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Abstract: Hydrogels are a great ally in the pharmaceutical and biomedical areas. They have a three-
dimensional polymeric structure that allows the swelling of aqueous fluids, acting as an absorbent, or
encapsulating bioactive agents for controlled drug release. Interestingly, plants are a source of biogels,
specifically polysaccharides, composed of sugar monomers. The crosslinking of these polymeric
chains forms an architecture similar to the extracellular matrix, enhancing the biocompatibility of
such materials. Moreover, the rich hydroxyl monomers promote a hydrophilic behavior for these
plant-derived polysaccharide gels, enabling their biodegradability and antimicrobial effects. From an
economic point of view, such biogels help the circular economy, as a green material can be obtained
with a low cost of production. As regards the bio aspect, it is astonishingly attractive since the
raw materials (polysaccharides from plants-cellulose, hemicelluloses, lignin, inulin, pectin, starch,
guar, and cashew gums, etc.) might be produced sustainably. Such properties make viable the
applications of these biogels in contact with the human body, especially incorporating drugs for
controlled release. In this context, this review describes some sources of plant-derived polysaccharide
gels, their biological function, main methods for extraction, remarkable applications, and properties
in the health field.

Keywords: absorbent; bio-based; drug delivery; gums; hydrogels; lignocellulosic; scaffolds

1. Introduction

Hydrogels are defined as a system that can be composed of multiple components
(crosslinking agents, monomers, radical initiator) forming a three-dimensional (3D) poly-
meric network, the structure of which can be filled with water between the macromolecules’
space [1,2]. Their polymeric structure expands when dispersed in water, yielding a stable
dispersion thanks to hydrogen bonds. The hydrogel is associated with several variables that
mainly include the physical properties, composition, nature of swelling, origin, sources,
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ionic charges, rate of biodegradation, and observed nature of crosslinking defined its
classification [1,3] (Figure 1).
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The structure of hydrogels is formed by crosslinking the polymer through non-covalent
or covalent interactions, leading them to gelation [5–7]. However, some mechanical prop-
erties can be predictable, in a way that new functional groups can be introduced into
their network, via the addition of functionalized monomers that are compatible with the
polymerization procedure [6,8]. The diversity of hydrogels, natural and synthetic, with
different chemical compositions and polymer topologies, make them highly adaptable to
a wide range of industrial applications such as pharmaceutical, biomedical, cosmetical,
coatings, agriculture, contact lens, food packaging, etc. [9].

Biopolymers are natural polymers that caught the attention of researchers and society,
since they present a sustainable approach to materials development [10]. They are divided
into three groups: (i) polysaccharides, (ii) polypeptides, and (iii) polynucleotides. Polysac-
charides are the most abundant in nature, used for the development of drug delivery
systems, vascular tissue engineering, and biomedical applications [11,12]. The literature
reports the use of various hydrogels based on plant-derived polymers, such as cellulose,
hemicellulose, lignin, inulin, pectin, starch, guar gum, among others [13], as depicted in
Figure 2.

Biotechnology has focused on plant polysaccharides to obtain innovative products
to apply them following the bioeconomy principles, for which a set of practices are based
on the intelligent use of natural resources, to satisfy current needs while guaranteeing
resources for future generations [14]. There is an immense variety of raw materials in nature
that can be used in their primary form or used to obtain new materials. For pharmaceutical
applications, we have as examples, regenerative medicine, drug delivery, encapsulation of
active ingredients; and for cosmetics, hair care, oral care, skincare, and mucous membrane
care. The similarity between these three-dimensional polymeric networks with human
tissue has potential application in tissue engineering, due to their high biodegradability,
low development cost, and low toxicity [15].

In this review, we discuss the latest developments of plant polysaccharide hydrogels,
their main material sources, physicochemical properties, and applications that justify their
interest in the development of products for pharmaceutical and biomedical applications.
Current challenges and future perspectives are also addressed.
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2. Polymers

The word polymer is Greek, where poly means many, and mer refers to a repeating unit.
In this context, mer corresponds to a unitary group of atoms or molecules, which defines the
polymer characteristic arrangement. Thus, a polymer can be considered the combination of
long mers’ sequences.

Polymers are composed of giant molecules, called macromolecules, formed by the
union of monomers through chemical reactions (polymerization). For example, the poly-
merization of ethylene (ethene), produces polyethylene (PE), which can contain up to
50,000 carbon atoms in one polymeric chain.

There are several classifications for polymers, mainly in terms of structure, number of
monomers, method of obtaining, and nature. The linear, branched, or network polymers
structures are shown in Figure 3. Monomers’ quantity categorizes them as homopolymers
and copolymers. Homopolymers are polymers derived from just one type of monomer,
while the copolymers chains are formed by more than one type of monomer; both being
linear, branched, or crosslinked. Figure 4 illustrates the methods for their synthesis.

