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a b s t r a c t 

Neuroimaging allows for the non-invasive study of the brain in rich detail. Data-driven discovery of pat- 

terns of population variability in the brain has the potential to be extremely valuable for early disease 

diagnosis and understanding the brain. The resulting patterns can be used as imaging-derived pheno- 

types (IDPs), and may complement existing expert-curated IDPs. However, population datasets, compris- 

ing many different structural and functional imaging modalities from thousands of subjects, provide a 

computational challenge not previously addressed. Here, for the first time, a multimodal independent 

component analysis approach is presented that is scalable for data fusion of voxel-level neuroimaging 

data in the full UK Biobank (UKB) dataset, that will soon reach 10 0,0 0 0 imaged subjects. This new com- 

putational approach can estimate modes of population variability that enhance the ability to predict 

thousands of phenotypic and behavioural variables using data from UKB and the Human Connectome 

Project. A high-dimensional decomposition achieved improved predictive power compared with widely- 

used analysis strategies, single-modality decompositions and existing IDPs. In UKB data (14,503 subjects 

with 47 different data modalities), many interpretable associations with non-imaging phenotypes were 

identified, including multimodal spatial maps related to fluid intelligence, handedness and disease, in 

some cases where IDP-based approaches failed. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Large-scale multimodal brain imaging has enormous potential 

or boosting epidemiological and neuroscientific studies, generat- 

ng markers for early disease diagnosis and prediction of disease 

rogression, and the understanding of human cognition, by means 

f linking to clinical or behavioural variables. Recent major stud- 

es have been acquiring brain magnetic resonance imaging (MRI), 

enetics and demographic/behavioural data from large cohorts. Ex- 

mples are the UK Biobank (UKB) ( Miller et al., 2016 ), the Human

onnectome Project (HCP) ( Van Essen et al., 2013 ) and the Ado- 

escent Brain Cognitive Development (ABCD) study ( Jernigan et al., 

018 ). These studies involve multimodal data, meaning that sev- 

ral distinct types of MRI data are acquired, mapping activity, func- 

ional networks, structural connectivity, white matter microstruc- 

ure, and organisation and volumes of different brain tissues and 

ub-structures ( Miller et al., 2016 ). However, the multimodal, high- 
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imensional and noisy nature of such big datasets makes many 

xisting analytical approaches for extracting interpretable informa- 

ion impractical ( Smith and Nichols, 2018 ). 

Traditionally, large-scale neuroimaging studies first summa- 

ize the imaging data into interpretable image-derived pheno- 

ypes (IDPs) ( Miller et al., 2016; Elliott et al., 2018 ), which are

calar quantities derived from raw imaging data (e.g., regional vol- 

mes from structural MRI, mean task activations from task MRI, 

esting-state functional connectivities between brain parcels). This 

nowledge-based approach is simple and efficient, and effectively 

educes the high-dimensional data into interpretable, compact, 

onvenient features. However, there may well be a large loss of 

nformation, due to such “expert-hand-designed” features not cap- 

uring important sources of subject variability (or even just los- 

ng sensitivity by the pre-defined spatial sub-areas being subopti- 

al), as well as ignoring cross-modality relationships. Further, such 

ni-modal compartmentalised analyses do not utilise the fact that 

or many biological effects of interest we expect there to be bi- 

logical convergence across different data modalities, i.e., changes 

n the underlying biological phenotype likely manifest themselves 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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cross multiple quantitative phenotypes, so that a joint analysis ef- 

ectively increases both the power of detecting such effects and the 

nterpretability of the findings. 

In contrast to such uni-modal analyses, data-driven multivariate 

pproaches (i.e., unsupervised machine learning) have been pro- 

osed, which perform simultaneous decomposition of voxel-level 

ata directly, generally representing data as the summation of a 

umber of “components” or “modes”. Each mode is formed as the 

uter product of two vectors: one is a vector of subject weights 

describing the relative strength of expression of that mode in each 

ubject), and a vector of voxel weights (in effect a spatial map 

or each data modality, describing the spatial localisation of the 

ode). The subject weight vectors (one per mode) can be consid- 

red “features” (similar to IDPs, but being data-driven) for use in 

urther modelling, such as for the prediction of non-imaging vari- 

bles. They are often either based on eigendecomposition, such as 

ulti-set canonical correlation analysis (mCCA) ( Kettenring, 1971; 

lami et al., 2015 ), or based on variations of independent compo- 

ent analysis (ICA) ( Calhoun et al., 2006; Liu et al., 2009; Beck- 

ann and Smith, 2005; Groves et al., 2011 ). Among them, FMRIB’s 

inked ICA (FLICA) ( Groves et al., 2011 ) is an efficient approach 

hich has been successfully applied to identify brain systems that 

re involved in lifespan development and diseases ( Groves et al., 

012; Douaud et al., 2014 ), attention deficit hyperactivity disorder 

 Ball et al., 2018 ), preterm brain development ( Ball et al., 2017 )

nd cognition and psychopathology ( Alnæs et al., 2018 ). FLICA has 

dvantages compared with uni-modal analysis on IDPs, including: 

