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We investigated a projection interpolation method for reconstructing dynamic contrast-enhanced (DCE) heart
images from undersampled x-ray projections with filtered backprojecton (FBP). This method may facilitate the
application of sparse-view dynamic acquisition for ultralow-dose quantitative computed tomography (CT)
myocardial perfusion (MP) imaging. We conducted CT perfusion studies on 5 pigs with a standard full-view
acquisition protocol (984 projections). We reconstructed DCE heart images with FBP from all and a quarter
of the measured projections evenly distributed over 360°. We interpolated the sparse-view (quarter) projec-
tions to a full-view setting using a cubic-spline interpolation method before applying FBP to reconstruct the
DCE heart images (synthesized full-view). To generate MP maps, we used 3 sets of DCE heart images, and
compared mean MP values and biases among the 3 protocols. Compared with synthesized full-view DCE
images, sparse-view DCE images were more affected by streak artifacts arising from projection undersam-
pling. Relative to the full-view protocol, mean bias in MP measurement associated with the sparse-view proto-
col was 10.0 mL/min/100 g (95%CI: �8.9 to 28.9), which was �3 times higher than that associated with
the synthesized full-view protocol (3.3 mL/min/100 g, 95% CI: �6.7 to 13.2). The cubic-spline-view interpo-
lation method improved MP measurement from DCE heart images reconstructed from only a quarter of the
full projection set. This method can be used with the industry-standard FBP algorithm to reconstruct DCE im-
ages of the heart, and it can reduce the radiation dose of a whole-heart quantitative CT MP study to �2 mSv
(at 8-cm coverage).

INTRODUCTION
Computed tomography (CT) myocardial perfusion (MP) imaging
is a technique used to quantitatively measure myocardial blood
flow (perfusion) through tracer kinetic modeling of the time-
enhancement curves acquired from dynamic contrast-enhanced
(DCE) CT scanning of the heart. As this technique requires
repeated scanning of the heart following a short bolus injection
of contrast solution, the associated radiation dose is higher than
that required for a standard chest CT scan. A straightforward
strategy to minimize radiation exposure is to lower the tube
current setting (measured in milliampere or mA) for dynamic
scanning, and that to correct for excessive projection noise is to
use postprocessing techniques such as highly constrained back-

projection local reconstruction (HYPR-LR) (1-3), multiband fil-
tering (4), sinogram smoothing (5), or statistics-based iterative
reconstruction (6, 7). However, there are 2 main challenges
associated with the ultralow-milliampere approach. First, pho-
ton starvation could lead to inaccurate sampling of the arterial
and myocardial time-enhancement curves and sequentially the
measurement of MP. Second, the CT detector electronic noise
becomes dominant at the extremely low milliampere level,
which is difficult to model and correct for with Poisson statistics
alone.

Sparse-view dynamic acquisition, where only a small num-
ber of x-ray projections are acquired in each gantry rotation, is
an alternative solution to achieve ultralow-dose CT MP imaging.
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This approach is not restricted by the electronic noise barrier and
hence could achieve more dose reduction than the low-milliam-
pere approach. Furthermore, the feasibility of the sparse-view
acquisition with a clinical CT scanner capable of rapid x-ray
pulsing has been demonstrated (8). However, sparse-view acqui-
sition can induce aliasing streak artifacts in the reconstructed
images (9, 10), which could have a significant impact on the
measurements of time-enhancement curves and MP.

In this paper, we investigated whether reconstruction of
streak-free DCE heart images from undersampled projections by
using the standard filtered backprojection (FBP) algorithm is
feasible if the missing projections are estimated from neighbor-
ing ones. The performance of this view interpolation method
was evaluated in CT MP studies of pigs, in which a subset of
measured projections was used to generate DCE heart images
and MP maps with and without the view interpolation applied,
and the image quality and MP measurement against the refer-
ence full-view technique were compared.

METHODS AND MATERIALS
Animal Model
DCE-CT imaging was performed on 5 farm pigs that weighed
40–50 kg. The animal studies were approved by the institutional
animal research ethics review board. Two pigs had acute myo-
cardial infarction induced in the apical wall of the left ventric-
ular myocardium from a transient occlusion of the distal left
anterior descending (LAD) artery with a balloon catheter for 1 h
followed by reperfusion. The other 3 pigs were normal and
without infarction. These pigs collectively provided a wide spec-
trum of myocardial tissue, from normal to abnormal (ischemic
or infarcted), for the validation of the cubic-spline-view inter-
polation method for the sparse-view image reconstruction with
FBP.