Natural polymers are all of those found in nature, for example, rubber, from the tree
Hevea brasiliensis, which produces isoprene as its main monomer; and polysaccharides (cel-
lulose, starch, glycogen, agar, pectin, aloe vera gel, xanthan gum, alginate, etc.). Synthetic
polymers are manufactured and generally contain petroleum-derived ingredients, e.g.,
polystyrene (PS), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP) [16].
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3. Plant-Derived Polymers

In recent years, products derived from natural, renewable, and biological-based
biodegradable products, including lignocellulosic biomass as raw material, have drawn
attention to the development of products for cosmetic, pharmaceutical, and biomedical
applications. Bio-gels can also be derived from natural resources, such as animals, plants,
algae, and microorganisms, some of which are depicted in Figure 5. These gels have a
crosslinked polymer network with hydrophilic characteristics, biodegradability, and bio-
compatibility that make them suitable for contact with humans. Therefore, their properties
involve viscosity enhancer, water swelling, adsorbent, etc., which sustainable architecture
of the gel promotes their applications in drug delivery systems [6,17]. It is worth mention-
ing that plant-derived gels have a GRAS certificate (Generally Recognized as Safe), which
enables their use as a material for encapsulating drugs for oral/buccal management and
their contact with the human body as scaffolds for tissue engineering [18].
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However, plant-derived polysaccharide gels have received attention for their potential,
as they are extracted from biomass, which is considered a green source that can be obtained
in a sustainable way. Accordingly, this paper focuses on plant polysaccharide gels, detailing
their sources, characteristics, extraction methods, main properties, and applications in the
pharmaceutical and biomedical fields.

3.1. Developments, Characteristics, and Characterization

The dynamic polysaccharides’ nature is highly diverse, due to their nature, composi-
tion, and chemical [19] interactions. Hydrogels are produced by several gelling methods
(physical, thermal, and ionic); however, chemical methods provide a controlled crosslinking,
resulting in modifications, as they can affect the polymer biofunctionality [20–22]. Accord-
ing to this, we present some chemical characteristics of plant-derived polysaccharides and
gelling behavior (Table 1) to better comprehend the engineered plant polysaccharide gels.

Table 1. Plant-derived polysaccharides, their types, chemical characteristics, and gelling behavior.

Polysaccharide Chemical Characteristics Gelling Behavior References

Cellulose

Easy chemical modification;
high degree of crystallinity;

adequate mechanical
properties, and great
specific surface area

It forms a semi-interpenetrating
polymer network [23,24]

Hemicelluloses
A huge amount of hydroxyl

groups allows chemical
modifications

It presents film-forming properties
due to gelation, with satisfactory

mechanical properties
[25,26]

Lignin
Rich in phenolic and aliphatic
hydroxyl groups that confer

chemical versatility

It can form a continuous phase by
gelation, with particulate-filled

polymer networks
[27,28]
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Table 1. Cont.

Polysaccharide Chemical Characteristics Gelling Behavior References

Inulin Branched fructosyl units
Typically, inulin properties highly

depend on their degree of
polymerization

[29,30]

Pectin Rich in carboxylate units
(methyl esters)

The degree of esterification controls
its gelling mechanism [31,32]

Starch
It is formed by rich

oxygenated units (amylose
and amylopectin)

First, the starch is modified by
physicochemical routes, and then,
using hot water, the starch breaks
down and swells the amorphous

and semi-crystalline regions; smart
starch gels can be obtained since it

responds to stimulus

[33,34]

Guar Gum
Mainly composed of

D-mannopyranose unit, with
various hydroxyl groups

Usually involves slow gelling
process time (low productivity) [35,36]

Hydrogel innovation and development are directly allied with characterization analy-
ses, to investigate several factors, including chemical composition and behavior, thermal
and mechanical properties, among others. Therefore, conventional assays for the hy-
drogels’ characterization consist of analyses of spectroscopy-Fourier-transform infrared
spectroscopy (FTIR-chemical bonds and functions), diffractometry-X-ray (XRD-degree
of crystallinity), microscopy-scanning electron (SEM-surface morphology), atomic force
(position of the chemical bond functions), thermal-differential scanning calorimetry (DSC-
material transitions by variation of temperature and time), thermogravimetry (mass varia-
tion for temperature increase), mechanical-(universal test-Young modulus), water swelling
(quantification of water intakes), and sol–gel (hydrogel crosslinks) [37,38].

3.2. Cellulose

Cellulose is the most abundant polymeric material on our planet, made up of β- (1→4)
glucose units. It is a linear homopolymer with extensive hydrogen bonding forces acting to
promote its crystalline properties (Figure 6). There is an increasing interest in producing
materials from cellulose since it is a sustainable source, with large availability, low cost,
and non-edible competitiveness as regards the biorefinery concept to produce value-added
cellulose-based materials.

This is a crucial ingredient for the manufacturing of various products, such as paper,
textiles, membranes, biofuels, and chemicals. Its chemical structure is determined by inter-
molecular interactions, crosslinking reactions, chain length, and the distribution of groups
along its polymeric chains [39]. Unlike synthetic polymers, cellulose-based polymers have
a distinct polyfunctionality, high rigidity, sensitivity to hydrolysis, and oxidation of the
chain-forming acetyl groups that determine their chemistry [40–43].

