, fly
whole embryo, whole Hydra, and cells undergoing induced plu-
ripotent stem cells (iPSCs) reprogramming. We show that single
yeast cells do not exhibit such signature for lineage. We show
that power-law tails of large eigenvalues are also expected to
arise for populations of cells along linear trajectories in differ-
entiating systems and demonstrate such signal for subpopula-
tions of dendritic cells (DCs). Furthermore, we generalize these
findings to populations of cells whose expression correlations are
induced by their spatial organization within a tissue, which may
be a result, for example, of external gradients of oxygen, mor-
phogenes or nutrients, patterns of cellular movement, or cell–cell
communication. Specifically, we exemplify our findings in the
case of enterocytes along the crypt-to-villus axis in the intestinal
epithelium. We support these findings by showing that the genes
driving the power-law covariance patterns are indeed related to
lineage and developmental processes. Finally, we show that we
can predict the dynamically changing spectral signatures of dif-
ferentiating cells sequenced at multiple time points, such as in
iPSC reprogramming.

Results
Single-cell data generated by scRNA-seq is composed of ex-
pression profiles of single cells, in which each profile is a vector
of expression levels for each gene in the cell. Correlations within
this data can arise both from regulatory interactions between
different genes and from interactions and structural or dynamic
relationships between different cells. These can result from di-
rect cell-to-cell interactions, the relative location of cells within a
tissue, the relative progression of cells through temporal pro-
cesses such as the cell cycle or differentiation pathways, re-
sponses to environmental cues, and other diverse biological
functions. These different types of correlations, or covariance
structures, each contribute to the overall covariance of the
single-cell data. Here, we show that differentiation and devel-
opmental processes generate a distinct covariance signature due
to their hierarchical structure in gene expression space, which we
can thus identify in single-cell data.

Lineage Is Predicted to Generate Power-Law Patterns in Single-Cell
Spectra. To set the stage, we consider a simple model for single-
cell lineage progression. Here, each bifurcating trajectory of
single cells, originating, for example, from stem cells and ending
in terminally differentiated cells, is constructed as follows (SI
Appendix): a random binary expression profile of length p is
chosen as the root (e.g., stem cell) so that the expression level of
each of the p genes is approximated as being “ON” or “OFF.”
The expression profile then goes through a smooth differentia-
tion process. The profile is first randomly changed m times, such
that each of them steps consist of a change in the state of a single
gene (from ON to OFF or vice versa). It then goes through a
developmental bifurcation, meaning that the profile is dupli-
cated, and each branch goes independently through m additional
changes. The cells go through b such bifurcations until they reach
their n terminally differentiated states. Note that in principle, m
is not necessarily fixed for the whole tree. This model is designed
to emulate the differentiation process of a population of single
cells, as is reflected by a scRNA-seq dataset of unsynchronized
single cells. We are interested in uncovering signals related to
lineage in the gene–gene covariance matrix of the single-cell
data, XXT=n, where X is a gene-by-cell data matrix (Xi,j indi-
cates the expression of gene i in cell j).
This model is formally analogous to that of Qin and Colwell

(26), who consider genetic mutations in a protein phylogeny,

where in that case m is the number of genetic mutations and p is
the number of amino acids. They demonstrate that the eigen-
value distribution of the covariance matrix of the “leaves” of the
phylogeny (in our case, corresponding to terminally differenti-
ated cells) has a power-law structure, λ ∼ r−log(2α)=log(2), for each

