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Abstract

Due to genetic variation in the ancestor of two populations or two species, the divergence time for DNA sequences from
two populations is variable along the genome. Within genomic segments all bases will share the same divergence—
because they share a most recent common ancestor—when no recombination event has occurred to split them apart. The
size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the
effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these
parameters may be possible if we can decode the divergence times along a genomic alignment. Here, we present a new
hidden Markov model that infers the changing divergence (coalescence) times along the genome alignment using a
coalescent framework, in order to estimate the speciation time, the recombination rate, and the ancestral effective
population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the
power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the
two orangutan sub-species, Bornean (P. p. pygmaeus) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome
Project. We estimate the speciation time between the two sub-species to be 334+145 thousand years ago and the effective
population size of the ancestral orangutan species to be 26,800+6,700, consistent with recent results based on smaller data
sets. We also report a negative correlation between chromosome size and ancestral effective population size, which we
interpret as a signature of recombination increasing the efficacy of selection.
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Introduction

There is a growing awareness that the genomic sequences now

available for closely related species or sub-species may provide

detailed information on the population genetics process in the

ancestors of these species and about the speciation process itself

[1]. This is because the divergence patterns of a set of (sub-)species

vary along their genomes due to polymorphism in the ancestral

species. Different parts of the genome have different histories

because recombination has brought together the genome from

different ancestors. Viewed back in time, two sequences are

therefore, at any given point in the genome, a sample of two

individuals in the ancestral species and the identity of these

individuals vary along the sequence, as illustrated in Figure 1. The

varying sequence-divergence times provide information that allows

us to examine the speciation process [2,3] and enable inference of

parameters for the population genetics of the ancestral species,

such as the effective population size or speciation-divergence or

population-divergence times [4–6].

Coalescent theory [7] tells us that the variation in coalescence

time in an ancestral population is directly proportional to the

effective population size of the ancestral population. This was

exploited by Takahata [8] in order to derive a simple estimator of

the ancestral effective population size, but when applied to human

and chimpanzee the estimate was associated with a large variance,

because of the limited divergence of these species. Takahata [9]

showed that including an outgroup improved the results, and Yang

[10] showed that mutation rate heterogeneity is confounded with

the estimate. These early approaches estimated a fixed phylogeny

for different sequence fragments. Later approaches have exploited

the fact that if speciation times are sufficiently close together,

incomplete lineage sorting (cases where the gene tree is different

from the species tree) may occur. Wall [11] allowed for

recombination and several species in the likelihood estimation of

population parameters and Patterson et al. [2], Hobolth et al. [5],

and Dutheil et al. [12] made simple models of changes in genealogy

along a multi-species alignment with incomplete lineage sorting.

Detailed modeling using MCMC of the genealogies supporting

a data set [13], or the ancestral recombination graph [3] in a

model that includes recombination, has the advantage of allowing

modeling more complex aspects of the data such as gene flow

through migration, but scaling these to whole genome data is

challenging. In contrast, approaches based on hidden Markov

models (HMMs), such as Hobolth et al. [5], and Dutheil et al. [12],
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provide computationally fast inference algorithms, which are

scalable to whole-genome data sets. Nevertheless, modeling

complex demographic models in terms of transition matrices

and emission probabilities is mathematically challenging.

Here we present a new approach for constructing transition

matrices for HMM approaches and use it to capture the variation

in coalescence time between the genomes of two individuals from

two divergent populations or two closely related species. The

model traces the ancestry of the two sequences using the

coalescence process with recombination [14–16], and this process

determines the switching probabilities from one coalescent time to

another along the pair of sequences. Considering a junction

between two nucleotides, and going back in time, two types of

events may occur: a sequence can split up in two fragments (a

recombination event) and two fragments can merge again to

become one (a coalescence event). We model the two species using

an isolation model (recall Figure 1). Initially, the sequences from

the two populations evolve independently, meaning that coales-

cence events always involves sequences from within the same

population. After the population split event, the two populations

become one, and the two (fragmented) sequences can now start

finding most recent common ancestors. As a result of these events,

the sequence divergence varies as we scan along the genomic

sequences. The patterns of sequence divergence, and the

distribution of recombination events separating segments with

constant divergence, are informative of the coalescent processes in

the separate populations and that of the ancestor.

The model is parameterized with the split time between the two

populations, the effective population size of the ancestral

population, and the recombination rate, which is assumed to be

constant along the segment of the genome analysed. The model

assumes that no migration occurs after the population split. We

validate the model by simulations and then apply it to the recently

sequenced genomes of the two orangutan subspecies Bornean (P. p.

pygmaeus) and Sumatran (P. p. abelii) [17]. We estimate the sub-

species divergence time to be 334+145 thousand years ago (kya),

and the effective population size of the ancestral orangutan to be

26,800+6,700 estimated from the autosomal chromosomes, and

about 3=4 of that for the X chromosome: 20,400+7,400.