1) It leverages the cross-modality information of multimodal data, 

o has the potential to detect patterns that are not discoverable 

n any single modality; (2) It is a data-driven objective approach 

hich automatically discovers meaningful patterns in voxel-level 

ultimodal data by searching for spatial non-Gaussian sources that 

ave been shown to likely reflect real structured features in neu- 

oimaging data ( Griffanti et al., 2014 ). While this approach has 

een applied successfully to medium-sized cohort data ( Groves 

t al., 2012; Douaud et al., 2014; Ball et al., 2018; 2017; Alnæs et al.,

018 ), the original algorithms for carrying out FLICA do not scale 

ell with increasing data size, and are unable to analyze large 

atasets such as UKB, where dozens of different modalities over 

ens of thousands of subjects are available. Importantly, because 

he core FLICA algorithms are multivariate, acting in a complex 

ay simultaneously across all subjects, modalities and voxels using 

ariational Bayesian updates of parameters, this problem cannot be 

olved through simple parallelisation or other algorithmically sim- 

le methods for distributing computations across a large cluster, 

nd so cannot be addressed simply by increasing the number of 

rocessors or memory available. 

To tackle this problem, we propose an approach that embeds 

dvanced data compression techniques across the different data di- 

ensions into the FLICA approach. We use a multimodal exten- 

ion of MELODIC’s Incremental Group Principal component analy- 

is ( Smith et al., 2014 ) (mMIGP, applied across modalities) and on- 

ine dictionary learning ( Mairal et al., 2010 ) (DicL, applied within- 

odalities) to efficiently reduce the size of multimodal neuroimag- 

ng data. The reduced data are then characterised through FLICA 

n terms of underlying modality-specifc maps and subject loading 

ectors. Here we refer to this combination of techniques as Big- 

ata FLICA, or BigFLICA for short. Two important advantages of the 

roposed approach are: (1) Preserving key information in origi- 

al data but also reducing the effects of stochastic domain-specific 

oise; (2) Increasing the computational efficiency of the FLICA al- 

orithm for extremely large population datasets. BigFLICA is scal- 

ble for simultaneously analyzing all the multimodal data of the 

ull 10 0,0 0 0-subjects UKB dataset using only a modest computing 

luster ( Fig. 1 ). 
2 
We first demonstrate the effectiveness of our approach through 

xtensive simulations. Then, in real data, we quantify performance 

n terms of the prediction accuracy of non-imaging-derived phe- 

otypes (nIDPs) ( Liégeois et al., 2019; Kong et al., 2018 ), such as

ealth outcome measures. Using voxel-level imaging data of 81 

odalities from 1003 subjects in the HCP and 47 modalities from 

4,053 subjects in the UKB, we show that BigFLICA can perform 

omparably with original FLICA ( Groves et al., 2011 ) in terms of 

he prediction accuracy for nIDPs (158 in HCP and 8787 in UKB). 

ost importantly, we systematically investigated whether there 

re benefits to jointly fusing multimodal data together, instead of 

nalysing them separately. We show that significant improvements 

n the prediction accuracy of nIDPs are found when comparing a 

igh-dimensional BigFLICA with other widely-used data analysis 

trategies: (1) doing single-modality ICA and concatenating the re- 

ults across modalities and (2) using existing IDPs (5812 in HCP 

nd 3913 in UKB). In particular, the improvements in prediction of 

any health outcome and cognitive variables are large, more than 

oubling prediction accuracy for some variables. Furthermore, we 

nvestigate the relationship between modes derived by BigFLICA 

nd IDPs. We find that although the modes were estimated from 

he same set of voxel-level data, they have complementary infor- 

ation which can be combined together to further increase the 

rediction accuracy of nIDPs. Finally, we applied BigFLICA to ana- 

yze the UKB data and extracted 750 components. Existing multi- 

odal ICA cannot estimate this many modes from this many sub- 

ects. We found several interpretable associations between modes 

f BigFLICA and nIDPs, including modes that relate to fluid intelli- 

ence, handedness, age started wearing glasses or contact lenses and 

ypertension . In many cases BigFLICA can find associations with 

IDPs with greater statistical sensitivity than was possible with 

DPs. Overall, BigFLICA demonstrated the advantages of data-driven 

oint multimodal modelling in the analysis of biobank-scale multi- 

odal datasets. 

. Methods 

.1. Brief overview of the proposed approach: BigFLICA 

FLICA ( Groves et al., 2011 ) is a Bayesian ICA approach for multi- 

odal data fusion. The input of FLICA is K modalities’ data ma- 

rices Y (k ) with dimensions N × P k , k = 1 , . . . , K, where P k is the

umber of features (e.g., voxels) and N is the number of subjects. 

LICA aims to find a joint L -dimensional decomposition of all Y (k ) : 

 

(k ) = HW 

(k ) X (k ) + E (k ) , where H (N×L ) is the shared subject mode 

mixing matrix) across modalities (a vector of subject weights for 

ach mode), so is a ‘link’ across different modalities, W 

(k ) 
(L ×L ) 

is 

 positive diagonal mode-weights matrix (one overall weight per 

odality per mode), X (k ) 
(L ×P k ) 

is the independent (spatial) feature 

aps for the L components of a modality (one map per modal- 

ty per mode), and E (k ) 
(N×P k ) 

is the modality-specific Gaussian noise 

erm ( Fig. 1 ). We propose two efficient approaches that can ei- 

her be used separately or combined together to reduce the size 

f the original data matrices, and therefore reduce the computa- 

ional load of the original FLICA. An overview of BigFLICA is shown 

n Fig. 1 . 

