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Abstract: In order to accurately diagnose the health of high-order statically indeterminate structures,
most existing structural health monitoring (SHM) methods require multiple sensors to collect enough
information. However, comprehensive data collection from multiple sensors for high degree-of-
freedom structures is not typically available in practice. We propose a method that reconciles the two
seemingly conflicting difficulties. Takens’ embedding theorem is used to augment the dimensions of
data collected from a single sensor. Taking advantage of the success of machine learning in image
classification, high-dimensional reconstructed attractors were converted into images and fed into a
convolutional neural network (CNN). Attractor classification was performed for 10 damage cases of
a 3-story shear frame structure. Numerical results show that the inherently high dimension of the
CNN model allows the handling of higher dimensional data. Information on both the level and the
location of damage was successfully embedded. The same methodology will allow the extraction of
data with unsupervised CNN classification to be consistent with real use cases.

Keywords: convolutional neural network (CNN); structural health monitoring (SHM); Takens’
embedding theorem; attractor reconstruction

1. Introduction

Structures suffer from varying levels of damage during their lifespan due to aging,
external forces, and environmental changes. The implementation of damage detection
for structures, known as structural health monitoring (SHM), is key for both preventing
unexpected failures and optimizing the maintenance of existing structures [1–3]. As a result,
SHM is indispensable for the sustainability of structures and therefore attracts extensive
attention in both the industry and academia. The goals of SHM can be classified into four
categories [4]: (1) to determine whether the structure is in a healthy state, (2) to identify the
location of damage, (3) to quantify the level of damage, and (4) to estimate the remaining
service life of the structure.

One common approach to SHM is the vibration-based method, where the response
to an excitation is analyzed [4–9] The underlying assumption is that the change in the
level of damage can be observed as a change in the structure’s responses, such as natural
frequencies and damping ratios. It follows that the primary task for vibration-based
approaches is to quantify the difference between responses. This type of SHM is performed
with the aid of various sensors, such as accelerometers, displacement transducers, and
strain gauges, to measure the time-history response of the structure in question.

Vibration-based methods can be further separated into two categories: model-based
and feature-based methods. Model-based methods correlate the state of the structure with
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a predetermined model for structural health diagnosis [10]. Some common models are
the autoregressive and moving average (ARMA) model [11,12] and the Hidden Markov
Model (HMM). Feature-based methods are generally performed in two steps: feature
extraction and feature comparison [10]. Among these methods, modal analysis is the most
common method for extracting features, such as the use of natural frequency, modal shape,
and modal damping [13–16]. All these methods are based on a comparison of the global
properties of the collected data. However, it has been reported that SHM based on modal
analysis is insensitive to minor local damage in practice [17]. A review on the modal
analysis approach can be found in [18,19].

Another property used by feature-based approaches is the attractor of the system.
The advantage of attractor-based methods (categorized as feature-based methods) is in
their independence from a predetermined model, since the attractor itself is the model [20].
Various metrics are used in these methods, including prediction error [21], local attractor
variance [22], and continuity [23]. Each metric requires iteration over the data points in the
attractor. According to Nichols [24], the number of points required to accurately describe
(i.e., populate) an attractor is proportional to a power of the number of degrees-of-freedom
(DOF). Not only does this imply the necessity of extensive observation, but it also im-
plies that these methods are efficient only for a small number of DOFs. Consequently,
these methods implement dimension reduction before construction of the attractor, which
inevitably reduces the amount of information available. In addition to the issue of di-
mension reduction, these methods are proposed under the assumption that the system
is deterministic—only then do attractors exist. To obtain a deterministic system, specific
excitations must be prescribed. However, this is not generally applicable.