Results

A coalescent time hidden Markov model
We have developed a new coalescent hidden Markov model

(CoalHMM). The properties characterizing CoalHMMs [5,12]

Figure 1. The ancestry of two genomic sequences. The figure illustrates the ancestry of two genomic sequences (in red and blue) from two
different populations. Tracing their ancestry back in time, the first event we see is a recombination (at time r1 and sequence position b1) within the
‘‘blue population’’. This is followed by the population split (at time t1), and thus the ‘‘red genome’’ enters the ancestral population as a contiguous
segment, while the ‘‘blue genome’’ enters the ancestral population in two fragments. The process in the ancestral population now under goes
coalescence events (at times c1, c2 , and c3) and a recombination event (at time r2 and sequence position b2). A consequence of the coalescence
process with recombination is that the coalescence times, and thus the sequence divergence, changes along the genomic alignment at the
recombination break points (illustrated on the right).
doi:10.1371/journal.pgen.1001319.g001

Author Summary

We present a hidden Markov model that uses variation in
coalescence times between two distantly related popula-
tions, or closely related species, to infer population
genetics parameters in ancestral population or species.
The model infers the divergence times in segments along
the alignment. Using coalescent simulations, we show that
the model accurately estimates the divergence time
between the two populations and the effective population
size of the ancestral population. We apply the model to
the recently sequenced orangutan sub-species and esti-
mate their divergence time and the effective population
size of their ancestor population.

A Coalescence Time HMM
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are that they model the coalescent process as a Markov process

along an alignment, and conditional on the alignment can infer

the unobserved genealogies that lead to the alignment, or integrate

over the distribution of genealogies. While the coalescent process is

only Markovian in time but not in space [16,18], we have

previously shown that we can reasonably approximate it as a

Markov process along the sequence [12,19,20] and doing this

enables us to develop very efficient inference algorithms compared

to the sampling based approaches usually needed to capture the

true coalescent process.

The crux of developing a CoalHMM is specifying the

transition probabilities of the hidden Markov model in terms of

the coalescent process parameters, e.g. recombination rates and

effective population sizes. In Hobolth et al. [5], this issue was

largely ignored and coalescent parameters were obtained from

post-processing of inferred hidden Markov model parameters. In

Dutheil et al. [12] the transition probabilities were derived from

the coalescent process through a set of rather complicated

equations and simplifying assumptions. The approach we

describe in this paper greatly simplifies the computation of

transition probabilities and does so without simplifying assump-

tions beyond assuming that the process is Markovian along the

alignment.

The key insight behind our new approach, also observed in

Dutheil et al. [12], is that since we assume that the process is

Markovian along the alignment we need only consider the

genealogies of pairs of adjacent nucleotides. The new approach

differs from Dutheil et al. in the way we exploit this insight. Here,

we explicitly consider the coalescent with recombination process

for pairs of nucleotides and derive the exact transition probabilities

from this model.

The new approach that allows us to calculate the exact

transition probabilities from the coalescence process with recom-

bination differs from the previous CoalHMMs we have developed,

where this process has been approximated.
Modeling genealogies as a two-nucleotide coalescent

process. In our new CoalHMM approach, we use two

different Markov models: one that models the coalescence times

along the sequences as a discrete space Markov model, and one

that models the ancestry of two neighboring nucleotides back in

time as a continuous time, finite state Markov model. The first

model is used as the hidden Markov model when estimating

parameters, while the second is used to compute the transition

probabilities of the first.

The coalescent process, when viewed as a process in time rather

than along the alignment, is a continuous time Markov chain

(CTMC) on a finite state space. For a single sequence, the two

nucleotide CTMC has just two states: the two adjacent nucleotides

can be linked, i.e. sitting on the same haploid chromosome, or

unlinked, i.e. sitting in two different chromosomes (see Figure 2). A

recombination event changes the CTMC from the first state to the

second and a coalescent event changes the CTMC from the

second state back to the first. The rate of change from the first

state to the second is the rate of coalescence events (one coalescent

event per 2Ne generations, where Ne is the effective population

size), and the rate of change from the second state to the first is the

rate of recombination events.

Assuming that the two nucleotides are initially linked, i.e. that

the CTMC is initially in state 1, we can calculate the probability

that it is in state 1 or state 2 for any point in time (see Figure 3).

This probability distribution will tend toward an equilibrium

defined by the ratio between the coalescent rate and the

recombination rate. As the coalescence rate is inversely propor-

tional to the effective population size, the larger the effective

population size the less likely that the nucleotides are linked at the

equilibrium, although in general the CTMC is much more likely

to be in the linked state than the unlinked as in general the

recombination rate for two neighboring nucleotide is orders of

magnitude smaller than the coalescence rate.

For two sequences, the coalescence process we consider

contains two adjacent nucleotides from each sequence, and the

state space consists of all possible ways that these four

nucleotides can be combined: linked or unlinked between left

and right nucleotides and having coalesced into their most

recent common ancestor or not for nucleotides at the same

position. In Figure 4 we have summarized the state space of the

system. The 15 states correspond to the various ways the two

genomes (the top and the bottom row) can link the left and

right nucleotides or be merged in common ancestors (white

dots).

When modeling the ancestry of one sequence for each of two

populations, the system will first evolve independently as two

single-sequence CTMCs back in time and then merge into a single

two-sequence CTMC with initial probability distribution given by

the end-states of the single sequence CTMCs. The two sequences

from the single-sequence CTMCs can, after entering the two-

sequence CTMC, recombine and coalesce as in the single-

sequence CTMC, but now with the possibility of linking the left-

nucleotide from one population to the right-nucleotide of the other

population. Figure 5 shows the probability distribution of the two-

sequence CTMC states for states 1 to 7 (see Figure 4) that

corresponds to the states where left and right nucleotides are

recombining and coalescing.