The extraordinary swelling capacity of cellulose-based gels directed its use as a su-
perabsorbent in various applications, such as healthcare area (tampons, diapers), agricul-
ture (soil conditioning), and biomedicine (wound dressing) [44]. Tissue engineering and
pharmaceutical applications of cellulose materials have been of interest because of their
biocompatibility, permeability, hydrophilicity, and non-toxic profile, which are good for
controlled drug release; moreover, they mimic the extracellular matrix and have sufficient
strength and flexibility to replace cartilaginous tissue [45,46]. The cellulose-based gels are
adequate for drug delivery systems, because such materials swell in water, directing the
water toward the drug core [47,48].
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Cellulose participates in esterification, which is an equilibrium reaction that uses
alcohol with an acid to form ester and water. A common cellulose-based hydrogel is
carboxymethylcellulose (CMC); however, a huge variety of cellulose can be obtained via
derivatization and blending [49]. The main cellulose esters are cellulose acetate, cellulose
acetate phthalate, and hydroxypropyl methylcellulose phthalate. Another derivative is
oxycellulose, which is produced by the oxidation of the hydroxyl group in each anhydro
glucose unit of cellulose [47,50], such oxycellulose gel can control the release of encapsulated
diclofenac sodium for reducing ulcerogenic activity [51] since this drug depends on the pH,
in the gastrointestinal tract, to be absorbed [52].

Cellulose nanofibers are a green, biocompatible, and biodegradable material widely
used in food and biomedical studies. The cellulose hydrogel can be manufactured as
scaffolds for tissue engineering, and as a promising substitute for the extracellular ma-
trix (ECM) [53]. In fact, this material showed satisfactory results as a support for liver
tissue engineering, providing greater expression of liver genes, and increased hepatocytes’
functionality [54]. Cellulose nanofibers incorporated with silver nanoparticles are also
present in antimicrobial and healing activity [55]. A silk/cellulose-based nanofiber is
used for drug delivery of doxorubicin encapsulated [56], a drug used in chemotherapy
treatment [57]. Polyethyleneimine-grafted cellulose aerogel is reported as a drug delivery
vehicle for sodium salicylate, presenting pharmacokinetics closely related to the pH and
temperature of the release environment [50]. Another topical application of cellulose-based
hydrogel is as a drug vehicle for hydroquinone, used for inhibiting the production of
melanin to prevent melasma [13,58]. Several commercial wound dressings based on CMC
are available in the market by the producers Convatec, Smith and Nephew, Coloplast, and
First Water [9].

A hybrid system of alginate-gelatin and cellulose nanocrystals (CNC) has been studied
which promotes cell or biomolecules delivery for tissue engineering applications [59]. A
hybrid hydrogel (CNC and thermosensitive poly (N-isopropyl acrylamide)) enhanced
the mechanical properties of the acrylamide gel and reduced brittleness during stress, in
addition to the possibility of antibiotic incorporation [50,60–63]. CNC gel treated with
carboxymethylation and periodate oxidation, followed by 3D printing resulted in a scaffold
that can act as wound dressing since it inhibited bacterial growth [64].
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Cellulose hydrogels can be also used as injectable implants since they are biocompat-
ible, biodegradable, mechanical adaptable, with great porosity, characteristics that favor
drug administration [65]. This approach has been investigated for CMC as injectable
bone cement, encapsulated with Ag+ nanoparticles to enhance the bactericidal activity in
implants, minimizing the risk of rejection [66]. A propranolol-CMC bionanocomposite
hydrogel granules showed a sustained release pattern in gastrointestinal conditions [67].
CMC has also application as bioink for 3D printing in tissue engineering applications, such
processing technique results in scaffolds with tunable shapes and properties, in addition to
customizable pieces for regenerative medicine [68].

3.3. Hemicelluloses

Hemicelluloses are a branched copolymer composed of pentoses and hexoses-xylans,
mannans, β-glucans, and xyloglucans, they have shorter polymeric chains than cellulose,
and are mostly available in hardwoods [69,70] (Figure 7). Some compositional differentia-
tion can be found in the hemicelluloses, regarding their origin, since hardwood-derived
hemicellulose is rich in acetylated xylan, while softwood is less acetylated [71].
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Different methods for hemicelluloses extraction facilitate their recovery into the liquid
phase; for instance, water extraction (subcritical water, autohydrolysis), and dilute-acid
extraction [71,72]. Autohydrolysis is an environmentally friendly process, because the
lignocellulosic biomass is pre-treated with hot water, promoting the extraction of hemi-
celluloses into the liquid phase, and enabling the hemicelluloses valuation [73]. High
temperature and pressure operational conditions are important factors in hydrothermal
processes, because such variables help the water autoionization and disintegration of the
lignocellulosic matrix [74]. These conditions expand the cellulose’s surface area, promot-
ing hemicellulose depolymerization, and lignin re-localization [73,75]. Additionally, an
acidifier medium (dilute-acid) might boost hemicelluloses recovery compared to simple
autohydrolysis [76,77]. As an example, subcritical water (100–374 ◦C; 0.1–22 MPa) has an
acidic nature (increment in [H3O+]) that intensifies the hydrolytic reactions of lignocellu-
losic components [73]. Steam explosion occurs at temperatures between 210 and 290 ◦C,
and high pressures (20–50 bar), in a short period, as the condensed steam breaks the inter
and intramolecular linkages from the lignocellulosic components [74].