The first approach, termed multimodal extension of MELODIC’s 

ncremental Group Principal component analysis ( Smith et al., 

014 ) (mMIGP), aims to reduce the subject dimension to a lin- 

ar combination of the original subjects. mMIGP is a time- and 

emory-efficient approximation of principal component analysis 

PCA) on feature-concatenated multimodal data. To this end, if we 

im to get a L � decomposition, we first apply MIGP ( Smith et al.,

014 ) separately within each modality to estimate ˜ U 

(k ) 
(N×L � ) 

, which is 
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Fig. 1. Overview of the proposed approach for jointly analyzing a biobank-scale multimodal neuroimaging dataset. Currently for the UKB dataset (voxel-level data, 14,503 

subjects, 47 modalities), the total data size is approximately 800 GB, and if we directly feed these data into FLICA and extract 750 components, we will need approximately 

1066 GB CPU memory and 1680 h computation time. Our new approach, BigFLICA, used multimodal MIGP and dictionary learning to preprocess the multimodal data; this 

is efficient and memory friendly, and much of this preprocessing can be easily parallelized. BigFLICA only used 50 GB memory and 73 h to analyze the same dataset using a 

24-core compute server. 
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n approximation of an L � -dimensional PCA decomposition of one 

odality Y (k ) . This step can be done in parallel across modalities. 

hen, we concatenate all ˜ U 

(k ) in the component dimension and 

pply another MIGP to get U (N×L � ) , which is an L � -dimensional ap- 

roximate PCA decomposition of all modalities together. Finally, we 

roject the original data of each modality Y (k ) to the PCA-reduced 

pace using U . If no further reduction (e.g., dictionary learning as 

elow) is to be applied, the data that could then be fed into the 

ore FLICA would be the K component-by-feature matrices V (k ) of 

ize L � × P k , and FLICA would then extract L ( L < L � ) components

rom these (Methods). This step almost adds little computational 

ost compared with the original FLICA, because a similar PCA step 

s needed to initialize the parameters of the original FLICA, but 

his approach is feasible for large numbers of subjects and modal- 

ties. Although different modalities usually have different over- 

ll signal-to-noise ratios (SNR), which is largely ignored by this 

MIGP step, the subsequent FLICA can take this into account by 

he modality-specific noise terms, and a high-dimensional mMIGP 

s used to capture modes with even small variations in each 

odality. 

It is known that voxels are correlated in both a local fash- 

on (local spatial autocorrelation) and across brain networks (long 

ange correlation); hence, effective feature subsampling could hope 

o capture all important information in the data but also reduce 

he cost of spatial modelling in FLICA ( Hoyos-Idrobo et al., 2019 ). 

herefore, we incorporate an approach, termed sparse online Dic- 

ionary Learning ( Mairal et al., 2010 ) (DicL), to reduce the dimen- 

ion of feature (e.g., voxel) space that can capture both local and 

istant spatial correlation structure. Specifically, for each modal- 

ty, we use DicL to model the V (k ) as a sparse linear combina- 

ion of L �� basis elements: V (k ) = A 

(k ) D 

(k ) , where D 

(k ) is the sparse

patial dictionary basis , and A 

(k ) is the feature loadings . By mini- 

izing the reconstruction error, and enforcing sparsity in the dic- 

ionary basis D 

(k ) , we aim to achieve an optimal subsampling of 

eature space. The inputs of FLICA are then K smaller matrices 

 

(k ) , which are only of dimension L � × L �� , and FLICA then extracts 

 ( L < min (L � , L �� ) ) components from these ( Methods ). Compared

ith doing FLICA with the original K large N × P k matrices, us- 

ng the DicL preprocessed data can greatly reduce the computation 

oad of FLICA. DicL can easily be parallelized across modalities and 

s memory friendly, which further increases efficiency ( Fig. 1 ). 
d

3 
.2. FLICA model 

The input to FLICA is K modalities’ data matrices Y (k ) with each 

odality’s dimensions being N × P k , k = 1 , . . . , K, where P k is the

umber of features (e.g., voxels) in modality k and N is the number 

f subjects. FLICA aims to find a joint L -dimensional decomposition 

f all Y (k ) : 

 

(k ) = HW 

(k ) X 

(k ) + E (k ) , k = 1 , . . . , K (1)

here H (N×L ) is the shared subject mode (mixing matrix) across 

odalities, so is a ‘link’ across different modalities, W 

(k ) 
(L ×L ) 

is a 

ositive diagonal mode-weights matrix, X (k ) 
(L ×P k ) 

is the independent 

spatial) feature maps for the L components of modality k, and 

 

(k ) 
(N×P k ) 

is the Gaussian noise term. 