In addition to these events, it is possible for the two left-

nucleotides or the two right-nucleotides to coalesce into the most

recent common ancestor of the two original sequences. These

events are irreversible in the CTMC and eventually both left and

right nucleotides have found a most recent common ancestor and

the two-sequence CTMC essentially reduces to the single-

sequence CTMC.

Calculating transition probabilities from the two-

nucleotide coalescent process. From the two CTMC

systems we can compute the probability distribution of

genealogies of adjacent nucleotides back in time. We use this to

construct the second Markov model, a Markov process along the

alignment, in the following way: 1) we split the coalescence times

back in time into a finite set of time intervals that will be the states

of the hidden Markov model along the alignment, 2) for time

intervals i and j we use the CTMC system to compute the

probability that the left nucleotides find their most recent common

ancestor in interval i while the right nucleotides find their most

recent common ancestor in interval j, Pr (L[i,R[j) and 3). We

calculate the transition probability of moving from interval/state i

to interval/state j as
Pr (L[i,R[j)

Pr (L[i)
.

Of these steps, 1) and 3) are trivial to achieve. Step 2) is achieved

by considering four different sub-sets of the two-sequence CTMC:

VB, VL, VR and VE . The first set consists of the states where

Figure 2. States for the single species system. For a single species
we have two nucleotides, one left and one right, and these can either
be linked or unlinked.
doi:10.1371/journal.pgen.1001319.g002

A Coalescence Time HMM
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neither left nor right nucleotide have reached their most recent

common ancestor, the next two consist of the states where only the

left or only the right, respectively, have reached their most recent

common ancestor, and finally the last set consists of the states

where both left and right nucleotides have reached their most

recent common ancestor. Tracing the history of the nucleotides

back in time, all histories begin in a state in VB and end in VE .

Most histories go directly from VB to VE (where both left and right

nucleotides coalesce at the same time by being linked at the time

they reach their most recent common ancestor) but some find a

most recent common ancestor first at the left nucleotide, a state in

VL, or first at the right nucleotide, a state in VR, before reaching

VE . The probability of being in the four classes of states as a

function of time is shown in Figure 6.

From the probability distribution of the four state classes back in

time, we can construct the joint probability of having the left

nucleotide finding its most recent common ancestor in interval i
and the right nucleotide finding its most recent common ancestor

in interval j in a straightforward manner (see Methods for details).

To get the probability e.g. for i~j we calculate the probability that

the system is in VB until it reaches interval i and then is in VE

when it leaves interval i (see Figure 7, left). For ivj (and

symmetrically for jvi) we calculate the probability that the system

is in VB until it reaches interval i, leaves interval i in VL and stays

in VL until it reaches interval j which it leaves in VE (see Figure 7,

right).

Model validation: simulation study
The power and consistency of the model can be evaluated

through simulations. The HMM is designed to approximate the

coalescent with recombination process. Thus, we simulate data

using a coalescent with recombination and then compare inferred

parameters from the HMM model with the values used in the

simulations.

We first examined the fit between the coalescent process with

recombination and the Markov approximation by examining the

empirical distribution of time spent in each time interval with the

Markov calculations (see Supplemental Section 1.1 of Protocol S1).

Figure 3. State probabilities for the single sequence two-nucleotide coalescent process as a function of time. The figure shows the
probability of the two neighboring nucleotides being linked in the single-sequence CTMC and how this probability evolves over time. The probability
for being unlinked is, of course, one minus the probability of being linked, since the CTMC has only two states. The two different lines correspond to
two different coalescence rates. For population 1, the coalescence rate is set to 1 (so the x-axis is in units of 2Ne generations for this species), while for
population 2 the coalescence rate is half that, corresponding to population 2 having twice the effective population size of population 1. The
recombination rate is set to 2:10{4 . Assuming 2Ne of 20,000 for population 1 and 40,000 for population 2, and a generation time of 20 years, this
corresponds to 1 cM/Mbp and 1 unit on the x-axis corresponds to 400,000 years. The separation time we infer for the orangutan sub-species is
around 0:75 on the x-axis, where the system is still far from equilibrium.
doi:10.1371/journal.pgen.1001319.g003

Figure 4. States for the two species system. For the two species system, we have one or two left and one or two right nucleotides. One when
the left or right nucleotides have found their MRCA (open circles) and two otherwise (filled circles). Left nucleotides can be linked with right
nucleotides or not.
doi:10.1371/journal.pgen.1001319.g004

A Coalescence Time HMM
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Hereafter we estimated the probability of moving from one time

interval to another based on simulations and compared that to the

transition probabilities in the HMM (see Supplemental Section 1.2

of Protocol S1), and generally a good match between the two was

found. Next we computed the likelihood surface for our three main

parameters and inspected these manually. Generally we found the

maximum likelihood near the true value for all three parameters,

but with a rather flat likelihood for the recombination rate

parameter (see Supplemental Section 1.3 of Protocol S1).

Most important for the model is the estimation accuracy. To

examine this, we simulated 100 data sets 500 kbp in length with

the following parameters: 1) a sub-species divergence time of

335 kya, 2) an effective population size for the two sub-species and

the ancestral species of 25,000, and 3) a recombination rate of

1.5 cM/Mb. We then explored how well the model estimates

these parameters. Since the model uses intervals of coalescence

times to estimate the parameters, we expect that the number of

states in the HMM will affect the estimates. We explored this by

analyzing the simulated data sets with 5, 10 and 15 states. The

results are shown in Figure 8.