The extensibility of attractor-related vibration-based methods to stochastic systems
with pullback attractors was investigated by Overbey et al. [25], where it was found that
vibration-based methods are applicable to stochastic excitation, including band-limited
white noise. Since the main concern in using ambient excitation as input is the signal being
neither ergodic nor stationary, this finding raises the possibility of its usage. This signal is
inexpensive and has the additional benefit of being available at any time. Despite the ease
of application, caution is needed when employing ambient signals. As ambient excitation
varies as a function of environmental properties such as temperature and humidity, the
suitable technique also changes depending on the properties of the entire system [26].

Ever-increasing computational power has allowed the current mainstream machine
learning techniques, in particular deep neural networks (DNNs). The major advantages of
machine learning-based techniques focus on two steps: (1) feature extraction and (2) feature
discrimination in the SHM process [27]. In recent years, both one- and two-dimensional
convolutional neural networks (CNNs) have shown superiority over conventional methods
in accuracy and efficiency, largely due to the combination of feature extraction and feature
discrimination steps into a single learning block [28].

Extending the concept of comparing attractors, a useful feature of DNNs is their large
number of nodes, making DNNs readily available for the large number of points required
to accommodate an attractor with high dimensions. Taking into consideration the recent
success and ease of implementation of CNNs, we ask the following questions: Is there a
reasonable method for converting a high-dimensional attractor into a matrix, such that
no information is lost? Furthermore, can a CNN be readily used to distinguish between
healthy and non-healthy structures?

To tackle these questions, Takens’ embedding theorem [29] is utilized to recover a high-
dimensional attractor representative of the system from data collected by a single sensor
in the structure. The method converts this attractor into a matrix/image. The converted
product is then fed into a CNN for the diagnosis of the health of the structure (Figure 1).
Our results demonstrate that reconstructed attractors of different damage cases can be
discriminated by the CNN model. The proposed combinatorial numerical framework
therefore provides a novel and reliable method for SHM and furthers the progress toward
future SHM schemes that lack prescribed damage data.
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Figure 1. Classification scheme. Data collected from a single sensor from the structure is converted into a matrix based
on Takens’ embedding theorem. The matrix is then fed into a convolutional neural network for feature extraction and
classification of the underlying structure’s level of structural damage and for determining the location of damage.

2. Materials and Methods

The proposed SHM method is based on two ingredients: A high-dimensional attractor
from a single sensor is first reconstructed on the basis of Takens’ embedding theorem. Then
the reconstructed attractor is converted into two-dimensional images and is identified by
the CNN to obtain the features of attractors. Details of each step are discussed in this
section. Moreover, to test the proposed computational framework, a three-story shear
frame with varying damage magnitude and location was constructed to generate the
time-history responses.

2.1. Attractor Reconstruction

In SHM, a structure can be seen as a function that takes the excitation (either ambient
or prescribed) as input and outputs a response that can be picked up by sensors, typically in
the form of displacement or acceleration. This dynamic system can be completely described
by its phase space representation of m dimensions, where m is the number of DOFs of
the system. For deterministic systems, its trajectory in the phase space asymptotically
approaches a certain system-dependent manifold: the attractor. However, obtaining the
trajectory in the phase space requires m sensors, one for each DOF. This is improbable in
most cases and thus some alternative method for obtaining the attractor of the system is
necessary. The goal of such a method is to construct an attractor in an alternative space
(different from that constructed from m independent sensors), such that the new attractor
is completely unfolded (i.e., no overlapping points exist on the attractor).

The time delay method is the most common approach for attractor reconstruction. At
the core of this method is Takens’ embedding theorem, which states that the time-history
response collected from just one sensor is sufficient for the reconstruction. Interested
readers are referred to the original study [29], as well as an alternative proof [30].