eigenvalue λ, in which α = exp( − 4m
p ) and r> 1 is the eigenvalue

rank (SI Appendix). We found such power-law patterns in a
synthetic single-cell dataset, which we generated according to the
differentiation model described above, where the eigenvalues of
the covariance matrix as a function of their rank are well fitted by
the model’s prediction (Fig. 1, Left). The power-law tails of large
eigenvalues are a general feature of lineage structures and gen-
eralize to more realistic models, in which gene expression is not
binary and the number and extent of changes in gene expression
along each of the lineage branches is not identical (SI Appendix,
Fig. S1A). In fact, the power-law tails can be analytically shown
to emerge for inhomogeneous lineages and general tree topol-
ogies (26). However, there is a deviation from the predicted
power-law tail and its slope can change when different genes
have nonuniform probabilities for changing their state along the
branches (SI Appendix, Fig. S1B). Single-cell data many times
contain cells not only at terminally differentiated states (as the
basic model refers to) but cells that are sampled along the entire
differentiation process. In such cases, we empirically find that the
eigenvalue distribution of the covariance structure still resembles
the expected power-law tail of large eigenvalues, while the de-
viation from the power-law tail starts at larger eigenvalues rel-
ative to the basic model, including only “leaf” (terminally
differentiated) cells (SI Appendix, Fig. S1C).
Finally, the emergence of eigenvalue power laws persists for

more realistic dynamic bifurcating trajectories of single cells,
driven by changes in functional expression programs, such that
the sampling of cells and RNA expression counts and their as-
sociated noise statistics resemble those of scRNA-seq data [SI
Appendix, Fig. S1D, simulated using a framework for probabi-
listic simulation of single-cell RNA-seq tree-like topologies (27)].
We found that the power-law pattern does not arise in the

covariance spectra of some basic null (lineage-free) models for
single-cell gene expression. The simplest (admittingly too sim-
ple) null model for gene expression is that of independent cells
and genes. The null covariance structure of n single-cell profiles
composed of p genes, that do not exhibit any correlations, is
given by a central result in random matrix theory, the

Marcenko–Pastur (MP) distribution (28): f (λ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(b+−λ)(λ−b−)

√
2πcλ , b± =

(1 ± ̅̅̅
c

√ )2, where c = n=p. The universality of this eigenvalue dis-
tribution extends beyond the binary distributions we consider in this
section and applies to matrices whose entries are independent and
identically distributed random variables with zero mean and finite
variance. Fig. 1 (Middle) shows how the MP law emerges for a
simulated population of uncorrelated single-cell expression profiles.
In contrast to the differentiation model (with a power-law tail of
large eigenvalues), a group of independent expression profiles
yields similarly sized large eigenvalues, which results in a flat (zero
slope) line of eigenvalues versus their rank.
Going beyond independent gene expression profiles, we note

that the effects of batch structure or clustering, as common
features of single-cell data, do not generate by themselves power-
law tails in the eigenvalue distributions (SI Appendix, Fig. S2A).
Another correlation structure in single-cell data is imposed by
gene regulatory interactions. To reason about the effects of such
regulatory patterns, we use a simple energy-based model to de-
scribe the gene–gene interactions derived from the cellular reg-
ulatory network (SI Appendix). This family of models was
previously used to model and infer the structure of gene regu-
latory networks (e.g., refs. 29–32) and is analogous to the model
used for phenotypic interactions between amino acids in protein
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sequences (26). Consistent with the results of ref. 26, we show
numerically in our context that the eigenvalue distribution of the
sample covariance matrix is described well by the MP distribu-
tion and the slope of the eigenvalues as a function of their rank is
∼0 (Fig. 1, Right). The results are consistent for varying fractions
of interactions and different network structures (SI Appendix,
Fig. S3).
Finally, we generated synthetic scRNA-seq datasets, which

capture many features observed in real single-cell data, including
high expression outlier genes, differing sequencing depths be-
tween cells, and technical dropouts (zero inflation). In short,
building on the Splatter statistical framework (33), we generate a
synthetic scRNA-seq dataset by a process based on a gamma-
Poisson hierarchical model, in which the mean expression level
of each gene is sampled from a gamma distribution, and the
count that is measured experimentally for each cell is then
sampled from a Poisson distribution, in a way that is regularized
by expected statistical features of scRNA-seq data. We find that
this more complex, realistic scenario as well, without lineage,
does not result in power-law spectral patterns (SI Appendix, Fig.
S2B).