As is evident from the figure, there is a bias in the estimates: we

tend to underestimate the split time and at the same time

overestimate the ancestral population size. Similar biases were

observed in our previous model based on incomplete lineage sorting

rather than changes in divergence time [12]. Both biases are

probably caused by the same modeling artifact: For the model to fit

Figure 5. Evolution of VB states in the two-sequence CTMC. The figure shows the beginning states in the two-sequence CTMC and how their
probabilities evolve over time. The asymmetry between which original sequence is linked versus unlinked, when only one sequence is linked (the
second plot from the top) is caused by the differences in effective population size within the single-sequence CTMC system used for determining the
initial distribution of the two-sequence distribution. The initial probability is taken from the two populations in Figure 3 at time 10 (the right edge of
that figure) and the rates in the two-sequence system correspond to those for population 1 in Figure 3, i.e. a coalescence rate of 1 and a
recombination rate of 2:10{4 .
doi:10.1371/journal.pgen.1001319.g005

A Coalescence Time HMM
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the data, it must predict a sequence divergence close to the observed

value, so if the split time is decreased, the effective population size

must increase to reach the same average divergence, and vice versa.

The recombination rate is somewhat underestimated for all runs.

To elucidate the source of the biases we did an extensive set of

simulations with different subsets of our model assumptions met, see

Protocol S1. Simulating directly from the HMM, where all model

assumptions are met, we find no bias in any of the three parameters.

Simulating from the coalescent process with recombination but

discretizing time to the mean of each time interval, we only see the

bias on the recombination rate but no longer the biases on

divergence time and effective population size. Simulating from a

coalescent process with the Markov assumption but continuous time

intervals [20] we see the bias on the recombination rate disappear.

Based on the simulation study, we believe that the bias in the

recombination rate is caused by the Markov assumption along the

alignment, and that the bias in divergence time and effective

population size is caused by the discretization of coalescence times

into fixed intervals, and we observe that the bias indeed decreases

as we increase the number of intervals and thus more accurately

capture the true distribution.

With 10 states, the biases on split time and effective population

size are reduced compared to 5 states, and the gain of adding an

additional 5 states is minor in comparison. For computational

Figure 6. Evolution of the two-sequence CTMC. The figure shows how the probability of being in one of the four classes of states evolve over
time. Initially, the system is in VB with probability 1, but this probability drops exponentially. With a relatively small probability the system will go
through a state in VL or VR before ending up in VE but mainly VB states move directly to VE states. The rate parameters used are the same as those
in Figure 5.
doi:10.1371/journal.pgen.1001319.g006

A Coalescence Time HMM
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efficiency (since the algorithm scales quadratically in the number

of states), we used 10 states in the orangutan analysis.

Analysis of the orangutan sub-species
We aligned the two orangutan genomes and divided the

alignment into 2,689 1 Mbp segments, obtaining independent

maximum likelihood estimates of the divergence time, effective

population size of the ancestral species, and recombination rate for

each segment. The estimates are based on a mutation rate of 10{9

per year and a generation time of 20 years, giving m~2:10{8

substitutions per generation. For the effective population size of

the two sub-species we used estimates from Becquet and

Przeworski [3]: 2Ne~10,000 for Bornean orangutans and

2Ne~17,000 for Sumatran orangutans. The genome-wide

estimates are summarized in Table 1.

After inferring parameters for each segment we removed outlier

segments where the inferred divergence time was below 5

thousand years or above 1 million years; the effective population

size was below 5,000 or above 100,000; and where the

recombination rate was below 0.1 or above 10. In total 203

segments were removed, leaving 2486. Removing these outliers

had very little effect on the genome-wide estimates (see Table 1).

Divergence time. We obtained an independent estimate of

the sub-species divergence time for each of the 1 Mbp segments.

Figure 9 shows the distribution of these estimates for each

chromosome and Supplemental Figure 3 of Protocol S1 shows the

distribution for the entire genome. In general, the estimates on the

different chromosomes are consistent. For chromosome 21, the

genomic mean estimate is not within the 50% confidence interval

(the blue box in the box-plot), but it is within the 95% confidence

interval. The genome-wide average is 334+145 thousand years

ago (kya).

Ancestral effective population sizes. Figure 10 and

Supplemental Figure 4 of Protocol S1 show the estimates of the

ancestral effective population size for each chromosome and for the

entire genome, respectively. Since the X chromosome is expected to

have an effective population size of 3=4 of that of the autosomes, we

estimate the genome-wide effective population size from the

autosomes only and obtain 26,800+6,700. The estimate for the

X chromosome is 20,400+7,400, close to the expected 3=4 of the

estimate from the autosomes.

As for the estimates of the divergence time, the estimates are

consistent between chromosomes. Again, the genomic mean is not

contained within the 50% confidence interval, but is within the

95% interval. This is likely to be related to the observation for the

divergence time estimates in Figure 9, as the parameter for

divergence time and for ancestral population size are confounded.

In general, if we underestimate the divergence time we

overestimate the effective population size, leaving the average

divergence less affected.