.3. Multimodal extension of MELODIC’s incremental group principal 

omponent analysis for subject-space dimension reduction 

We propose a multimodal extension of our previous MIGP ap- 

roach ( Smith et al., 2014 ), termed mMIGP, to reduce the subject 

imension of multimodal data. MIGP has been extensively vali- 

ated in simulations and real neuroimaging data for finding an 

pproximate PCA decomposition in a time- and memory-efficient 

ay ( Smith et al., 2014 ). Suppose that our multimodal data are K

atrices Y (k ) , k = 1 , . . . , K with dimensions N × P k , where N is the

umber of subjects and P k is the number of features (e.g. voxels) 

n a modality. In mMIGP, each feature is z-score normalized first. 

hen, an MIGP is applied to each modality separately to find an L � -

imensional approximate PCA decomposition. Specifically, we want 

o find an approximation of a singular value decomposition (SVD) 

f each Y (k ) : 

 

(k ) = ̃

 U 

(k ) ˜ S (k ) ( ̃  V 

(k ) ) τ , k = 1 , . . . , K (2) 

here ˜ U 

(k ) 
(N×L � ) 

and 

˜ V (k ) 
(P k ×L � ) 

are the left and right singular vectors, 

hile ˜ S (k ) 
(L � ×L � ) 

are the singular values. A naive SVD on Y (k ) scales 

uadratically with N, which is not efficient when N is large. To find 

he approximation, MIGP sequentially feeds a subset of (columns 

f) Y (k ) into an SVD, so that these subsets are reduced to a low- 

imensional representation. The low-dimensional representation is 
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hen concatenated with another subset of (columns of) Y (k ) , and 

s fed into another SVD to find the low-dimensional representation 

f them. The final SVD approximation is found after one pass of all 

ata. The computational complexity of MIGP scales linearly with 

. For a detailed description, please see Appendix A of the MIGP 

aper ( Smith et al., 2014 ). 

The third step is to concatenate all ˜ U 

(k ) in the component di- 

ension and apply another MIGP for finding a L � -dimensional ap- 

roximate PCA decompositions U of size N × L � , which is a low- 

imensional representation of multimodal data in the analysis. Fi- 

ally, the z-score normalized data Y (k ) of each modality is pro- 

ected onto the U by: 

 

(k ) = U 

τY (k ) k = 1 , 2 , . . . , K (3) 

he V (k ) , k = 1 , 2 , . . . , K are the inputs of the subsequent FLICA al-

orithm. Therefore, the total size of data output by this stage is 

 

� 
∑ K 

k =1 P k , which is smaller than the original input size N 

∑ K 
k =1 P k .

he fractional reduced data size is L � /N, and the L � can be fixed

hen more subjects are introduced, so it is scalable in the big-data 

nalysis. In practice, we usually choose L � based on the percentage 

f explained variance of SVD in the third step. 

If we feed V (k ) , k = 1 , 2 , . . . , K into FLICA to estimate L � FLICA

odes, the output subject mode matrix H 

� is of the size L � × L, so

e then simply multiply this by U to get the final subject-mode 

atrix: 

 = UH 

� (4) 

The mMIGP approach is equivalent to performing an approx- 

mate PCA on feature-concatenated data. The advantage is that 

t does not need to fit all data into the memory, and even can 

e parallelized across modalities ( Smith et al., 2014 ). This ap- 

roach is also equivalent to applying mCCA across all modalities 

 Parra, 2018 ). 

.4. Sparse dictionary learning for voxel-space dimension reduction 

If the resolution of the data is high and the number of modal- 

ties is large, applying just the mMIGP reduction still leaves FLICA 

s being memory and computationally expensive. Therefore, we 

ropose a method that can effectively reduce the voxel dimen- 

ion, and preserve the important spatial information for subse- 

uent FLICA spatial modelling. Although the most obvious ways of 

oxel subsampling are either to apply regular spatial downsam- 

ling (similarly, local voxel clustering) or apply PCA within each 

odality , the former only focuses on the local patterns ( Hoyos- 

drobo et al., 2019 ) (and does not adapt downsampling to local 

ariations in redundant information across voxels) while the later 

mpirically finds more global and noise patterns in neuroimaging 

ata, and does not work at all well empirically in this context (see 

lso Allen et al., 2014 and references therein). 

The method we used here is sparse Dictionary Learning (DicL) 

 Mairal et al., 2010 ), which effectively performs ‘voxel grouping’ in 

oth local and global fashion. It can be used directly on each of 

he original z -score normalized modalities, i.e., Y (k ) , k = 1 , 2 , . . . , K,

r on the mMIGP reduced data, i.e., V (k ) , k = 1 , 2 , . . . , K. Taking the

ormer as an example, the sparse DicL is adopted here: 

 

(k ) = A 

(k ) D 

(k ) k = 1 , 2 , . . . , K (5) 

here D 

(k ) is sparse spatial dictionary basis , and A 

(k ) is the feature 

oadings with each column representing a linear combination of 

nformation from a group of voxels which might either be a lo- 

al cluster or spatially distributed network. By minimizing an l 1 - 

egularized sparse-coding objective function, a local optimal solu- 

ion can be obtained: 