Detection of Power-Law Patterns in Single-Cell Spectra. Following
these analytical and numerical results, the striking covariance
structure associated with developmental and differentiation
processes of a population of single cells suggests that we should

be able to identify it in single-cell sequencing data and further
identify genes that are driving these processes. Specifically, we
expect the distribution of covariance eigenvalues to substantially
deviate from a corresponding MP distribution for single-cell
datasets with an underlying lineage signal, with the large eigen-
values following a power-law distribution as a function of their
rank. We tested this prediction for a variety of tissues, organisms,
and conditions. These included the following:

• The mouse epidermis, forming the outer layer of the mamma-
lian skin. Because of the regenerative capacity of the epider-
mis, it contains cells along all stages of the differentiation
process, from stem cells to terminally differentiated cells.
We analyzed a single-cell dataset of the mouse epidermis,
which was previously shown to include the whole hierarchy
of differentiating cells (34).

• The mouse lung. We chose a single-cell dataset shown to in-
clude traces of the cellular hierarchy of the distal mouse lung
epithelium (35).

• Reprogramming of mouse embryonic fibroblasts into iPSC.
We focused on a dataset which includes single cells sequenced
at half-day intervals across 18 d of the reprogramming
process (36).

• Hydra, a cnidarian polyp which renews all cells of its body
throughout its life. We analyzed a single-cell dataset of whole

Fig. 1. Eigenvalue patterns expected for the covariance matrix of different forms of single-cell data. The eigenvalues of the covariance matrix as a function
of their rank (r) (A) and the eigenvalue distribution (B) generated by the differentiation model (Left), a population of independent expression profiles
(Middle), and cells correlated by regulatory interactions of their genes (Right). The differentiation and regulatory interactions models are described in the
main text for a population of binary expression profiles. The empirical slope of the eigenvalue versus rank (blue stars) is compared to the predicted slope
(dotted orange line) for the lineage model (for r > 1) and to the MP-based slope for the independent model. The eigenvalue distributions for the different
models are compared to the MP distribution. Parameters for all simulations: number of cells: 210; number of genes: 500 (2,000 genes in the independent
profiles inset); number of changes in the expression profile along each branch for lineage model: 10; and the gene interaction matrix for the regulatory model
is set by assigning a probability of 0.1 for every pair of genes, independently, to interact. The strength of interaction is uniformly sampled from −1,1: The
expression profiles for the regulatory interaction model are each evolved 1,000 times according to the Potts model (SI Appendix).
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adult Hydra, which includes cellular lineages ranging from stem
cells to progenitors, and terminally differentiated cells (37).

• The fly embryo at the onset of gastrulation. We analyzed a
dataset including single cells collected from thousands of in-
dividual Drosophila embryos at this early developmental stage,
when the embryo consists of only a few thousands of cells (6).

• Budding yeast. This dataset includes diverse Saccharomyces
cerevisiae cells sequenced in different environmental condi-
tions, in which we focused on the wild-type strain grown in
standard yeast rich media (38).

Further details of the single-cell datasets we analyzed can be
found in SI Appendix. When analyzing the scRNA-seq datasets
(SI Appendix) associated with biological systems expected to
encode signals of differentiation and developmental pathways,
including the epidermis, lung, iPSC reprogramming, Hydra, and
fly datasets, we find that the large eigenvalues of the gene–gene
covariance matrix as a function of their rank approximately fol-
low a power-law tail, as predicted (Fig. 2). In addition, the cor-
responding eigenvalue distributions are statistically significantly
different from their respective MP distributions (Fig. 2, Insets,
statistical analysis is elaborated in SI Appendix). The yeast single
cells, on the other hand, generate a distinct spectral signature
from the rest, showing no detectable lineage traces, which could
potentially point to low mother–daughter expression correlation
or to rapidly diminishing correlations along ancestry paths. When
the cell–cell correlation structure of the data are destroyed by
randomly permuting each of the single-cell datasets over its cells for
every gene independently, the resulting eigenvalue distributions

resemble the respective null MP distributions, and the power-law
patterns in the eigenvalues of the covariance matrices are lost (SI
Appendix, Figs. S4 and S5), as expected.