Recombination rate. Figure 11 and Supplemental Figure 5 of

Protocol S1 show the estimates of the recombination rate for each

chromosome and for the entire genome, respectively. We estimate the

genome-wide recombination rate to be 0:95+0:72 cM/Mb. The

absolute value should be interpreted with caution, however, since we

know from the simulation study that the recombination rate is likely to

be under-estimated. The estimated recombination rate correlates

positively with the equilibrium GC content, as estimated from the

substitution model (Figure 12) as has also been observed for human

polymorphism data.

Figure 7. Transition probabilities calculated from the CTMC system. The hidden Markov model transition probabilities are calculated by
considering the probabilities, in the two nucleotide CTMC system, that either both left and right nucleotide finds a most recent common ancestor in
the same time interval (left) or that the left nucleotide finds a most recent common ancestor in one given interval, i, and the right in another, j (right).
doi:10.1371/journal.pgen.1001319.g007

A Coalescence Time HMM
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Differences between chromosomes. Figure 13 shows the

average estimates of the key parameters for each chromosome as a

function of the chromosome size (measured as the number of

segments analyzed). We find no correlation between the

divergence time and the chromosome size, but a negative

correlation between inferred recombination rate and size. This

suggests higher recombination rate per base pair at small

chromosomes as is also observed in the human genome.

Interestingly, the effective population size is also significantly

higher on the smaller and more recombining chromosomes.

Robustness of the results. The estimates are conditional on

the parameters we have kept fixed in the model: the mutation rate,

the generation time, the effective population size of the two present

day populations, and the number of hidden states.

Since coalescence time is scaled in time units of 2Ne generations

and emission probabilities are given by the mutation (substitution)

rate times the divergence time, changing either the assumed

generation time (20 years per generation) or the assumed mutation

rate (2:10{8 mutations per generation) will change the estimated

divergence time linearly: since time in the model is measured in

Figure 8. Estimation accuracy as a function of the number of hidden states. The boxplots show the estimated parameters (divergence time,
ancestral effective population size, and recombination rate) for 100 simulated data sets. The true value is showed as the blue dashed line. The
number of states in the HMM, i.e. the number of coalescence time intervals used for the estimation takes the values 5, 10 and 15. There is a clear bias
in the estimates where we tend to underestimate the divergence time and overestimate the effective population size. This bias is caused by the
discretisation of continuous coalescence times into fixed intervals, and the bias is reduced as the number of states (i.e. intervals) increases. The
recombination rate is under-estimated, which is a consequence of the Markov assumption.
doi:10.1371/journal.pgen.1001319.g008

A Coalescence Time HMM
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generations, halving the generation time would halve the

divergence time when measured in years. Similarly, assuming

that the mutation rate is twice as high, the inferred divergence

time would be half as long ago.

Less obvious is the dependency on the present day effective

population sizes and the number of states in the HMM. To test this

we varied the fixed effective population sizes by a factor of 10 in both

direction and alternatively tried constraining the three effective

population sizes in the model to be equal. We found the resulting

changes in the estimates to be insignificant. Similarly, changing the

number of states did not change the estimated parameters

significantly. For details, see Supplemental Section 2.3 of Protocol S1.

Discussion

We present a new model for the analysis of two genomes from

diverged populations or closely related species, with the aim of

estimating divergence time, the effective population size of the

ancestral population, and the recombination rate.

Simulation results show that the model infers the key

parameters without much bias when the number of coalescent

states is sufficiently high (we recommend at least 10 states). The

estimates are not much affected by assumptions of the effective size

of the present day populations, which implies that the model can

be used for analysis of population pairs where only the order of

magnitude of these quantities are known. That the model

produces consistent results may seem surprising since the model

is essentially only modeling what happens from one nucleotide to

the next and not any higher order correlations. This is very

fortunate since it is the Markov property that enables calculations

to be sufficiently efficient for genome-wide analysis.

Consequences of migration
The present model assumes a simple population split or an

allopatric speciation. To test the consequences of this assumption,

we simulated data sets where a single population first splits into

Table 1. Genome-wide parameter estimates.

Genome-wide estimate Including outliers

Sub-speciation time 334,000+145,000 314,000+168,000

Ancestral Ne (autosomes) 26,800+6,700 27,500+7,200

Ancestral Ne (X) 20,400+7,400 20,700+8,800

Recombination rate 0:95+0:72 0:97+0:86

Genome-wide estimates of the key parameters, with and without outlier
estimates removed. The ancestral effective population size is estimated
separately for the autosomal chromosomes and the X chromosome since the X
chromosome by coalescence theory is expected to have an effective population
size of 3=4 of the autosomes.
doi:10.1371/journal.pgen.1001319.t001

Figure 9. Distribution of sub-speciation time estimates for each chromosome. The box plot shows the distribution of the estimated sub-
speciation time on each chromosome. The dashed line shows the genome-wide average. In general, the estimates are reasonably consistent between
the chromosomes, although chromosome 21 has a slightly smaller value.
doi:10.1371/journal.pgen.1001319.g009
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two populations with some gene-flow between the populations,

and some time later the gene-flow stops (see Protocol S1).

In this setting, the divergence time we infer is between the first

and the second time point; usually closer to the time point where

gene-flow stopped unless the migration rate is very low. This

makes sense since the split time modeled in our approach is exactly

the termination of genetic flow between the two lineages, and not

the introduction of structure in the ancestral population.

Only the split time parameter seemed to be affected to a larger

extend by gene-flow. The effective population size was slightly

over-estimated when gene-flow is present, more so if the time

interval and migration rate are large, but the effect is small relative

to the variance on the estimates. The recombination rate is

estimated to be somewhat higher with gene-flow, again higher

when the time interval and mutation rate are high, but is still

biased and estimated below the simulated rate.