There is increasing interest in adding value to the hemicelluloses since they can act
as a raw material for several products, and usually, it is wasted in the lignocellulosic
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pre-treatment as part of black liquor that is burned to produce energy [71]. Among these,
the rich hydroxyl and carboxylic structure of the hemicelluloses allow several chemical
derivatizations without loss of inner properties regarding biocompatibility and biodegrad-
ability, which is highly desirable for drug delivery materials, in addition to the fact that
the hemicelluloses are reported as anti-cancer and anti-inflammatory components [25,78].
Hemicellulose derivatization might also produce biopolyesters [79].

The hemicellulose-based gel is a new field in pharmaceutical applications, being
studied as a drug delivery system, with mostly acetylsalicylic acid and theophylline as
model drugs [80]. Hemicellulose-gels can be used as wound dressings, as some studies
evaluated the ability of hemicellulose to prevent infections from particulates and germs
in the wounds, in addition to exploring their capacity to accelerate the regeneration of
human skin [71,81]. Its blend with gelatin, showed targeted antibiotic (gentamicin) in the
wound, promoting faster healing, meaning an improvement in the patient’s life [82]. Inter-
estingly, a hemicellulose hydrogel incorporated with magnetic Fe2O3 is attracted to metallic
nanoparticles (Au, Pt, Pd), in a way that this material works as a metal detoxifier [83].
Complementarily, hemicellulose-based hydrogel with polyamidoamine has heavy metal
(Pb, Ni, Zn, Pd) adsorption properties [84].

3.4. Lignin

Lignocellulosic biomass provides lignin fraction, which is surrounded by cellulose
and hemicelluloses molecules. The sources for lignin are the same as the wood-cellulose,
including agricultural waste. The lignin composition and content depend on several factors,
such as plant type, maturation, piece of plant, cultivation parameters, and the extraction
processes, etc. [85]. Lignin acts as plant-cell cement that helps the mechanical strength of
the plant, constituting between 15 and 40% of its dry mass [86].

The complexity of the polyphenolic lignin structure (Figure 8) makes it difficult to
standardize its properties, which are constituted of highly aromatic polysaccharides. More-
over, lignin is constituted of monolignols, specifically p-hydroxyphenyl (H), guaiacyl (G),
and syringyl (S) units, its linkages and ramified groups provide molecular structure diversi-
fication. Parallel to the cellulose and hemicelluloses extraction, lignin isolation also derives
from thermal, mechanical, chemical, and biological treatments [87,88].

For the lignin applications in the pharmaceutical or biomedical areas, its extraction
process needs to be solvent and sulfur-free, yielding high-value lignin. Organosolv extracts
lignin with an organic solvent, such as methanol or ethanol, at high temperatures and
pressure. Hydrothermal uses hot water for the separation of lignin, producing almost
a native lignin that is great for producing an aerogel [89] that can be applied in tissue
engineering and regenerative medicine [27,90].

An example of a lignin-derived polymer is polyurethane (PU), which polyol-rich
structure of lignin act as a monomer in the PU synthesis. Other resins based on lignin are
also available, such as epoxy, and in addition to it, lignin can act as a carbon fiber used as
fillers in polymeric composites [91]. Unusual applications of lignin-based materials are
binders, separators, and electrolytes (anodes and cathodes) for rechargeable batteries as
lignin is itself electrically active [92].
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Lignin-based gels have antioxidant and antimicrobial properties, UV absorbing ca-
pabilities, and low cytotoxicity, due to their chemical groups (phenols), properties that
are highly desired for biomedical and pharmaceutical applications [94–96]. Additionally,
the UV protection of lignin-based materials, their photostability and radical scavenging
stimulated their use in sunscreen formulations, as nanoparticles [97], which enhance the
sun protection factor (SPF) and water resistance due to its adhesiveness [98]. Thanks to
these properties and biological activities, lignin has been combined with other polymers
(e.g., chitosan, poly (vinyl alcohol) (PVA), alginate, cellulose) to produce hydrogels for
wound-healing applications [89]. Additionally, different formulations (encapsulated, emul-
sified) and processing techniques (3D-printing, electrospinning) of lignin-based materials,
have expanded their applications in the biomedical area [99].

Moreover, lignin can increase the mechanical strength of numerous processed bio-
materials, for this reason it is studied as a green material for health areas, particularly in
drug delivery systems and wound dressing, because it has a great absorbing capacity, with
the capability to remove undesirable metabolites from the tissues, regularly delivering
incorporated drugs to the affected area, in addition to the other aforementioned qualities.