To reconstruct the attractor using a single sensor (observation function), the dimension
of the space must be expanded. The necessity of such an expansion in dimension is
illustrated in Figure 2. Time delay vectors

→
y are created for this purpose, given by

→
y (t) = 〈x(t), x(t + τ), x(t + 2τ), · · · , x(t + (d− 1)τ), (1)

where x(t) denotes the observation at time t, τ is the delay time, and d is the embedding
dimension. Here, both τ and d are yet to be chosen. A trajectory approximating the attractor
is constructed by plotting the sequence
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{→
y (t0),

→
y (t0 + r),

→
y (t0 + 2r), · · · ,

→
y (t0 + (T − 1)r)

}
, (2)

in the d-dimensional space, also known as the reconstruction space. Here, t0 is the time of
the first observation in the whole sequence, r is the sample interval of each vector, chosen
to be sufficiently small so as to preserve the local pattern of the trajectory, and T determines
the length of the reconstructed trajectory, which has to be sufficiently large for the geometry
of the attractor to be observable. Both the sample interval r and the trajectory length T
are chosen by taking the characteristic time of the system into consideration. Hence, an
understanding of the governing physics is necessary.
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Figure 2. The effect of incrementing dimension on the reconstructed attractor. The two- and three-
dimensional manifold of the Lorenz attractor. (a) Without time delay, where d = 2 can be seen as
a projection of the three-dimensional signal on a 2D plane. (b) With time delay. The overlapping
trajectory is marked on the two-dimensional plot.

In practice, τ is usually taken as a multiple of r, such that most observations between
Equations (1) and (2) are shared to reduce the number of observations required. It must also
take into consideration the sample rate of the sensor, since no sensor records in continuous
time. The ideal choice of τ is one that maximizes the information gained from the time delay
vector. Practical choices for τ are the first minimum of the average mutual information
(AMI) function or the first zero of autocorrelation. An illustration of the reconstruction is
given in Figure 2b.

Unlike the delay time that has an optimal value, there is only a lower bound for the
embedding dimension d. The goal is to choose a sufficiently large d, such that the attractor
is completely unfolded in the reconstruction space. In Whitney’s embedding theorem,
2m+1 dimensions suffice, where m is the number of DOFs of the system. However, since
the actual number of DOFs of the system is unknown in practice, d has to be chosen
experimentally, for instance, by making use of the false nearest neighbor (FNN) method.
The concept of FNN is straightforward: true neighbors on an attractor remain close even if
the attractor is reconstructed in a higher dimension, and those that become separated in a
higher dimension only seem close due to projection onto a lower dimension. Using this
concept, this method constructs the attractor in spaces of increasing dimension, and the
iteration terminates when all nearest neighbors remain close after the dimension increment.
The final dimension thus gives the minimum value for unfolding the attractor and is taken
as the embedding dimension d.

2.2. Attractor Matrix for SHM

With the above theory, a method is proposed for converting the time-history response
into a matrix. The goal is to preserve the information on attractors; τ, d, and T have to
be determined beforehand. Differing from the methods given above, the value of both d
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and T can be chosen without significant consideration of computational expense since the
matrix is to be processed with machine learning techniques. That is, values for d and T
can be chosen such that the practitioner is confident in their magnitude. With these values
determined, the matrix is constructed as follows.

Given a system, first define an observation function that returns a value x(t) when
called at time t. Collect the sequence consisting of T time delay vectors as in Equation (2) by
the observation function. Taking each time delay vector in the sequence as single-column
vectors, a matrix in the Rd×T space is formed:

x(t0) x(t0 + r) x(t0 + 2r) · · · x(t0 + (T − 1)r)
x(t0 + τ) x(t0 + r + τ) x(t0 + 2r + τ) · · · x(t0 + (T − 1)r + τ)

...
...

...
. . .

...
x(t0 + (d− 1)τ) x(t0 + r + (d− 1)τ) x(t0 + 2r + (d− 1)τ) · · · x(t0 + (T − 1)r + (d− 1)τ)

, (3)

where the notation follows Section 2.1. This matrix is referred to here as the “attractor
matrix”. The scheme of the conversion is illustrated in Figure 3.
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Figure 3. Conversion from sequence to attractor matrix. A single signal is delayed by τ, thus creating a new signal. The d
signals are gathered and put into a matrix to form the attractor matrix.