Consequences of unknown phase
Our model assumes that the input data is an alignment of

two haploid genomes where neighboring nucleotides are linked on

the same chromosome, but in the analysis we use reference

genome sequences that each are a mosaic of at least two haploid

genomes.

A consequence of this is that the assumption we make about the

two neighbouring nucleotides being linked at the present day is

incorrect (see also Figure 3). If the recombination/coalescence

process is close to equilibrium, assumptions about the starting

point are irrelevant, but with an effective size on the order of

10,000 and speciation time of 330,000 years we do not expect that

the process has reached equilibrium, and thus the unknown phase

could potentially affect our estimates.

However, varying the present day effective population size

parameters an order of magnitude in either direction (see

Supplemental Figure 10 of Protocol S1) gave essentially identical

results for the parameter estimates, so we trust that treating the

reference genome sequences as if they were present day haploid

genomes is not a source of bias.

Orangutan analysis
Our estimates on effective sizes and speciation time are in close

agreement with an analysis based on SNP frequencies from full

genome sequencing of five individuals of each of the subspecies

(included in the Orangutan Genome paper [17]). Results disagree

with Bequet and Przeworski [3] who reported a split time of 1.4

million years and an ancestral effective size of 86,900 (C.I.

52,400{{143,000). They used MIMAR to infer parameters.

The same authors have shown that MIMAR is quite sensitive to

population structure in the ancestral species. Furthermore, their

parameters correspond to an average divergence time of the two

subspecies of 1.4 my plus 2Ne years. If we assume 20 years per

generation then 2Ne years will be 2:86000:20~3:4 million years

and a total divergence of 4:8 million years. This does not seem to

be supported by the average divergence of the subspecies which is

estimated close to 1:1 million years [17], therefore we believe there

must be a bias in the estimates by Becquet and Przeworski.

The X chromosome is found to have an effective population size

almost exactly 3/4 of the autosome average. This suggests that

selection has not affected the X chromosomes in a different way

Figure 10. Distribution of effective population size estimates for each chromosome. The box plot shows the distribution of the estimated
ancestral effective population on each chromosome. The dashed line shows the genome-wide average. In general, the estimates are reasonably
consistent between the chromosomes, with one exception being chromosome 21. Chromosome X is within the expected range of 3=4 of the
autosomal chromosomes.
doi:10.1371/journal.pgen.1001319.g010
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than the autosomes between the two orangutan sub-species, in

contrast to the reports from the human-chimpanzee analyses [2,5].

Further validation that the model contains information in

addition to a simple sliding window analysis of divergence is

provided by the observation that small chromosomes are found to

have higher recombination rate estimates. This is in line with

genetic maps of the human genome (and other genomes) and is

believed to be a consequence of the necessity of a least one

crossover event per chromosomes for proper segregation in

meiosis. The observed correlation between GC content and

recombination rate was also expected from similar correlations in

other species.

This leads us to the negative correlation between effective size

and chromosome size observed. Why should smaller chromosomes

have higher effective population sizes? We suggest that this is due

to their higher average recombination rates, which reduces the

effects of background selection and hitch-hiking, both of which

tend to increase coalescence rates and thus decrease estimates of

effective population size. If this suggestion is true, it shows a large

role for selection on determining effective population size, in

accordance with the large role proposed in the recent study by

McVicker et al. [21].

Future prospects
The simple model presented here can be extended to more

populations by extending the number of transition states. It may

therefore also be combined with the HMM models that analyse

incomplete lineage sorting [5,12]. This would allow better

consideration of substitution rate heterogeneity along the genome.

The limiting factor in a straightforward extension of the method

to more genomes is the state explosion in the CTMC as more and

more combinations of sequences must be considered. While the

single sequence CTMC has two states and two non-zero

transition-rates, and the two sequence CTMC has 15 states and

44 non-zero transition-rates, three sequences would have 203

states and 1,118 non-zero rates and four sequences would have

4,140 states and 35,446 non-zero rates, making the approach

impractical for more than a few genomes. We do, however, believe

that it is possible to extend the method to three genomes,

combining the CTMC approach presented here with the

incomplete lineage sorting model used in our previous CoalHMMs

[5,12].

We also believe that the approach of computing transition

probabilities based on coalescence calculations on two neighboring

nucleotides can be extended to more complex scenarios such as

gene flow following the population split or (sub-)speciation. Since

we are explicitly modeling the coalescence process for two

nucleotides, the framework generalizes to essentially all scenarios

that can be modeled with the coalescence process, without the

need for approximating these.

Posterior decoding of the states is also a promising avenue for

inferring changes in population size over time in the ancestral

Figure 11. Distribution of recombination rate estimates for each chromosome. The box plot shows the distribution of the estimated
recombination rate for each chromosome. The dashed line shows the genome-wide average.
doi:10.1371/journal.pgen.1001319.g011

A Coalescence Time HMM

PLoS Genetics | www.plosgenetics.org 11 March 2011 | Volume 7 | Issue 3 | e1001319



population [1,5,12,21]. Likewise, posterior decoding might be a

powerful approach to the detection of selective sweeps in the

ancestral population as long segments with the same divergence

time.