Projection Data Acquisition
In each CT MP study, the pig was intubated and mechanically
ventilated, and they were placed in either a supine or lateral
position on the CT scanner table. Before each DCE-CT acquisi-
tion, iodinated contrast solution (Iohexol 300 mgI/mL) was
injected into a peripheral vein at 3 mL/s and at a dosage of 0.7
mL/kg body weight, followed by saline flush at the same injec-
tion rate. The ventilator was turned off to minimize breathing
motion during the short acquisition (�30 s). Using a 64-row
CT750 HD scanner (GE Healthcare, Waukesha, WI) operating in
a prospective electrocardiogram-gated acquisition mode, a 4-cm
section of the heart covering the largest cross-section of the left
ventricle in the axial tomographic plane was scanned at 3–4 s
after contrast injection over 20–25 heart beats at mid-diastole.
For each full (360°) gantry rotation at 140-kV tube voltage,
80-mA tube current, 8- � 5-mm collimation width, and 0.35-s
gantry rotation period, the full-view projection set consisted of
984 projections. From each full-view projection set, 1 out of
every 4 consecutive projections was selected to generate the
sparse-view set of 246 projections distributed evenly over 360°.

Image Reconstruction
For each pig, the following 3 sets of DCE heart images were
reconstructed from the 3 projection sets with FBP: (a) full-view

(984 views), (b) sparse-view (246 views), and (c) synthesized
full-view (984 views). The synthesized full-view projection set
was generated by applying a cubic-spline interpolation of the
sparse-view projection set in (b).

Different algorithms are available to generate missing pro-
jections from a discrete set of sampled projections. Generally
speaking, with n measured data points, a single (n � 1)th order
polynomial can be used for the interpolation. Although polyno-
mial interpolation is a common choice of interpolants, the as-
sociated error of interpolation can be large when a high-order
polynomial function is used for data fitting. Such an interpola-
tion error can be minimized by using spline interpolation which
applies low-order polynomials to subsets of data points (11). Let
us denote f(x) as a function between the sampled data points,
xi � 1 and xi, with i � [1, . . ., n]. A spline S(x) is a piecewise
(composite) function formed by n low-order polynomials P(x)
each fitting f(x).

S(x) ��
P1(x)

:
Pi(x)

:
Pn(x)

(1)

Compared with a single high-order polynomial function,
spline interpolation should provide a more accurate approxima-
tion of f(x), particularly if there exists local abrupt changes (such
as the edges between high- and low-contrast regions). A cubic
spline is a spline constructed of piecewise third-order polyno-
mials (12, 13). Let us consider 3 consecutive data points, namely,
xi�1, xi, xi�1. Mathematically, a third-order polynomial P(x) on
the interval between data points xi � 1 and xi can be expressed as
follows:

Pi(x) � ai � bix � cix
2 � dix

3 (2)

where ai, bi, ci, and di are coefficients, and 1 � i � n. Similarly,
the third-order polynomial between data points xi and xi�1 has
the following form:

Pi�1(x) � ai�1 � bi�1x � ci�1x
2 � di�1x

3 (3)

The polynomials in equations (2) and (3) at their connecting data
point (xi) should be identical so that S(x) is continuous:

Pi(xi) � Pi�1(xi) � f(xi) (4)

In addition, the derivatives of the polynomials should be iden-
tical at xi for S(x) to be smooth. For instance:

Pi
H(xi) � Pi�1

H (xi); Pi
��(xi) � Pi�1

�� (xi) (5)

Solving the above equations yield n � 1 equations with n � 1
unknowns. The assumption of boundary conditions can be made
to obtain 2 additional equations that are required to solve for all
the unknowns. Conventionally, we can assume the first and
second derivatives at the end points x0 and xn, respectively, are
zero:

Pi
H(x0) � Pi

H(xn) � 0; Pi
��(x0) � Pi

��(xn) � 0 (6)

The cubic-spline interpolation is based on the least squares
method with the cubic convolution interpolation function (12,
13). Taking equations (1) to equations (6) into account, the
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cubic-spline interpolation function I(x) can be expressed as
follows (14):

I(x) � �
i
cis�x � xi

h
� (7)

where xi are the interpolation nodes, S is the spline interpolation
kernel as defined above, h is the sampling interval, and ci is
selected so that the interpolation function is continuous. Cubic-
spline interpolation of the measured projections was imple-
mented using Matlab.