To further present the matrix as an image, the values in the matrix are shifted and
scaled to 0–255. Each element of the matrix then represents a pixel in a grayscale image.
For a set with multiple attractor matrices, the information on relative amplitude will be
lost if the shifting and scaling is done independently on each individual matrix. When
this is not the desired effect, the shifting and scaling should be done with respect to the
entire dataset. Instead of finding the maximum and minimum values with respect to each
matrix for shifting and scaling, these two values should be found with respect to the entire
dataset, with scaling and shifting done globally as well. This preserves the information on
relative magnitude.

2.3. Numerical Model

The phase space reconstruction outlined in Section 2.1 is designed for determin-
istic systems with a deterministic attractor. However, as validated experimentally by
Overbey et al. [25], the method can be applied without issue to certain stochastic systems,
including structures with band-limited white noise as excitation.

Given that the goal of this work is to establish a method for converting reconstructed
attractors into matrices/images without losing details on the level of damage, the purpose
of this demonstration is to show that the information regarding the health of the structure
is preserved and is readily extractible with CNN. It also aims to show that information
regarding the location of damage is included in the matrix. To this end, the conversion–
CNN workflow is applied to a simulated system. A simple structure is simulated with
varying damage magnitude and location, and the acceleration response to white noise
excitation is converted to images using the proposed conversion. These images are then
used to train a CNN model under the image classification scheme. This property is
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considered as properly embedded and readily extractible in the image/matrix if the CNN
model is capable of accurately classifying the different damage cases.

2.3.1. Simulation Setup

Figure 4 illustrates the simulated three-story shear frame structure and its healthy
state in both the reconstruction space and the image space. Rigid floor diaphragms were
considered and the masses were assumed concentrated on the diaphragms. As a result,
each floor has only horizontal movement, or one DOF. The mass, stiffness, and height of
each story are listed in Table 1 [31].
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collected. (a) Illustration of the three-story shear frame. (b) A typical attractor of the healthy structure in a three-dimensional
reconstruction space. (c) A typical attractor of the healthy structure in the image space.

Table 1. Parameters of the three-story shear frame.

Story Mass (kg) Stiffness (kN/m) Story Height (m)

1 m1 = 65.00 × 103 k1 = 76,363.6 h1 = 2.75
2 m2 = 59.76 × 103 k2 = 61,090.9 h2 = 2.75
3 m3 = 49.54 × 103 k3 = 61,090.9 h3 = 2.75

A Gaussian white noise signal with a length of ninety seconds was used for the
ground motion excitation of the structure. The peak ground acceleration (PGA) in each
ground motion event was scaled to 0.25 m/s2. A series of dynamic time-history analyses
were carried out using the Newmark-β linear acceleration method [32] implemented in
MATLAB. The time increment was set to five milliseconds in the dynamic analysis. The
system output was collected on the third floor.

In this study, varying levels of structural damage were simulated through the stiffness
reduction factor Rk, which denotes the remaining stiffness of a certain story. For example,
an Rk of 0.9 on the first floor indicates a reduction of stiffness by 10% on the first floor.
A value of 0.9 was used for slightly damaged structures, 0.8 for moderately damaged
structures, and 0.7 for a severely damaged structure. Only one story was considered as
damaged (Rk < 1.0) in each simulation run while the other stories had an Rk value of 1.0.
The damage combinations form the ten classes shown in Table 2. The case names are also
given in the table.
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Table 2. Ten simulation setups comprising the ten classes.