A superabsorbent hydrogel based on cellulose and lignin hydrogel can be obtained by
dissolving cellulose in an alkali solution with further mixing with lignin, using epichloro-
hydrin as chemical crosslinking [100]. The lignin copolymerization with ethylene glycol
and methyl vinyl ether-co-maleic acid via esterification resulted in a hydrogel that can be
used as medical coatings [101]. Oxygenated lignin copolymerized with alkylene oxide and
alkyl ether methacrylate is a versatile hydrogel, with diversified applications in biomedical
and personal care, as a support for an active agent or controlled drug release. It can also
reconstitute damaged parts of bodies (e.g., wounds, joints), and in cosmetics, it can be
used as a hair gel product. Ag-lignin hydrogel has adhesive properties that might be
a potential surgical glue, in addition to which, the highly oxygenated chemical groups
can reduce Ag+ producing in situ bactericidal agent [102]. Lignin-incorporated nanogel
composites showed efficiency to speed up the healing of wounds, being confirmed with
in vitro and in vivo studies, reinforcing the safety of lignin-based materials in contact with
injured skin [103]. Such properties also attracted the attention for transcutaneous drug
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delivery in materials containing lignin, as it presents mucoadhesiveness, being a candidate
material for electromagnetic response, local anesthesia, dermatological, and chronic wound
treatments [104]. The UV protection of lignin-based material had been explored in the
textile area to produce clothes that lower the sun’s damage to the skin [105].

3.5. Inulin

Inulin is an oligosaccharide discovered in the 19th century and found in a wide range
of plant species as an energy storage component [106]. Usually, inulin is extracted from
chicory roots and Jerusalem artichoke that contains up to 20% w/w of inulin, in an energy-
consumption extraction process. Other assisted extraction procedures use microwave,
ultrasound, pulse-electric field, and supercritical fluid. An alternative route to produce
inulin involves an enzymatic pathway with inulosucrase [107,108].

Considered a versatile ingredient due to its health benefits, inulin is considered to
be a fermentable oligo-, di, monosaccharides, and polyols, belonging to the group of
carbohydrates digested in the colon that promote water absorption, controlling consti-
pation processes, and other related diseases [107]. It is a poorly soluble polymer and
has a high molecular weight (6179 g.mol−1) compared to other mono and disaccharides
(<500 g.mol−1), thus it presents high glass transition and melting temperature, but it has
molecular flexibility due to its structure (2→ 1) d-fructosyl [109,110] (Figure 9). The inulin
gel’s three-dimensional structure has compatible physiological activity, biodegradability,
and compatibility, which makes inulin-based gels an ideal material for drug delivery as
they swell physiological fluids [111].
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In the food sector, the inulin acts as a texture enhancer, a non-digestible fiber used in
bakery products, and a prebiotic compound in dairy products, in addition to being a low-
calorie product used to substitute sugar and fat ingredients. Inulin-based hydrogels provide
promising delivery systems, mainly in the treatment of intestinal diseases, since inulin is
only degraded by bacteria present in the colon [112–115]. Exploring this characteristic of
inulin-based hydrogels, a nanocomposite of inulin and silica nanoparticles was formulated,
intended to be produced to be a gut bacteria nanocarrier system to reach the intestinal
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microbiome [116]. Inulin-bioconjugated β-cyclodextrin can deliver hydrophobic drugs
used in colon diseases treatment, preventing early absorption that can cause collateral
effects on patients [117]. Other works involving inulin-based hydrogels for target colon
drug delivery can be found in the review written by Giri et al. (2021) [118]. Biomedical
application of inulin-coated Fe3O4 nanoparticles includes their use to enhance magnetic
resonance imaging for diagnostic liver diseases [119]. Chitosan and aldehyde functionalized
fructan forms an injectable hydrogel that can encapsulate dopamine, with an adequate
physiological response (degradability, cytocompatibility) [120].

3.6. Pectin

Pectin is a plant-derived, naturally occurring anionic polysaccharide polymer that
is present in the plant cell wall, mostly formed by α-1,4-linked-D-galacturonic acid and
some galacturonan-derivatives (homo-, rhamno-, xylo-) [121]. This component is present
in plants and has a structural function, predominantly as a mechanical strengthener and
cell adhesion agent usually found associated with lignocellulosic compounds [122]. Due to
the high complexity of its structure, its chemical composition is still under debate, but the
literature describes its role in plant growth and development, as well as in fruit ripening
and fiber processing.