Image Analysis
Comparison of MP measurement. The 3 sets of DCE heart

images of each pig were analyzed with the CT Perfusion soft-
ware (GE Healthcare, Waukesha, Wisconsin) to generate MP
maps with a model-based deconvolution algorithm (15). The
mean MP value in the lateral, apical, and septal walls of the left
ventricular myocardium in the axial view over 8 consecutive
5-mm slices were compared between the 3 image reconstruction
schemes. In total, 120 ischemic and nonischemic myocardial
segments from 5 pigs were available for comparison. Bland–
Altman graphical analysis was used to determine the mean bias
of the sparse-view and synthesized full-view MP measurements
with respect to that of the reference full-view MP measurements.
The limits of agreement were presented as 95% confidence
intervals.

Comparison of Image Difference. We used an image difference
metric described by Busono and Hussein (16) to determine which
between the sparse-view and the synthesized full-view FBP
reconstruction produced DCE heart images best matched with
images from the full-view FBP reconstruction. The image dif-
ference at time point t, �Dif

t , is defined as follows:

�Dif
t �

�IRec
t � IFV

t �

�IFV
t �

� 100 (8)

where IRec
t is the image at time t reconstructed with FBP from

either the 246-view or synthesized 984-view projection set; IFV
t

is the reference full-view FBP image at time t; and �·� denotes the
Euclidean norm.

RESULTS
Figure 1A shows the sinogram of a full-view projection set
acquired at one slice location. This full-view sinogram was then
subsampled to generate a sparse-view set of 246 projections
evenly distributed over 360° as shown in Figure 1B. The dark
vertical lines in Figure 1B are projections in the full-view set
that were left out in the sparse-view set. The sinogram of the
corresponding synthesized full-view projection set is shown in
Figure 1C for comparison. The 2 sinograms in Figure 1, A and C
were qualitatively similar to each other. For a more quantitative
comparison, Figure 1D shows the projection profile of the full-
view sinogram (solid black line) superimposed over the projec-
tion profile of the synthesized (interpolated) full-view sinogram
(dashed blue line) at the central detector for one slice location.
The 2 projection profiles were comparable to each other, with
the profile from the synthesized full-view sinogram slightly
smoother than that from the measured full-view sinogram. For
reference, the red stars in Figure 1D denote the corresponding
projection profile of the sparse-view sinogram.

Figure 2 shows the DCE heart images reconstructed from the
full-view (Figure 2, A and B), sparse-view (Figure 2, C and D)
and synthesized full-view (Figure 2, E and F) projection sets.
Image reconstruction with the sparse-view projection set re-
sulted in streak artifacts. Figure 2, G and H show the difference
image between the full-view (Figure 2A) and sparse-view (Fig-
ure 2C) protocols and that between the full-view (Figure 2A) and
synthesized full-view (Figure 2E) protocols, respectively. The
mean 	 standard deviation of CT number in 3 different regions
in Figure 2G (lateral wall and apical wall of the left ventricular
myocardium and a peripheral soft tissue region) was 8.74 	
12.71, 10.69 	 13.84, and 10.14 	 15.20 Hounsfield unit (HU),
which was larger than that of CT number in the 3 different
regions in Figure 2H (5.28 	 8.34, 5.88 	 8.82, and 7.06 	 9.32
HU), suggesting that the cubic-spline interpolation method was
able to reduce the HU errors in the reconstructed images arising
from aliasing streak artifacts. As shown in Figure 2I, the image
difference metric [equation (8)] between the synthesized full-
view and full-view DCE images was consistently �4% at all time
points, in comparison to 7.5% between the sparse-view and the
full-view DCE images.