Case Name
Stiffness Reduction Factor Rk

First Floor Second Floor Third Floor

Healthy 1.0 1.0 1.0
SL1 0.9 1.0 1.0

MO1 0.8 1.0 1.0
SE1 0.7 1.0 1.0
SL2 1.0 0.9 1.0

MO2 1.0 0.8 1.0
SE2 1.0 0.7 1.0
SL3 1.0 1.0 0.9

MO3 1.0 1.0 0.8
SE3 1.0 1.0 0.7

Attractors in a three-dimensional reconstruction space are depicted in Figure 5. Images
converted from attractors with sample interval r = 0.005 s, delay time τ = 120 steps× r s =
0.6 s, trajectory length T = 120 steps× r s = 0.6 s, and embedding dimension d = 150 are
presented in Figure 6.
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2.3.2. Convolutional Neural Network Setup

The CNN model, as illustrated in Figure 7, consists of two trainable layers: the
convolutional layer and the fully connected layer. The convolutional layer has eight
kernels, each 3 × 3 in size. This is followed by a 2 × 2 max-pooling layer with the stride set
to 2 in both dimensions, and then a dropout layer with a dropout rate of 0.5 and a flattening
layer. The fully connected layer follows. Since this fully connected layer is also the output
layer of the model, it consists of ten nodes to match the ten damage cases. The output of
the ten nodes is fed into a softmax function to give the probability of each class. ReLU
activation is used throughout the model, except for the aforementioned softmax at the
output end. The ADAM optimizer is used for gradient decent, along with cross-entropy as
the loss function. There are 139,796 trainable parameters in total, eighty of which belong to
the convolutional kernels. The model was implemented using Python with the open-source
Keras library [33], with Tensorflow as the backend [34].
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3. Results

The displacement responses of the structure were converted into matrices with the
previous parameters. As a result, the generated images have a dimension of 120× 150
(width x height). A total of 2000 were generated for each of the 10 damage cases. This
dataset was further divided into a training dataset and a validation dataset with 1600 im-
ages and 400 images, respectively. The set of images showcased in Figure 6 is taken from
this dataset.

Three different indices are examined to quantify the results: the accuracy, recall, and
Cohen’s kappa coefficient. After 20 epochs of training, both the training and validation
accuracy plateaued around 99%. No apparent sign of overfitting is present, most likely due
to the simplicity of the chosen CNN model.

Some insights can be inferred by a close examination of the confusion matrix. To
prevent sporadic results due to stochasticity, the following trends were checked against
29 different runs of the CNN training using the same CNN model with different pseu-
dorandom seeds. Recall, also known as sensitivity, is defined as the proportion of actual
positive cases that are correctly classified, given as

Recall =
TP
P

=
TP

TP + FN
, (4)

where TP is the number of true positives that the model correctly classified, P is the number
of cases classified as positive by the model, and FN is the number of false negatives that
the model classified incorrectly. It was found that the recall value was higher than 0.9 for
all 10 classes. The results are summarized in Figure 8. There is a clear trend that when
recall is calculated with respect to the level of damage, ease of prediction increases with
increasing proximity of damage to the sensor (third floor). By contrast, severely damaged
structures are easier to predict than slightly damaged structures, with the exception that
healthy structures have the highest recall value.
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Figure 8. Recall calculated based on level of damage and the location of damage.

The counterpart of recall is precision, which is given by

Precision =
TP

TP + FP
, (5)

where TP is defined previously and FP is the number of false positives that the model
incorrectly classified as positives. Similar to the recall, the precision is high for all 10 classes,
with no classes having a precision less than 0.9. The results for the precision are summarized
in Figure 9. It can be interpreted that the predictions are more trustworthy when the model
reports damage closer to the ground floor.
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Cohen’s kappa coefficient κ is calculated as

κ =
po − pc

1− pc
, (6)

where po denotes the accuracy and pc denotes the hypothetical probability of chance
agreement, which is 2000/20000 = 0.1 for the present demonstration. It follows that κ
for this example is 0.985. With the common interpretation of Cohen’s kappa coefficient,
κ = 0.985 translates to almost perfect agreement with the true value. Concluding the above,
the proposed conversion method does effectively embed the structural health data, in such
a way that the information can be easily extracted by CNN models.
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4. Discussion

The most efficient SHM method is to monitor the natural frequencies variation of
considered structures after events. Table 3 demonstrates the natural frequencies of the
three-story shear frame under healthy and different damaged scenarios, while the relative
errors of natural frequencies between the healthy and damaged structures are listed in the
parentheses. One can find that the more damaged scenario shows the larger frequency
variation. For cases of little-damaged structures (with the reduction factor Rk = 0.9) in
Table 3, the relative errors of the natural frequency for the first mode are less than 3%.
In most practical in situ measurements with signal noises and measurement errors, such
differences are not easily identified from the measured time-history data. These results
reveal the limitation of the frequency-based SHM method and the superiority of the
proposed SHM method.