Various fruit and vegetables are sources of pectin (Figure 10), especially the citruses,
apple pomace, and sugar beet [123]. The extraction procedure to produce pectin commonly
involves an acidic or basic medium in the presence of enzymes or chelating agents, and
depending on the esterification degree of the pectin there is a most suitable method. The
raw material should suffer acidic hydrolysis under heating to produce high-methoxylated
(HM) pectin, otherwise, basic hydrolysis provides a low-methoxylated (LM) pectin. After
hydrolysis, the plant pulp is pressed or centrifuged to separate the pectin from the liquid
phase; however, if the intention is to obtain the pectin powder, it must suffer precipitation
in alcohol to remove impurities, followed by drying and milling.
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This biopolymer is of great interest to the food and pharmaceutical industries due to its
rheology modifier function, with high gelling/thickening property, ability to form aqueous
gels, in addition to its biocompatibility and non-toxicity [32,124]. In the food and beverage
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industry, pectin plays an important role in the sweet sector, acting as a gelling component
in fruit concentrates (jam, syrup, yogurt), preventing solid flotation and enhancing the
texture. In the pharmacological scenario, pectin has several functions as a cholesterol
reducer, anti-poisoning metallic cations (“egg-box model”), and satiety enhancer, among
others [125]. Additionally, the pectin gels can be used as emulsifier agents to improve
cosmetic emulsion stability and delivery of drugs and active agents into the skin [126].

A pectin/honey hydrogel had in vitro and in vivo efficiency against S. aureus and E.
coli strains, and had good results in fluid uptake, non-toxicity, and good swelling capacity,
which is relevant in reducing the risk of wound dehydration during the healing pro-
cess [127]. Pectin hydrogel enriched with allantoin (moisturizer) promoted a 25% increase
in speed of healing in rats with injured skin [128]. Pectin-Fe3+/hydrophobic polyacry-
lamide dual-physically crosslinked hydrogels presented adjustable mechanical properties
with satisfactory anti-fatigue and time-dependent self-healing capabilities. Moreover, the
mechanical properties, the in vitro assays demonstrated cell infiltration in the hydrogels,
with cell adhesion and proliferation, demonstrating promising application in tissue engi-
neering [129]. Low methoxyl pectin/gelatin/carboxymethyl cellulose ternary film showed
promising antimicrobial properties to be used as dressings for dermatological use [130].

A pectin/polyacrylamide hydrogel facilitated the colon-targeted budesonide delivery
for the treatment of ulcerative colitis [131]. Copolymeric pectin hydrogels may help the
controlled delivery of galantamine used in patients with Alzheimer’s disease, showing
enhanced galantamine loading with the pectin present in the formulation, slowing its re-
lease [132]. N-succinyl chitosan / oxidized pectin is a hydrogel that can be injectable since it
is shear-thinning, acting as a scaffold for drug release, and showing anti-hemolytic proper-
ties. A derivate hydrogel from pectin, low methoxy pectin, forms a composite with sodium
alginate and nanocellulose fibers; that presented effective clindamycin delivery since this
pectin-derived gel showed low cytotoxicity for HaCaT cells [119]. Microspheres composed
of pectin/magnetite present magnetic sensibility, which when combined with anticancer
agents can adequately help chemotherapy treatments as a drug vehicle system [133]. Pectin-
based gels are customizable and can be formulated for target drug delivery systems (nasal,
oral, ocular, dermal, vaginal), as they are a safe material with properties that may produce
the smart release of drugs [134].

3.7. Starch

A sort of plant resource is rich in starch, including cereals and legumes, being a
storage carbohydrate found in grains, tubers, and roots, consumed by humans, such as
corn, potatoes, pine nuts, cassava, wheat, etc. [134,135]. Starch is a sustainable alternative
because it allows the synthesis of polymers from renewable sources, is eco-friendly, and is
widely available in nature [134].

The starch structure (Figure 11) consists of amylopectin and amylose units that form a
high molar mass polymer with hydrophilic behavior, both consisting of α (1,4) glucopy-
ranose, while amylopectin is linked with α (1,6) bonds, with the last one with the higher
degree of polymerization [136–138]. As amylopectin is a smaller molecule, it allows a
higher organization/crystallization, while the amylose confers amorphous regions in the
starch [139]. The amylose and amylopectin contents in the starch may vary according to
the plant species and maturation [140].
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After the starch granule is exposed, the purification step occurs under an inert atmo-
sphere with polar organic solvents; usually, one where amylose is insoluble, followed by
precipitation sequences according to the desired purity level.

The starch gelatinization process occurs under hot water swelling [142], causing
crystallinity reduction with irreversible structure expansion, producing a polyhydroxy
polymer [143]. This gelling behavior is explored in the food industry for viscosity en-
hancement in jams, jellies, soups, creamy powders, and sauces; it is also appealing since
it is gluten-free and feels firm in the mouth, properties which can also be achieved with
different biopolymer formulations with starch [144,145].

Such green material has also several non-food applications, for example, food packag-
ing, health care, cosmetics, pharmaceuticals, textiles, and building, among others [146,147].
Currently, modified starch is applied in adhesives and packaging, mainly for the phar-
maceutical and cosmetics sectors, as its properties can be enhanced to tailor its final
application [148].

In the pharmaceutical industry, several classes of amide gels are used in wound healing.
One example is the bioactive sodium carboxymethylated starch hydrogels containing
copper oxide nanoparticles that presented antibacterial and antioxidant activities, with
healing potential according to the in vivo study [149]. Carboxymethylation produces a
modified starch with greater water solubility, widening its uses, but is popularly employed
as an excipient in tablet formulations, due to its low cost, intrinsic biodegradability, and
non-toxicity [150]. Additionally, in the pharmaceutical sector, Contramid® is a commercial
hydroxypropyl and crosslinked high-amylose starch used as an excipient for oral drugs to
slow the drug release [151].