(A 

(k ) , D 

(k ) ) = 

∑ P k 
i =1 

‖ Y (k ) 
i 

− A 

(k ) D 

(k ) 
i 

‖ 

2 
F + λ‖ D 

(k ) 
i 

‖ 1 

.t. C = { A 

(k ) ∈ R 

N×L �� s.t. ∀ j = 1 , . . . , L �� , (A 

(k ) 
j 

) τ A 

(k ) 
j 

� 1 } (6) 
4 
here subscript i represents the i th column of the corresponding 

atrix, and λ is a regularization parameter. The l 1 -regularization 

erm enforces that the learned spatial loadings D 

(k ) are sparse. 

he objective function can be efficiently optimized by a block- 

oordinate descent optimizer with warm restarts. It has been im- 

lemented in the SPAMS package ( http://spams-devel.gforge.inria. 

r/ ). Compared with simply using PCA in this step, sparse DicL has 

hree advantages: (1) the spatial loading matrix D 

(k ) can be sparse, 

o a smaller number of voxels are involved in each column of the 

ictionary; (2) the columns of the dictionary do not need to be or- 

hogonal to each other, which is more flexible; (3) an “overcom- 

lete” dictionary is allowed, i.e., the number of dictionary basis 

ectors can exceed the minimum of N and P k , which further in- 

reases the flexibility. 

After the above modality-wise DicL, the final inputs to FLICA are 

he matrices A 

(k ) , k = 1 , 2 , . . . , K, of size N × L �� if we use Y (k ) , k =
 , 2 , . . . , K, or L � × L �� if we use V (k ) , k = 1 , 2 , . . . , K. Note that (un-

ike the typical approach of feeding spatial PCA eigenvectors into 

CA) we are not feeding the spatial dictionary basis ( D 

(k ) ) into the

LICA core modelling, but the feature loadings ( A 

(k ) ). To get the 

patial loading matrices from FLICA, we do voxel-wise multiple re- 

ression where the target variable is a voxel and the design matrix 

s the FLICA subject mode. We could change the order by applying 

icL first and then mMIGP, but this empirically has a lower com- 

utation efficiency. 

.5. Evaluation of BigFLICA in simulations 

We simulated 500 subjects, and each had two modalities, which 

ere both 30 × 30 × 30 images. We first simulated K ground-truth 

independent) spatial maps X; each of these was a 30 × 30 × 30 

mage. The spatial maps were a weighted sum of two Gaussian 

hite noise images, where the first one was 30 × 30 × 30 with 

eight 0.05, and the second was a 5 × 5 × 5 cube randomly lo- 

ated in the full image with weight 0.95. Then, random positive 

omponent weights W, Gaussian random subject loadings H and 

aussian white noise terms E were simulated. Finally, after vec- 

orizing each spatial map and noise term, the data for a single 

odality Y was generated as Y = HW X + σE, where σ was a pa-

ameter to control the signal-to-noise ratio (SNR). A small amount 

f spatial smoothing using a Gaussian kernel was applied to spa- 

ial maps X and noise terms E to mimic real image data. Each of 

he two modalities also had 5 unique spatial maps that were not 

hared by each other. The voxels were z-score normalized before 

eeding into the subsequent FLICA analysis. The SNR was defined 

s: v ar(v ec(HW X )) / v ar(v ec(σE)) . 

Performance evaluation: When FLICA was applied to the simu- 

ated data, the number of independent components was always set 

o the ground truth K. The performance was measured by the sim- 

larity between estimated subject-mode matrix H 

� and the ground 

ruth H. The similarity was measured by the greedy matching of 

he components based on maximum correlation and then estimat- 

ng the mean correlations across components. 

Evaluation of mMIGP for subject-space dimension reduction: 

fter generating simulated data, we reduced the data to varying di- 

ensions (L � = 50 , 100 , 200 , 300 , 400) using mMIGP, and then fed

he reduced data into FLICA. This was compared with the orig- 

nal FLICA. The number of ground-truth components was set to 

5,35,45 and the SNR was set to 4,1,0.25,0.04. All simulations were 

epeated 50 times. 

Evaluation of DicL for voxel-space dimension reduction: To eval- 

ate the influence of the DicL parameters on the subsequent FLICA 

esults, we performed the DicL on simulated data using varying 

arameter combinations ( λ = 0.1 to 16 and L �� = 100 to 30 0 0) fol-

owed by FLICA (nIC = 25 , 50 , 100 ). This was compared with the

riginal FLICA. The SNR was set to 4,1,0.25,0.04, and the number of 

http://spams-devel.gforge.inria.fr/
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terations for the DicL was set to 50, because we empirically find 

hat this number of iterations is sufficient for DicL to converge to 

 stable result in simulation and real data. All simulations were re- 

eated 50 times. 