Distinct Spectral Features of Neighboring Cells. We next aim to
contrast groups of cells capturing lineage information with
groups of cells that are more homogeneous, while keeping the
groups biologically comparable and retaining many of the natu-
ral features and correlations in the original single-cell datasets.
We do so by subsampling scRNA-seq datasets to examine ei-
genvalue signatures generated by groups of neighboring cells
relative to groups of randomly selected cells (containing the
same number of cells). To do this for a given dataset for a group
of size k, we choose a cell at random and then select its k nearest
neighbors based on the pairwise Euclidean distance between all
cells in gene expression space, reduced to the top variable genes
(SI Appendix). We find that the eigenvalues of the covariance
matrices of the neighboring cells diverge from the randomly
selected cells (Fig. 3 and SI Appendix, Fig. S6). The large ei-
genvalues of the neighboring cells, as expected, follow a curve
with smaller absolute slope (Fig. 3, P value < 0.05 for all datasets
reported). In addition, the largest eigenvalue associated with
randomly selected cells is greater than that of the neighboring
cells (Fig. 3, Insets, P value < 0.05 for all datasets reported). This
may be expected as the number of effective lineage bifurcations
associated with the neighboring cells is smaller than that of the
randomly selected cells (which sample the whole tree) and the
largest eigenvalue scales exponentially with the number of bi-
furcations according to the lineage model (SI Appendix). For

Fig. 2. The large eigenvalues as a function of rank of single-cell datasets carrying lineage signal follow a power-law tail. We can detect power-law tails in the
large eigenvalues of the sample covariance matrices of single-cell datasets collected from the mouse epidermis and lung, fly embryo, whole Hydra, and cells
undergoing iPSC reprogramming. Specifically, on a log–log scale, the large eigenvalues fit a line with respect to the rank of the eigenvalues. Yeast colonies do
not exhibit such power-law statistics. Each set of eigenvalues is normalized by the largest respective eigenvalue. (Insets) The eigenvalue distributions (blue
histograms) of all systems but yeast are statistically significantly different from their respective MP distributions (orange histograms). Statistical analysis
comparing the single-cell and MP distributions is elaborated in SI Appendix.
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example, for the epidermis data, a linear fit on a log–log plot for
the ranked normalized eigenvalues has an average slope −0.7 for
groups of 50 neighboring cells, relative to an average slope
of −1.1 for groups of 50 randomly selected cells (Kolmogorov–
Smirnov [KS] statistic: 1.0, P value: 1.5e-45 based on 100 reali-
zations). For the same epidermis data, the largest eigenvalue of
neighboring cells is 6.48 on average, across realizations, and is
14.38 on average for randomly selected cells (KS statistic: 1.0, P
value: 1.2e-44 based on 100 realizations). In addition, as the
neighborhood size grows and the groups of neighboring cells
capture more of the overall structure of the single-cell data (e.g.,
multiple branches in a lineage trajectory), the spectra of groups
of neighboring cells grows to resemble the features of the cor-
responding randomly selected cell groups; the ratio of slope
values of neighboring cells relative to randomly selected cells
increase from 0.63 to 0.89 for the epidermis and from 0.60 to
0.85 for the iPSC dataset, going from neighborhoods of 50 to 500
cells (Fig. 3).