Figure 3 shows the MP maps of a pig with an infarct in the
apical myocardium (yellow arrow), derived from the 3 sets of
DCE images shown in Figure 2. The MP map generated from the
sparse-view images (Figure 3B) was clearly noisier than that
generated from the full-view images (Figure 3A). After cubic-
spline view interpolation was applied, the MP map generated
from the synthesized full-view images (Figure 3C) was compa-
rable with that generated from the full-view images (Figure 3A).

The Bland–Altman plot shown in Figure 4 showed that the
mean bias of absolute MP measurement associated with the syn-
thesized full-view and sparse-view protocols was 3.6 (95% CI �8.6
to 15.7) mL/min/100 g and 9.7 (95% CI �12.8 to 32.3) mL/min/100
g, respectively, with respect to the reference full-view protocol.
Furthermore, the cubic-spline interpolation method led to a 63%
decrease in the mean bias of absolute MP measurement when the
sparse-view DCE heart images were used for perfusion analysis.

DISCUSSION
Quantitative CT MP imaging is useful for the functional assess-
ment of coronary artery disease (17) but high radiation dose is a
major hurdle for its implementation in routine clinical practice.
This study aimed to demonstrate the feasibility of reducing the
radiation dose of a quantitative CT MP study with the sparse-view
dynamic acquisition and image reconstruction. CT image recon-
struction with sparsely sampled projections has been of great
interest lately. Although compressed sensing is the primary algo-
rithmic choice for sparse-view CT image reconstruction with prom-
ising results reported in a number of preclinical studies (18, 19), it
can lead to loss of image details in aspects of contrast and spatial
resolution. Although more advanced compressed sensing–based
algorithms have been recently developed to improve these aspects
(20-22), they remain computationally demanding, which may limit
their clinical applications. In contrast, FBP-based image recon-
struction methods are faster, making the sparse-view CT MP imag-
ing more feasible in real-world clinical settings.

To the best of our knowledge, the application of cubic-
spline interpolation for sparse-view CT MP measurement has
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not been previously investigated. The main challenge of this
approach is the aliasing streak artifacts in reconstructed DCE
images that can significantly affect the accuracy of MP mea-
surement. A cubic-spline interpolation method was used in
our studies conducted in pigs to estimate the missing projec-
tions before FBP image reconstruction to minimize the alias-

ing streak artifacts in DCE images. Our findings showed that
the number of projections required for reconstructing rela-
tively streak-free DCE heart images with the conventional
FBP algorithm could be reduced to 25% of the full-view
projection set (from 984 to 246 views), as evident by the subtle
image difference with respect to the reference full-view protocol

Figure 1. Sinograms of a pig computed tomography (CT) myocardial perfusion (MP) study acquired with the full 984-view
(A), sparse 246-view (B), and synthesized full 984-view protocols (C). The y- and x-axis represent the detector and projection
numbers, respectively. Projection profile of the full-view sinogram is compared with that of the synthesized full-view sinogram
at the central detector (D). The red star marks the evenly subsampled 246 views from the full-view projection set.
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Figure 2. Contrast-enhanced CT images from a pig heart reconstructed with filtered backprojecton (FBP) from full-
view(A, B), sparse-view (C, D), and synthesized full-view projections (E, F). These images corresponded to the time when
both heart chambers were filled with an iodinated contrast solution. The window width/level was set at 400/40 HU.
(G) and (H) depict the difference images between (A) and (C) and between (A) and (E), respectively. Image difference
metric for synthesized full-view images (black solid line) is compared with that for sparse-view images (dashed blue line)
over the whole time course of a dynamic CT MP study (I).
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(�4% for all time points, Figure 2I). The accuracy of MP measure-
ment was also minimally affected, as reflected by the small bias in
MP measurement with respect to the full-view protocol (�4 mL/
min/100 g; Figure 4B). Without view interpolation, the correspond-
ing image difference and bias in MP measurement were 2 and 3
times higher, respectively.

The effective dose of a quantitative CT MP study covering 8
cm of the heart with the full-view dynamic acquisition protocol,

estimated from the dose-length product reported on the scanner,
was 8 mSv. With a 4-fold reduction in projection views (from
984 to 246), the effective dose of the sparse-view dynamic
acquisition protocol was reduced to 2 mSv.