.6. HCP and UK Biobank data 

The voxel/vertex-wise neuroimaging data of 81 different modal- 

ties of 1003 subjects from the HCP S1200 data release were used 

n this paper ( Van Essen et al., 2013 ). The preprocessing was con-

ucted by the HCP team using an optimized pipeline ( Glasser et al., 

013 ). The 81 modalities included (1) 25 resting-state ICA dual- 

egression spatial maps (z-score normalized); (2) 47 unique task 

ontrast maps as z-statistics from 7 different fMRI tasks; (3) 3 T1- 

mage derived modalities (grey matter volume, surface area, sur- 

ace thickness); (4) 6 Tract-Based Spatial Statistics (TBSS) features 

rom diffusion MRI (FA, L1, L2, L3, MD, MO) ( Smith et al., 2006 ).

n addition, 158 nIDPs were used here, which was the same as our 

revious study ( Smith et al., 2015 ). Names of nIDPs are in Supple- 

entary File 1 . 

The UK Biobank imaging data were mainly preprocessed 

y FSL ( Smith et al., 2004; Jenkinson et al., 2012 ) and 

reeSurfer ( Fischl, 2012 ) following an optimized pipeline ( Alfaro- 

lmagro et al., 2018 ) ( https://www.fmrib.ox.ac.uk/ukbiobank/ ). The 

oxel-wise neuroimaging data of 47 modalities of 14,053 subjects 

ere used in this paper, including: (1) 25 “modalities” from the 

esting-state fMRI ICA dual-regression spatial maps ( z -score nor- 

alized); (2) 6 modalities from the emotion task fMRI: 3 contrasts 

shapes, faces, faces > shapes) of z-statistics and 3 contrasts of pa- 

ameter estimate maps; (3) 10 diffusion MRI derived modalities (9 

BSS features, including FA, MD, MO, L1, L2, L3, OD, ICVF, ISOVF 

 Smith et al., 2006; Zhang et al., 2012 ) and a summed tractogra-

hy map of 27 tracts from AutoPtx in FSL); (4) 4 T1-MRI derived 

odalities (grey matter volume and Jacobian map (which shows 

xpansion/contraction generated by the nonlinear warp to standard 

pace, and hence reflects local volume) in the volumetric space, 

nd cortical area and thickness in the Freesurfer’s fsaverage sur- 

ace space); (5) 1 susceptibility-weighted MRI map (T2-star); (6) 1 

2-FLAIR MRI derived modality (white matter hyperintensity map 

stimated by BIANCA Griffanti et al., 2016 ). A detailed description 

s in Table A.6 . In addition, the 8787 nIDPs were included, but we 

etained the 7245 of those that have at least 10 0 0 non-missing val-

es (subjects). Names of nIDPs are in Supplementary Files . Group- 

evel resting-state independent component spatial maps and task 

ctivation z -statistic maps are in the Supplementary Files . 

When carrying out nIDP prediction, a total of 13 and 54 con- 

ounding variables were regressed out from nIDPs using linear re- 

ression in the HCP and the UKB datasets respectively ( Supple- 

entary Materials ). Subjects with a missing modality were im- 

uted by the mean value of all other subjects. We did not impute 

he missing nIDPs. 

.7. Comparing BigFLICA with the original FLICA on real data 

On real data, we do not know the ground truth components, 

nd the data may not follow the assumptions of ICA. Therefore, 

e rely on the performance of predicting nIDPs as a surrogate 

riterion to evaluate different methods. We applied the proposed 

MIGP approach to HCP data and a subset of 1036 UKB subjects 

so that the original FLICA is computationally tractable). Elastic- 

et regression, from the glmnet package ( Zou and Hastie, 2005 ), 

as used to predict the nIDPs using FLICA’s subject modes as 

odel regressors (features). This approach is widely-used and has 

een shown to achieve a robust and state-of-the-art performance 

n many neuroimaging studies ( Cui and Gong, 2018; Jollans et al., 

019 ). To evaluate the model performance, for each nIDP, we used 
5 
-fold cross validation, and computed Pearson correlation between 

he predicted and true values of each nIDP across the 5 test sets. 

s there are tuning parameters within the Elastic-net regression, 

n each training set, we performed a nested 5-fold cross valida- 

ion to tune the model parameters, and used the best model se- 

ected in the nested 5-fold cross validation to do the prediction 

n the test set. When comparing any two approaches, the same 

raining-validation-testing split was used. The prediction accuracy 

as quantified as the Pearson correlation between predicted and 

he true values of each nIDP in the test sets. 

To evaluate MIGP preprocessing, we reduced the dimension to 

arying L � (from 100 to 500) using MIGP first and then used FLICA 

o extract L = 50 components. The original FLICA was also ap- 

lied to extract 50 components. To evaluate DicL preprocessing, 

e used the DicL (dictionary dimension = 20 0 0 and sparsity pa- 

ameter λ = 1 ) to reduce the data dimension of each modality fol- 

owed by the FLICA to extract varying numbers of components 

nIC = 25 , 50 , 100 , 200 , 300 ). The original FLICA was also applied to

xtract the same numbers of components. The prediction accuracy 

f BigFLICA was compared with the original FLICA applied on non- 

educed data. 