Genes Dominating the Power-Law Domain Are Enriched for
Lineage-Related Biological Processes. To support the hypothesis
that the patterns we discover in the large eigenvalues of the
covariance structures of the different single-cell datasets are
driven by differentiation and developmental processes, we set
out to characterize the genes dominating these patterns and,
specifically, the high modes of the covariance matrix of the data
(i.e., the eigenvectors corresponding to the large eigenvalues).
We use gene ontology (GO) enrichment analysis (39, 40) to

identify the biological processes that are statistically significantly
enriched in the modes corresponding to the power-law regime
(SI Appendix). We found that the genes dominating the high
modes of the datasets we could test for, in which the number of
cells is greater than the number of variable genes, were enriched
for GO terms related to lineage relationships, including devel-
opment, morphogenesis, differentiation, and proliferation pro-
cesses (SI Appendix). Specifically, in the iPSC reprogramming
dataset, we find enrichment for development processes (top 300
modes); the fly dataset is enriched for differentiation, develop-
ment, and morphogenesis processes (top 30 modes); and the
epidermis dataset is enriched for differentiation, development,
and proliferations processes (top 300 modes). While we chose
the number of modes approximately corresponding to the power-
law regime, the GO enrichment itself is independent of the way
the eigenvalues are distributed. We note, however, that for the
epidermis and iPSC datasets, the top 10 modes are not enriched
for any of the corresponding lineage-related processes listed
above, which suggests that the lineage enrichment is not driven
by the top few modes (the focus of standard analysis pipelines)
and that the broader power-law regime plays an important role.
This finding does not only provide support for our analysis but
also suggests a path for discovery of genes related to such hier-
archical biological processes based on single-cell data.

Power-Law Patterns Generated by Linear Trajectories. In this sec-
tion, we show that a hierarchy of shared covariance struc-
ture, and corresponding power-law signatures in the eigenvalue

Fig. 3. Distinction in behavior of the eigenvalues of single-cell covariance matrices versus their rank between groups of neighboring cells and randomly
selected cells. Results are shown for the mouse epidermis (A) and the last time point of the iPSC experiment (B) for neighborhoods of 50, 100, and 500 cells.
Shown are 10 realizations for groups of neighboring cells (red) and randomly selected cells (black). Each set of eigenvalues is normalized by the largest
respective eigenvalue. The KS statistic and its associated P value for comparing the distributions of slopes (linear fit on a log–log plot) of neighboring versus
randomly selected cells are (1.0, 1.5e-45), (1.0, 1.5e-45), and (0.9, 1.9e-39) for the epidermis for 50, 100, and 500 cells; (1.0, 5.3e-42), (1.0, 1.2e-44), and (0.9,
2.3e-35) for the iPSC dataset for 50, 100, and 500 cells (based on 100 realizations). The ratio of slope values of neighboring cells relative to randomly selected
cells are (0.63, 0.70, 0.89) for the epidermis and (0.60, 0.64,0.85) for the iPSC dataset for 50, 100, and 500 cells. Insets: unnormalized eigenvalues versus rank.
The KS statistic and its associated P value for comparing the distributions of largest eigenvalues of neighboring versus randomly selected cells are (1.0, 1.2e-44)
for the epidermis and (1.0, 1.6e-45) for the iPSC dataset (based on 100 realizations).
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distribution, can also arise for groups of cells encoding a linear
correlation structure, which may be a result, for example, of
spatial relationships or a linear differentiation process. Consider
a simple model for a linear lineage structure, where a random
expression profile of p genes, X ∈ { − 1,1}p, is chosen as the root
of the lineage, where the state of each gene is either ON or OFF.
Then, at every subsequent time step, a new expression profile is
formed by flipping the state of a single gene, which is chosen at
random (from ON to OFF or vice versa). The eigenvalue dis-
tribution of the covariance matrix of such linear sequence of
expression profiles forms a power-law tail of large eigenvalues,
similarly to the bifurcating lineage structure (Fig. 4A). The same
power-law tail emerges when simulating a more complex, real-
istic model for a linear trajectory of single cells suited to the
sampling and noise statistics of scRNA-seq (SI Appendix, Fig.
S7). Therefore, we expect cells that are sequenced along a linear
lineage trajectory to generate corresponding power-law struc-
tures. To test this, we examined a set of mouse bone marrow
DCs progenitors, differentiating from macrophage DC progeni-
tors to common DC progenitors and then to pre-DCs and se-
quenced as single cells (41). We find that, indeed, the DC spectra
follows the predicted power law of large eigenvalues (Fig. 4B).
Our linear model of gene expression trajectory was in fact not