The type of starch presented in tablets can influence the drug release, mostly regarding
the crystallinity aspect, which has proportional resistance to enzymatic systems; another
aspect observed was a faster disintegration and drug release for starch with a higher
crosslinking degree [152]. A slowly digestible starch, which is also resistant, is ideal for oral
colon-specific drug delivery, as it passes intact through the digestive system to disintegrate
in the intestine [153,154].

Microfibrillated cellulose films from yerba mate extract and corn starch also presented
a wound-healing effect [155]. Composite gels based on gelatin and rice starch loaded
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with lysozyme and green tea polyphenols showed promising antimicrobial, antioxidant,
bioactive, and sterilizing properties for application in the biomedicine and pharmaceutical
sectors [156]. Pinion starch gel presented great antioxidant activities for pharmaceutical
and food applications [157]. A strontium crosslinked starch hydrogel has potential as a
wound dressing material because, in addition to the good characteristics of starch, such
material can be injectable, presenting self-healing and adhesiveness properties to protect
the damaged tissue [158]. Interestingly, a composite-based starch-containing nanocellulose
and carrageenan has hemostatic properties for blood clotting and stops hemorrhaging [159].

Starch has an instigating chemistry for the development of materials, this chemical
versatility produces polymers with different properties that can be tunable for several
biomedical applications according to the desired final function [160].

3.8. Guar Gum

Guar gum, also known as cyamopsis, guaran, guyan, guarina, or glucotard, is a natural
water-soluble polysaccharide obtained from the guar plant, specifically at guar’s bean seed,
guar gum has the biological function to be a reserve nutrient [161]. It is a nonionic branched
polymer with a high molar mass, composed of mannose and galactose molecules. At a low
temperature, it presents a viscous solution, with stability at pH 5–7; however, at pH values
of 6–9 it has the maximum viscosity.

The gum extraction from the guar plant consists of physical separation processes after
its beans are dried, to better collect the endosperm, followed by grinding, sieving, and
dehusking [94,162], which finally flaking and milling produce the guar gum powder with
the desirable characteristics according to the process parameter.

This polymer is very used in the development of hydrogels because this polysaccharide
disperses in water. Its hydroxyl groups mainly from (1,6)-linked α-galactose side chain to
the linear (1–4)-β-D-mannose structure interacts with water leading to entanglement (steric
effect) of the intermolecular chain leading to the gel behavior [161] (Figure 12). Therefore,
rich galactose regions are more hydrosoluble than poorer ones, as the last ones present
higher crystallinity and lower solubility. An unusual function of guar gum is its dispersant
effect on organic solvents containing hydroxyl groups (-OH, -COOH) due to its exposure
to hydroxyls, which also act as mineral coagulants [134].
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Several uses for the guar gum can be found, i.e., human consumption, as dietary fiber;
pharmacological component, as tablet binding agent and viscosifying syrup; personal care,
cosmetics emulsifier; stabilizing agent for paints and coatings; agriculture, superabsorbent
polymer, bioremediation agent [162].

The antimicrobial activity of hydrogels based on guar gum and arabinoxylan (extracted
from Plantago bark seeds), using tetraethylorthosilicate as a crosslinking agent, has been
investigated [163]. The guar gum/arabinoxylan hydrogels showed antimicrobial properties
against strains of P. aeruginosa (Gram-negative) and S. aureus (Gram-positive), nontoxic cell
behavior, with a satisfactory release profile. The results presented a porous morphology,
with interconnected pores attributed to the increase in the crosslinking and dilation of
the hydrogel confirmed by electron microscopy. Hydrophobically modified guar gum
loaded with antibiotics (gentamicin, amoxicillin) also presented bactericidal (Staphylococcus
aureus, Escherichia coli) and antifungal (Candida albicans) activity, favoring its use as wound
dressing [164]. Crosslinked guar gum-g-poly (acrylic acid-co-acrylonitrile) is efficient in
a medium with different pH to deliver thymoquinone and inhibit inflammation [165].
Another pH-responsive guar gum-based gel, a blend with sodium alginate and polyvinyl
alcohol, showed a good release profile of verapamil hydrochloride [166], confirming the
robustness of guar gum-based gels for drug delivery. As injectable material, chitosan
and guar gum-based hydrogel is a potential system for target chemotherapeutic agent
(doxorubicin) delivery, in which the drug effectiveness at the tumoral pH medium is
fundamental to killing cancer cells [167].

Beyond the guar gum itself, its derivatives (hydroxymethyl-, hydroxypropyl-, carboxy
methyl-, sulfated-, etc.) are widely employed in target colon drug delivery [168,169]. Several
works developed guar gum-based hydrogels incorporated with silver nanoparticles for
biomedical applications due to its bactericidal behavior [170].