.8. Statistical significance of difference of prediction accuracy 

etween two approaches 

To compare the overall prediction accuracy of two approaches 

e.g., BigFLICA with mMIGP preprocessing vs. the original FLICA), 

e estimate the statistical significance of the difference between 

he prediction correlations across nIDPs. Starting with a total of 

p nIDPs, we first exclude nIDPs where both methods have low 

rediction accuracy ( r < 0 . 1 , as these would likely just add noise

o the comparison), resulting in p 1 nIDPs. Then we want to test 

hether the overall prediction accuracy of p 1 nIDPs with one 

ethod is significantly higher than another method. A naive ap- 

roach would be a simple paired t-test, but the correlation struc- 

ures among nIDPs makes the samples dependent with each other, 

o that the p -value of a t -test is not valid. Note that the paired t -

est can also be formulated as a linear regression model, and in the 

ramework of linear regression, sample correlation can be taken 

nto account by the generalized least squares approach. Specifically, 

e assume: y = xβ + e, where y is the difference of the prediction 

ccuracy between two methods and x is a column of ones. The 

 statistic for coefficient β can be calculated as ( Kariya and Ku- 

ata, 2004 ): 

= (x ′ V 

−1 x ) −1 x ′ V 

−1 y 

 = (x ′ V 

−1 x ) −1 y ′ (V 

−1 − V 

−1 x (x ′ V 

−1 x ) −1 x ′ V 

−1 ) y/ (p 1 − 1) 

 = β/ 
√ 

diag (s ) 

here V is the sample covariance matrix, i.e., the covariance 

mong nIDPs. Note that when V = I, the model is equivalent to 

 paired t-test. In general we do not know V, but can obtain a 

ood estimate of V by calculating the covariance of nIDPs using 

he nIDPs-by-subject matrix. We used the lscov function in Matlab 

o perform the above estimation. 

.9. Parameter settings of running BigFLICA in the full HCP and UKB 

atasets 

We applied BigFLICA approach to extract a varying number of 

arget components in two datasets. In HCP, we used FLICA with 

icL preprocessing only (dictionary dimension 20 0 0 and λ = 1 ). In 

KB, we used FLICA with both mMIGP and DicL preprocessing (dic- 

ionary dimension 50 0 0, λ = 1 and mMIGP dimension 10 0 0 ( > 95%

xplained variance)). The number of FLICA VB iterations is 10 0 0. 

https://www.fmrib.ox.ac.uk/ukbiobank/
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.10. Comparing BigFLICA with multiple independent single-modality 

CA decomposition 

ICA is a widely-used approach for decomposing single-modality 

euroimaging data, including functional MRI ( Smith et al., 2015 ) 

ut also in structural MRI ( Zeighami et al., 2015 ) and diffusion 

RI ( Li et al., 2012 ). A natural question arises whether BigFLICA is

ble to combine multimodal information more effectively than the 

ingle-modality approaches such as ICA (we used the fastICA al- 

orithm ( Hyvarinen, 1999 )), which ignores inter-modality relation- 

hips. 

We first performed ICA on each modality of HCP and UKB data 

eparately to extract 25,10 0, 250, 50 0 and 750 components. For a 

iven component number, we built a prediction model using the 

oncatenated ICA subject modes (across modalities) to predict each 

f the nIDPs. To be fair, for BigFLICA, we extract the same num- 

er of ICs to build the prediction model. For example, in the UKB 

ata and a 25-dimensional decomposition, the predictor is a Sub- 

ect ×(25 × 47) matrix for single-modality ICA, where 25 is the 

umber of components in each modality and 47 is the total num- 

er of modalities. For BigFLICA, the predictor is a Subject ×25 

atrix. This is arguably a fair comparison because each of the 

igFLICA modes potentially contains information from all modal- 

ties. The method to build a predictive model and evaluate this is 

he same as above, except that when we used the concatenated 

CA subject modes, we added a univariate screening step in the 

raining set to select the top 300 most informative features accord- 

ng to their correlation with an nIDP in the training set. This step, 

n general, boosts the predictive accuracy because the dimension- 

lity of concatenated ICA modes is usually very high, so that many 

f the modes are pure noise with respect to any given nIDP. There- 

ore, the univariate screening can help the elastic-net regression to 

lter out noisy features effectively. We did not perform univariate 

creening when using the BigFLICA subject modes to predict nIDPs. 

.11. Comparing BigFLICA with hand-curated imaging-derived 

henotypes 

A popular choice of data analysis strategy is to extract imag- 

ng features based on expert knowledge (e.g., regional volumes and 

hickness, and resting-state functional connectivities between brain 

egions), often referred to as IDPs ( Miller et al., 2016 ). Brain IDPs

ave been shown to genetically correlate with many SNPs in our 

revious genome-wide association study (GWAS) in UK Biobank 

 Elliott et al., 2018 ), and they have been shown to change in many

sychiatric diseases ( Kelly et al., 2017; Van Rooij et al., 2017; Hibar 

t al., 2018 ). 

We extracted 5812 IDPs from the HCP, including (1) 199 struc- 

ural MRI features from Freesurfer as provided by the HCP; (2) 

700 regional mean task activations from 47 independent task con- 

rasts using a 100-dimensional parcellation atlas ( Schaefer et al., 

017 ); (3) 625 functional connectivities (FCs) based on a 25- 

imensional ICA parcellation with partial correlation to estimate 

Cs; (4) 288 regional mean TBSS features (FA, L1, L2, L3, MD, MO) 

sing the Johns Hopkins University tract atlas. The names of these 

DPs are given in the Supplementary File 3 . 