specific to lineage relationships. Therefore, we expect the exis-
tence of power-law tails of large eigenvalues to generalize to
other biological scenarios that generate correlations between
single cells along a linear structure. Such linear relationships can
be induced, for example, by spatial structures exhibiting one-
dimensional symmetry. This is the case in the intestinal epithe-
lium, which is composed of repeating crypt-to-villus units, where
cells originate at the bottom of the crypt and gradually migrate
along the villus axis until they shed off at the tip. It was shown
that enterocytes gradually change their expression profiles along
the one-dimensional villus axis (42, 43). Indeed, when examining
a single-cell dataset of enterocytes sequenced along the
crypt-to-villus axis (44), we find a power-law signature in the
large eigenvalues of the covariance matrix of the single-cell data
(Fig. 4C). As above, the eigenvalue structure of single cells
inferred (42) to originate from the same spatial zone along the
crypt-to-villus axis is distinct from the eigenvalue structure of
groups of randomly selected cells (SI Appendix, Fig. S8).

Dynamics of Covariance Structure. There are several predictions by
the model that can be made for a dynamically proliferating and
differentiating population of cells (SI Appendix). Following in
time a population of cells starting from a single-cell type, which

progressively differentiates into various cell types, would reflect
an increase in the number of effective branching events in the
cellular tree. As we progress in developmental time, we would
expect 1) the eigenvalue distribution of the covariance matrix to
progressively resemble a power law, as the power-law tail in-
duced by the tree structure in the data relies on the number of
branching events being sufficiently large (SI Appendix), and 2)
the largest eigenvalue to increase, as it is predicted to grow ex-
ponentially with the number of branching events (SI Appendix).
It is also of interest to examine the change in the slope of ei-
genvalues versus rank, which is a function of m, the effective
(mean) length of the branches (SI Appendix) but can potentially
also reflect other structural features of the differentiation pro-
cess. To study this, we analyzed the results of an experiment in
which fibroblasts were reprogrammed to iPSCs, in which single-
cell sequencing data were collected for ∼251,000 cells, each
characterized by an expression profile composed of ∼19,000
genes, at 39 time points over a period of 18 d (36). The single
cells on day 0 included only mouse embryonic fibroblasts, while
on day 18 they included a wide distribution over multiple dif-
ferentiated cell types (SI Appendix, Fig. S9). As we expected, we
find that the spectral structure of the single-cell data gradually
changes over the course of the experiment (Fig. 5). The largest
eigenvalue and absolute slope value gradually increase
(Fig. 5 A–C). In addition, the eigenvalue distribution deviates
from the null MP distribution more substantially as time pro-
gresses (Fig. 5 D–F, see SI Appendix for statistical analysis). This
deviation is again lost when cell–cell correlations are diminished
by permuting the data over cells (Fig. 5 D and E, Insets).

Discussion
In this paper, we presented a random matrix theory-based ap-
proach to identify lineage effects from scRNA-seq data, without
relying on gene-specific prior knowledge. We showcased these
predictions on single cells sequenced from the mouse epidermis,
mouse lung, whole Hydra, Drosophila embryo, and cells under-
going iPSC reprogramming. Furthermore, we showed that we
could use this approach to identify groups of genes enriched for
lineage or developmental processes. The de novo identification
of genes dominating such hierarchical processes could also en-
hance the inference of more accurate differentiation or devel-
opmental trees based on single-cell data, which is an ongoing
challenge in the field (10–17). Power-law tails of large eigen-
values are not only a characteristic of hierarchical structures,
such as lineage but can also arise along linear trajectories. This
notion led to the identification of power-law signatures in