Gums of natural origin are widely used in the pharmaceutical industry in the de-
velopment of liquid, topical and oral products. Cashew-gum is a plant polysaccharide
that has enormous potential for applications as a hydrogel in the medical-pharmaceutical
areas, this gum is a branched acid heteropolysaccharide composed of galactose, glucose,
glucuronic acid, arabinose, rhamnose, and mannose. Usually, its production occurs in the
epithelial cells present in the tree’s bark in response to mechanical stimuli or pathogen
attacks [171–173]. Cashew gum and chitosan (1:4) hydrogel could be used as a material
for skin lesions treatment, because it modulated the inflammatory process, promoted
better wound contraction, increased collagen production, extinguished necrosis, and in-
duced early epithelization in rats [174]. Studies have associated cashew gum and CMC
hydrogel with silver nanoparticles (AgNPs) to promote greater stabilization of the col-
loidal system and also to improve biocompatibility. The antimicrobial activity of cashew
gum/CMC/AgNPs hydrogels was evaluated in two models, the first in vitro model against
strains of S. aureus and P. auriginosa, and the second in vivo model using rats. Both exper-
iments resulted in bacterial inhibition and wound healing in the animals, characteristics
that detach the potential for wound-healing applications of the cashew gum/CMC/AgNPs
hydrogel [175].

4. Future Perspectives

The search for sustainable, biodegradable, biocompatible, biologically safe materials,
with mechanical stability and adjustable functionality, encourages the development of
hydrogels based on polysaccharides [176,177]. In this context, hydrogels from plant sources
deserve special attention since their potential has not yet been fully explored in clinical or
industrial areas [176].

Currently, hydrogels are used in the manufacture of biomedical products, such as con-
tact lenses, tissue engineering supports, drug delivery systems, wound dressings, sensors,
and bioelectrode devices, among others [178,179]. Exploring smart hydrogels capable of
managing drugs and bioactive agents, particularly anti-cancer drugs, is challenging.
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To increase the attractiveness and applicability of plant polysaccharide gels, some
technical challenges still need to be addressed, regarding their compositional uniformity,
mechanical strength/tenacity, and stability [139,180]. Some scaffold architectures to pro-
duce wound dressings can be processed using spinning techniques (electrospinning, rotary
jet spinning) or 3D biomanufacturing, resulting in hydrogel structures that mimic the
extracellular matrix, enhancing cell adhesion and proliferation, in addition to fomenting a
controlled drug release.

Talking about the commercial application of hydrogels’ products, several products
are formulated with plant-based polysaccharide gels (cosmetics, food, drugs, etc.). How-
ever, some challenges must be overcome for noble applications (biomedical and pharma-
ceutical areas), such as the use of non-toxic solvents or reagents during their synthesis,
which is still a problem depending on its application, specifically those that involve di-
rect contact with humans. Future research should be devoted to the selection of safe and
energy-efficient solvents, and reagents in the hydrogels’ synthesis processes to meet these
requirements [176,179]. Polysaccharide hydrogels from plants have a complex composi-
tion/structure, which might difficult their standardization of properties, but chemistry
solutions have emerged to improve the gel’s properties. Thus, chemical modifications
(derivatization) can expand their versatility, including blending, copolymerization, and
addition of fillers that can confer mechanical reinforcement and the ability to respond to
external stimuli (pH-responsive, magnetic responsive, among others).

At present, there are limitations to scaling the production processes of hydrogels,
leaving the laboratory scale for an industrial one, this bridge is important for the affirmation
of the product at a commercial level. Meanwhile, the intensification of development
to obtain hydrogels with innovative properties, homogeneous composition, diameters,
thicknesses, pore sizes, and density, for efficient biomedical and health applications, is
compelling [8,178].

As previously described, the development and application of hydrogels in different
areas need greater interaction between the research areas, which allows us to conclude that
the combination of multidisciplinary researchers is fundamental for the advancement of
these materials and their applications.

5. Conclusions

The use of plant-derived polymers in the pharmaceutical and biomedical industry has
grown exponentially in recent decades due to their low cost, better biocompatibility, and
degradability. The use of these polymers in the development of hydrogels represents great
advances in the production of more renewable products. Thus, several studies showed
satisfactory results and advances in the development of bioproducts using plant polysac-
charides, such as lignocellulosic biomass, gums, inulin, pectin, and starch. In drug delivery,
they can promote a controlled drug release, improving the bioactive effectiveness. As
wound dressing, biogels have antimicrobial properties, acting as support for cells to adhere
and grow. Moreover, their great fluid swelling capacity resulted in fast wound healing
in several studies, since it protects the wound from external contamination and absorbs
exudates. Notoriously, such monomers (plant-derived polysaccharides) are metabolized
by the human body, representing a safe source for health applications. Their mechanical
strength can also be enhanced with cellulose nanocrystals, expanding their applications
that urge this property, especially in the tissue engineering field. The compositional versa-
tility of biogels allows several routes to explore their properties and applications, being an
attractive theme for study by the scientific community.
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