Table 3. Natural frequencies of ten simulation setups.

Case Name
Natural Frequencies (Hz)

First Mode Second Mode Third Mode

Healthy 2.51 6.67 9.26
SL1 2.44 (2.72%) 6.54 (1.96%) 9.21 (0.53%)

MO1 2.36 (5.86%) 6.41 (4.01%) 9.17 (1.02%)
SE1 2.27 (9.54%) 6.26 (6.14%) 9.12 (1.46%)
SL2 2.46 (2.13%) 6.63 (0.65%) 9.13 (2.43%)

MO2 2.39 (4.63%) 6.58 (1.46%) 8.81 (4.83%)
SE2 2.32 (7.62%) 6.51 (2.46%) 8.60 (7.15%)
SL3 2.50 (0.57%) 6.49 (2.73%) 9.08 (1.91%)

MO3 2.48 (1.28%) 6.27 (6.00%) 8.93 (3.61%)
SE3 2.46 (2.21%) 6.02 (9.84%) 8.79 (5.11%)

In order to examine whether the damping influences the structural health diagnosis
of the proposed method, we consider two cases, including healthy and SE3 with a classical
damping matrix C = diag.<200, 200, 100> kN.s/m. Each of the cases includes 2000 images.
These data are divided into 1500 training dataset and 500 validation dataset. The CNN
model is composed of eight convolutional layers and a fully connected layer. The 8
convolutional kernels are all in the same size of 3 × 3 but with different depth of 32, 32,
16, 16, 8, 8, 4 and 4 sequentially. Relu and softmax functions are chosen as the activation
functions for the first four layers and the last four layers, respectively. The fully connected
layer consists of two nodes, the healthy case and the damaged case for damage detection.
The model with the highest validation loss is stored for tests. Untrained 1000 healthy cases
and 1000 damaged cases are used to test the performance of the model. The derived testing
accuracy of this model is 96.95%. Furthermore, its recall and precision are 95.30% and
98.55%, respectively. The evaluation index shows the ability to classify the damaged and
healthy cases when damping is considered.

As mentioned in the introduction, Overbey et al. [25] reported the generalization of
deterministic attractors to pullback attractors. The importance of this extension is that an
exact excitation signal is no longer required. In the present example, it was demonstrated
that the time delay method yields the desired and expected results with a stochastic
signal as excitation, which further supports the conclusion of the former work. This
generality is particularly useful when either the system in question is not suitable for
giving a prescribed excitation, or the excitation that led to the gathered response is not
available. In both cases, the present findings also suggest that the time delay method can
be used without modification.

There are some important implications resulting from the present CNN model suc-
cessfully classifying the location of damage. Most current SHM methods are unable to
extract the location of damage using the time-history data of a single sensor. By successfully
differentiating the location, the presence of information on the location of damage in the
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reconstruction attractor is proven. However, how this information should be extracted in
practical usage remains unknown. This is because, in practice, the only data available are
those belonging to the healthy state, and so the responses of different damage cases are
unknown. Unsupervised CNN learning is therefore required. The health of the structure
can only be determined by comparing the response sequence of interest to the healthy
response, as commonly seen in other vibration-based damage detection schemes. Without
the knowledge of other damage cases, detecting the location of damage would be even
more challenging.