A simulation study is presently exploring this opportunity of

ancestral demographics and we believe that the present model is

ideally suited for this.

Materials and Methods

The orangutan sub-species alignment
The pairwise sub-species alignment was created from a set of

36 bp paired-end Illumina reads from a single Bornean Orang-

utan individual, which were mapped to the reference Sumatran

genome assembly, and sorted by genomic position. Only reads

that passed a stringent set of filters were used to create the Bornean

sequence and alignment. For single-end reads, the criteria were:

mapping quality at least 10 (Phred scale), likelihood score at most

90 (Phred), at most 3 variants with respect to the reference, and at

most a single gap. for paired-end reads, the criteria were identical,

except that a likelihood score of up to 140 was accepted, and in

addition the distance between the mate pairs was required not to

exceed 700.

A pileup was next created from those reads passing filters.

Variants (both SNPs and indels) were called based on a simple

majority-vote scheme, weighted by the qualities of the bases. Bases

that were within 5 bp of either end of a read, were not taken into

account, because uncalled indel variants cause systematic apparent

base changes that otherwise lead to false SNP calls. The voting

scheme consisted of adding together the base qualities of the eligible

bases for each supported variant, where the reference base was

assigned a prior of 30 (on a Phred scale). An indel was called if it was

seen at least twice, with at least one being called at a minimum

distance of at least 10 bases from either end of the read, not counting

uncalled bases, and bases with quality score 0. A variant was called

only when the coverage at the locus (after filtering, but not including

the 5 bp read fringe filter) was between 3 and 20 reads.

The algorithm produced a pairwise alignment in .axt format

directly from the resulting stream of indel and SNP calls. Regions

where insufficient read coverage was available to call variants were

Figure 12. The correlation between GC content and inferred recombination rate. There is a significant positive correlation between
recombination rate and (equilibrium) GC content (r2~0:03,Pv2:10{16).
doi:10.1371/journal.pgen.1001319.g012
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Figure 13. The correlation of inferred parameters with chromosome size. A) There is no correlation between the estimated sub-speciation
time and chromosome size. B) A negative correlation between chromosome size and estimated recombination rate (r2~0:29,P~0:00287). C) A
negative correlation between chromosome size and inferred effective population size (r2~0:2969,P~0:004226). The X chromosome was removed
from the regression of effective population size.
doi:10.1371/journal.pgen.1001319.g013
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annotated in lower case, and not considered in the subsequent

analysis. It is important to note that regions of possible paralogy, such

as recent segmental duplications, would cause low mapping qualities

in the reads derived from them. Possible paralogous regions therefore

do not contribute towards the subsequent analyses.

The coalescent hidden Markov model
To estimate population genetic parameters we exploit how the

underlying coalescence process causes the divergence time of the

two genomes to vary along the alignment. We split the possible

divergence times into discrete time intervals and use these as states

in a hidden Markov model, where transition and emission

probabilities are derived from parameters in the coalescent process.

Transition probabilities are modelled using two-nucleotide contin-

uous time Markov chains; the emission probabilities are modelled as

continuous time Markov chain substitution models in the usual way.

Modelling sequence divergence using two-nucleotide

continuous time Markov chains. We approximate the

distribution of segment lengths in time using two-nucleotide

continuous time Markov chains (CTMCs), where left and right

nucleotides can be linked or unlinked, and where left/right

nucleotides can be coalesced (i.e. have found their most recent

common ancestor) or not.

We model the evolution of a sequence in a single population as

a two state CTMC. State 1 corresponds to the two nucleotides

being linked and state 2 corresponds to the two nucleotides being

unlinked (see Figure 2). Linked nucleotides become unlinked with

rate R and unlinked nucleotides become linked with rate C.

Letting r be the per generation per nucleotide recombination rate

we have R~2Ner. Furthermore we have C~Ne=Nref
e , where

Nref
e is the effective population size for the reference population.

The rate matrix for a single population is thus

Q1~
{C C

R {R

� �
, ð1Þ

and the state of the two nucleotides at time t is determined by the

probability matrix P(t)~exp Q1tð Þ. If the initial nucleotides are

linked (in state 1) then they are also linked at time t with

probability P(t)11 and unlinked with probability P(t)12.

The ancestral population is modelled using a CTMC where

nucleotides can have coalesced 0 or not
.
.

and where left and right

nucleotides can be linked .{. or not . .. The state space is

summarized in Figure 4, and the corresponding rate matrix is given by

VB VL VR VE

Q2~

VB

VL

VR

VE

{ C C 0 C C 0 C 0 0 C 0 0 0 0

R { 0 C 0 0 0 0 C 0 0 C 0 0 0

R 0 { C 0 0 0 0 0 C 0 0 C 0 0

0 R R { 0 0 0 0 0 0 0 0 0 C 0

R 0 0 0 { 0 C 0 0 C 0 C 0 0 0

R 0 0 0 0 { C 0 C 0 0 0 C 0 0

0 0 0 0 R R { 0 0 0 0 0 0 C 0

{ C C 0 C

R { 0 C 0

R 0 { C 0

{ C C 0 C

R { 0 C 0

R 0 { C 0

{ R

C {

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð2Þ

The size of the state space is 15 and the rate matrix is naturally

structured in four different classes. The first class (with seven

states) are the states where coalescence of left or right nucleotides

has not yet occurred. The second class of states (with three states)

consists of the states where coalescence of the left nucleotides has

occurred, and the third class of states is where coalescence of

right nucleotides has occurred. Finally, the last class of states is

the states where coalescence of both right and left nucleotides has

occurred. We call the four classes of states VB, VL, VR and VE ,

where L and R stands for right and left, respectively, B stands for

beginning, and E for ending. Note that the chain must start in the

beginning states 1–7. Also note that states 1–10 are transient

while state 14 and 15 are persistent.