Fig. 4. The large eigenvalues of the covariance matrices of single cells along a linear trajectory follow a power-law tail. Eigenvalues versus their rank for (A) a
linear trajectory model of single cells gradually changing their state along a one-dimensional axis, (B) linear differentiation trajectory of DCs from macro-
phage DC progenitors to common DC progenitors to pre-DCs, and (C) cells along the crypt-to-villus axis in the intestinal epithelium. In B and C, we show the
ranked eigenvalues starting from the third eigenvalue and in the insets the whole set of ranked eigenvalues. Each set of eigenvalues is normalized by the
largest respective eigenvalue.
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linearly differentiating DCs and, furthermore, in the crypt-to-
villus axis in the intestinal epithelium, where the cells exhibit
correlations due to their spatial structure, which is effectively
one-dimensional. This framework allows us to identify when
signals such as lineage or spatial relationships dominate the data
and when they are lost or are too weak to begin with, such as
exhibited by yeast colonies.
Given the observation of a power-law signature in the co-

variance eigenvalue distribution of a single-cell dataset, can
we distinguish between different underlying biological signals
that could have generated it (e.g., lineage structure versus
spatial structure)? And can we rule out it being a technical or
experimental artifact? Here, we showed that several common
characteristics (both technical and biological) of scRNA-seq
data, including noise statistics, batch effects, and clustered
structure, generally do not generate such power-law signa-
tures. Additionally, we showed that it is possible to identify
“topologically informative genes” directly from single-cell
data based on spectral signatures, without prior knowledge.
This set of genes (or the output ranking over the genes) can
then be queried for enriched biological processes, which can
aid in the identification of the dominant biological signals
underlying the data. While the focus of this work was the
distinct spectral signature of lineage, we envision that this
approach could be generalized for diverse biological pro-
cesses, lying on low dimensional structures in high dimen-
sional gene expression space. For example, we expect the cell
cycle to form a cyclic structure in the high dimensional gene
expression space (45, 46), physical spatial structures to form
one-dimensional to three-dimensional grid-like structures (4,

47), and differentiation pathways to form tree-like structures
(13). We are currently working on extending our framework
beyond lineage and regulatory interactions to different geo-
metric universality classes. This would lead to a better un-
derstanding of how diverse biological processes, including
spatial relationships, cell-to-cell communication, and re-
sponse to environmental signals, are reflected in single-cell
spectra and how such processes can be disentangled from
one another.

Data Availability. The single-cell RNA-seq datasets used for the
current study were all previously published and can be accessed
from the Gene Expression Omnibus (GEO) database with the
following GEO accession numbers: GSE67602 for the epidermis
(34), GSE52583 for the lung (35), GSE95025 for the Drosophila
embryo (6), GSE121617 for the Hydra (37), GSE125162 for the
yeast colonies (38), GSE122662 for the iPSC reprogramming
dataset (36), GSE60783 for the DCs (41), and GSM2644349 and
GSM2644350 for the intestinal epithelium (44) and their corre-
sponding zone-reconstruction (42). Source code is available at
GitHub, https://github.com/mornitzan/spectral_sc.
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Fig. 5. Correlation statistics change along differentiation for the iPSC reprogramming system. (A) Eigenvalues versus their rank for the early time point (day
0, blue curve) and the late time point (day 18, orange dotted curve). Each set of eigenvalues is normalized by the largest respective eigenvalue. (Inset)
Unnormalized eigenvalues versus rank. As cells gradually transition from mouse embryonic fibroblasts on day 0 to a population of various differentiated cell
types on day 18 (SI Appendix), for the respective eigenvalue distribution of their covariance matrix, the largest eigenvalue increases (linear fit in green, r: 0.87,
P value: 8.3e-13) (B) and the slope decreases (linear fit in green, r: −0.8, P value: 1.1e-9) (C). The eigenvalue distributions (blue histograms) and their respective
MP distributions (orange histograms) for the first (day 0) time point (D) and the last (day 18) time point (E). (Insets) Eigenvalue distributions for the respective
permuted single-cell data (blue) and associated MP distributions (orange). (F) The value of the KS statistic comparing the eigenvalue distribution and re-
spective MP distribution increases over time (linear fit in green, r: 0.77, P value: 1.3e-8).
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