Some properties of the attractor matrix are discussed here. Apart from the evident
effect of T and d on the dimensions of the matrix, the combination of T, r, and τ affects the
uniqueness of each element. More specifically, when T × r is larger than τ, values in the
last few columns reappear in the first few columns, shifted down by one row. This has
some practical consequences. For the typical case where a lengthy time-history response
is collected at sample rate r, the delay time τ and the length T of the trajectory must be
chosen carefully if the user is to maximize the amount of information in the matrix, i.e., to
avoid repeating values. It should be noted that in the special case where the sample rate r
is equal to the delay time τ, the attractor matrix becomes a Hankel matrix:

x(t0) x(t0 + τ) x(t0 + 2τ) · · · x(t0 + (T − 1)τ)
x(t0 + τ) x(t0 + 2τ) x(t0 + 3τ) · · · x(t0 + Tτ)

...
...

...
. . .

...
x(t0 + (d− 1)τ) x(t0 + dτ) x(t0 + (d + 1)τ) · · · x(t0 + (d + T)τ)

, (7)

Although the attractor matrix is formulated with the time delay vectors as row vectors,
other interpretations of the matrix can be made. The CNN can therefore see more than
just the attractor that formulates the matrix. As an example, the transpose of the matrix
is shown to be a second attractor in the same format as in the proposed method. The
original matrix M is constructed with sample rate r, delay time τ, trajectory length T, and
embedding dimension d. The transpose of M, denoted by MT, is

x(t0) x(t0 + τ) x(t0 + 2τ) · · · x(t0 + (d− 1)τ)
x(t0 + r) x(t0 + τ + r) x(t0 + 2τ + r) · · · x(t0 + (d− 1)τ + r)

...
...

...
. . .

...
x(t0 + (T − 1)r) x(t0 + τ + (T − 1)r) x(t0 + 2τ + (T − 1)r) · · · x(t0 + (d− 1)τ + (T − 1)r)

, (8)

The parameters of reconstruction for MT are further denoted with the superscript
T. By comparison, it is found that the transposed sample rate rT is τ, the transposed
delay time τT is r, the transposed trajectory length TT is d, and the transposed embedding
dimension dT equals T. Conceptually, if the matrix M is analyzed through a horizontally
sliding window, the original trajectory that is constructed by the set of un-superscripted
parameters {r, τ, T, d} can be seen. By contrast, the trajectory constructed by the set
of superscripted parameters

{
rT , τT , TT , dT} is observed if the window is slid vertically

(Figure 10).
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Figure 10. (a) Two of the possible interpretations by the CNN of the image: horizontally and vertically. (b) With the
horizontal interpretation, the parameters of the reconstruction are the same as in the proposed method. (c) The vertical
interpretation is equivalent to using an alternative sample rate of τ and delay time of 1.

5. Conclusions

Machine learning techniques in image classification, specifically CNN, have been
applied fruitfully in multiple disciplines. CNNs are intrinsically high-dimensional and
suitable for handling high-dimensional data, making possible the exclusion of dimensional
reduction in data processing. To use this advantage, a method is proposed to convert
high-dimensional attractors into matrices/images readily available for CNN models. In
particular, the considered sequence of observation is obtained from a single sensor on a
multi-DOF structure. It is then desirable to construct a representative attractor of the under-
lying dynamical system from such a sequence. This is achieved using Takens’ embedding
theorem; time-delayed versions of this output signal can be gathered to form an attractor
with the number of DOF matching that of the original system. By the definition of DOF,
the structure can then be fully described in this embedding space. The time-series data are
first coupled with delayed copies of itself to form an attractor, which is then presented in
matrix form. A simulation of a two-dimensional three-story shear frame was conducted as
a numerical validation of the proposed method. The results show that a simple CNN can
discriminate the 10 different damage cases at an accuracy of 99%. It is therefore concluded
that the conversion has successfully embedded the information of the attractor into the
image/matrix and is suitable for extraction with CNN computation. We anticipate that the
proposed attractor identification method could be used for a wide range of engineering
applications with high dimensional dynamical systems.
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