In Figure 14 we show the isolation model of the two

populations. Back in time, the two populations are first isolated

and behave according to the single sequence system. The two

populations have effective population sizes N1
e and N2

e , respec-

tively, with corresponding rate matrices Q1
1 and Q2

1.

At the population divergence time t1 the two sequences system

is entered. The two sequences system is entered in state 1-4

depending on the states of each of the two single sequence systems.

Let p1 denote the initial distribution of the two species system. The

two sequences system has effective population size Na
e and the

corresponding rate matrix is Qa
2.

Transition probabilities in the hidden Markov

model. The states of the hidden Markov model (HMM)

correspond to different coalescence times. We use k time

intervals, with break points t1,t2, . . . ,tk{1. State i then

corresponds to coalescence in the interval ½ti,tiz1�, where

tk~?. The CTMC allows us to determine the transition

probabilities of the HMM.

The distribution of the CTMC states, when entering HMM

state i (at time ti) is given by pi~p1exp Q ti{t1ð Þð Þ where

Q~Q2. Let pkz1~ limt?? p1exp Qtð Þ be the equilibrium

distribution for the CTMC.

Let Pr (L[i,R[j) denote the probability that the left nucleotide

in the two sequences CTMC coalesce in HMM state i, i.e. in the

time interval ½ti,tiz1� and that the right nucleotide coalesce in

state j, i.e. in the time interval ½tj ,tjz1�. Let Pr (L[i) denote the

(marginal) probability that the left nucleotide coalesce in state i.

The transition probability from state i to state j in the HMM is

then given by

Pr (i?j)~ Pr (R[jjL[i)~
Pr (L[i,R[j)

Pr (L[i)
: ð3Þ

The marginal coalescence times are given by the exponential

distribution with rate C; Pr (L[i)~F (tiz1){F (ti) where

F (t)~1{e{t=C .

Let X (t) denote the two-nucleotide state of the CTMC at time t
and let P(t) denote the probability distribution of the CTMC at

time t. If i~j we obtain the joint probability Pr (L[i,R[j) from

Pr L[i,R[ið Þ~ Pr X tið Þ[VB,X tiz1ð Þ[VE jP t1ð Þ~p1ð Þ

~
X
k[VB

X
‘[VE

Pr X tið Þ~kjP t1ð Þ~p1ð ÞPr X tiz1ð Þ~‘jX tið Þ~kð Þ

~
X
k[VB

X
‘[VE

p1eQ ti{t1ð Þ
� �

k
eQ tiz1{tið Þ
� �

k‘
,

and if ivj we get

ð2Þ
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Pr L[i,R[jð Þ~ Pr X tið Þ[VB,X tiz1ð Þ[VL,X tj

� �
[VL,X tjz1

� �
[VE jP t1ð Þ~p1

� �
~
X

k[VB

X
‘[VL

X
m[VL

X
s[VE

p1eQ(ti{t1)
� �

k
eQ(tiz1{ti )
� �

k‘
eQ(tj {tiz1)
� �

‘m
e

Q(tjz1{tj )
� �

ms

In the case iwj similar calculations apply, but due to

symmetries in the process within the ancestral species,

Pr L[i,R[jð Þ~ Pr L[j,R[ið Þ also applies.

Calculated this way, the transition probabilities are exact

according to the coalescence process with recombination and,

unlike previous CoalHMMs, not an approximation to the process.

While the CoalHMM we have developed here is still an

approximation to the full coalescent process, due to the Markov

assumption and the way we define emission probabilities, this is

still an important improvement over previous CoalHMMs.

The equations above are valid for any choice of time intervals as

the states in the CTMC. For the analysis of the orangutan sub-

species we chose a simple strategy of choosing the intervals to be

equi-probable, i.e. such that the stationary state probability for the

HMM puts equal probability on all states.
Emission probabilities. Emission probabilities are the

probabilities that a given pair of nucleotides are separated by a

given time. A CTMC of nucleotide change is assumed, following

work by Felsenstein [22], and the probabilities are obtained by

computing the matrix exponential of the model generator,

multiplied by the divergence time. The large amount of data

available here allowed us to use parameter rich substitution models

like the General Time Reversible model. This model includes as

parameters the equilibrium GC content and distinct transition and

transvertion rates. When calculating the emission probability for a

state, we use the mean time point in the corresponding time

interval.

Estimating parameters
For each segment, the parameters estimated was the maximum

likelihood parameters. A modified Newton-Raphson algorithm

was used to find the maximum of the likelihood function. The first-

and second-order derivatives with respect to the parameters were

computed numerically using the three-points method.

Supporting Information

Protocol S1 Additional material; sections and figures.

Found at: doi:10.1371/journal.pgen.1001319.s001 (0.45 MB PDF)
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Figure 14. Isolation model. Left: Parameters of the model; we use the ancestral population as the reference population. Right: Rate matrices for
the single sequence systems and (ancestral) two-sequence system.
doi:10.1371/journal.pgen.1001319.g014
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