The same magnitude of radiation dose reduction can be
achieved by reducing the x-ray tube current from 80 mA to 20
mA while keeping all the projection views (984). However, such
an approach leads to much poorer signal-to-noise ratio in each

Figure 3. CT MP maps derived from dynamic contrast-enhanced (DCE) images reconstructed from full-view (A), sparse-
view (B), and synthesized full-view (C) projections with FBP as shown in Figure 2. The CT MP maps are displayed in a
color scale range from 0 (blue) to 400 (red) mL/min/100 g. The yellow arrow in (A) points to the infarcted region
within the apical wall of the myocardium.
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measured projection, and the system electronic noise may exert
a greater impact at low mA which is difficult to correct for with
Poisson statistics. By contrast, the signal-to-noise ratio of each
measured projection in the sparse-view dynamic acquisition is
maintained. As such, the sparse-view acquisition may be a
better option for radiation dose reduction than low-milliampere
acquisition in this regard.

It is noteworthy to mention that the use of interpolated projection
views introduced the blurring of sharp edges in the reconstructed DCE
heart images, asdepicted inFigure2,EandF.However, extremelyhigh
spatial resolution is not necessary for CT MP imaging, as MP maps are
typically generatedwithone-half of the spatial resolutionof the source
images. The noise in the synthesized full-view images was also lower
than the full-view images and was contributed by the low-pass filter-
ing effect inherent to interpolation.

In addition to the cubic-spline interpolation applied in our
studies, other advanced algorithms such as directional sinogram
interpolation (23, 24) and deep-learning-based interpolation
(25) have been recently developed for generating additional
projections to minimize streak artifacts in the sparse-view CT
image reconstruction. In the directional sinogram interpolation,
the measured projections are first combined to generate the

sinogram, which is then downsized with a specialized filter
along the axis in parallel to the plane of gantry rotation. The
purpose of sinogram downsizing is to eliminate the discon-
nected traces of the sinogram as a result of sparse-view acqui-
sition before the calculation of the structure tensor. Weighted
pixel interpolation is then performed after estimation of the
sinogram orientation. The entire interpolation process can be
executed iteratively to generate more projections to further
minimize the streak artifacts (24). In the deep-learning-based
interpolation, the sinogram sampled from the sparse-view ac-
quisition is first up-sampled with a linear interpolation. Then, a
synthesized sinogram with quality superior to the linearly in-
terpolated sinogram is generated with a pretrained convolution
neural network followed by image reconstruction (25). Prelim-
inary results have suggested that both the directional sinogram
interpolation and the deep-learning-based interpolation are
promising to generate streak-free CT images from the sparse-
view acquisition. Further research should focus on comparing
the image quality (such as contrast and spatial resolution) and
computation efficiency among different projection interpola-
tion methods available for the sparse-view CT image reconstruc-
tion in dynamic perfusion imaging.
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The cubic-spline view interpolation method allows the stan-
dard FBP algorithm to be used for sparse-view image recon-
struction without the need of implementing iterative reconstruc-
tion algorithms such as compressed sensing, which is more
computationally demanding. Moreover, our previous studies
revealed that the minimum number of projections required to
produce streak-free DCE heart images with compressed sensing
was 328 (26). In comparison, the cubic-spline view interpolation
method permits FBP image reconstruction with merely 246
views, which results in a greater degree of dose reduction for
quantitative CT MP imaging.

CONCLUSION
The findings of this study suggest that ultra-low-dose quantita-
tive CT MP measurement can be attained with sparse-view

dynamic contrast-enhanced acquisition, provided the miss-
ing projections can be properly estimated using a cubic-
spline interpolation method before image reconstruction. The
number of projections required for generating the DCE heart
images can be reduced to just 25% of the conventional
full-view setting without affecting the absolute MP measure-
ments. The cubic-spline interpolation method allows the con-
ventional FBP algorithm to be used for the sparse-view image
reconstruction in CT MP imaging, avoiding the need of im-
plementing the more computationally demanding algorithms
such as compressed sensing. The substantial reduction in
radiation exposure associated with the sparse-view dynamic
acquisition may lead to a wider clinical application of quan-
titative CT MP imaging for functional assessment of coronary
artery disease.
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