We used 3913 IDPs from UKB, including global and local fea- 

ures from the 6 imaging modalities (T1, T2-FLAIR, swMRI, tfMRI, 

fMRI, and dMRI) ( Smith et al., 2020 ). The names of these IDPs are

iven in the Supplementary File 4 . 

We built prediction models that use IDPs or BigFLICA modes to 

redict each of the nIDPs using the same strategy as above. The 

LICA dimension is set to 25, 100, 250, 500, 750. In addition, we 

lso concatenated IDPs and each of the BigFLICA subject modes to- 

ether to predict the nIDPs, and the performance is compared with 

sing IDPs alone. We used a univariate screening step to select the 
6 
op 30 0/50 0 most informative IDPs according to their correlation 

ith an nIDP in the inner-fold (i.e., training set) of HCP/UKB. Fi- 

ally, we also built models that use IDPs to predict each of the 

LICA subject modes and vice versa, aiming to evaluate the shared 

ariances between features extracted by these two different ap- 

roaches in the same data. 

. Results 

.1. Evaluation of BigFLICA in simulations 

We first applied BigFLICA on simulated data to evaluate the per- 

ormance of mMIGP and DicL as data preprocessing approaches 

nder different parameter settings and data signal-to-noise ra- 

ios. The mean correlation of extracted components with simulated 

round truth was compared with the corresponding result from 

he original FLICA (Methods Section 2.5 ). 

For mMIGP, Fig. 2 a shows that, in most of the situations, the 

igFLICA with mMIGP preprocessing gave similar results to the 

riginal FLICA, and both FLICA and BigFLICA accurately find the un- 

erlying ground truth in most cases. This is in agreement with re- 

ults of simulations in the MIGP paper ( Smith et al., 2014 ) that it

an accurately approximate a full-data PCA in different situations. 

he optimal dimension of mMIGP is different among simulations; 

ometimes a relative low dimension can achieve an accurate esti- 

ation of components (e.g. Fig. 2 a first three columns), while in 

ther cases a high dimension is needed (e.g. Fig. 2 a the fourth col- 

mn). 

For DicL, Fig. 2 b shows that in almost all circumstances: (1) in- 

reasing the dictionary dimensions will boost the performance of 

ubsequent FLICA analysis; (2) the optimal sparsity parameters are 

sually between λ = 0 . 5 to 2, and they have similar performance; 

3) In most cases the optimal performance given by DicL matches 

hat of non-reduced analysis (noted in figure legends). Therefore, 

n the real data analysis, when using the DicL approach, we always 

se a very high dimensional DicL decomposition and fix the spar- 

ity parameter to λ = 1 . 

.2. Computation time comparison 

Table 1 shows the comparison of the computation time and 

emory requirement of BigFLICA with the original FLICA in the 

KB dataset. All code was implemented in Python 2.7, and both 

igFLICA and FLICA were run using 24 cores on a single com- 

ute node with Intel Xeon CPU E7-8857 v2 @ 3.00 GHz CPU and 

048 GB RAM. The computation time includes: (1) Preprocess- 

ng of data using mMIGP and DicL (BigFLICA only); (2) Initializa- 

ion of FLICA parameters; (3) FLICA VB parameter updates. For the 

0 0,0 0 0-subjects data, BigFLICA greatly decreases the computation 

ime and memory usage from an unrealistic amount to a modest 

onfiguration for a modern HPC cluster, which therefore allows for 

he possibility of data-driven population phenotype discovery. 

.3. Real data: comparing BigFLICA with the original FLICA based on 

he prediction accuracy of nIDPs 

As there is no ground truth available, we tested modes of 

igFLICA have a similar prediction accuracy of nIDPs compared 

ith the original FLICA, using data from the HCP, and a subset 

f 1036 subjects from the UKB (Methods Section 2.7 ). Elastic-net 

egression with nested 5-fold cross-validation was used to pre- 

ict each of the nIDPs. This approach is widely-used and has been 

hown to achieve a robust and state-of-the-art performance in 

any neuroimaging studies ( Cui and Gong, 2018; Jollans et al., 

019 ). Pearson correlation between each of the predicted and the 

rue nIDPs in the outer test fold is used to quantify accuracy. 
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Fig. 2. Evaluation of multimodal extension of MIGP (mMIGP) and dictionary learning (DicL) as the data preprocessing steps for the FLICA using simulations. BigFLICA 

achieves similar performance as compared with original FLICA that uses the full data. a, Evaluation of mMIGP preprocessing. We compared the correlations ( Z -transformed) 

of extracted components with ground truth across 50 simulations using the original FLICA (the left column of each figure) and the mMIGP preprocessed FLICA (other 

columns). The mMIGP dimensions vary between 50 and 400; the SNRs are between 4 and 0.04 (left to right), and the number of FLICA and ground truth components are 

25, 35, 45 (top to bottom). As there are 500 subjects, the reduction factor is from 10 to 1.25. b, Evaluation of DicL preprocessing. We compared the correlations of extracted 

components with ground truth using the original FLICA (FLICA results given in the titles of each figure) and the DicL preprocessed FLICA with different sparsity parameters 

and dictionary dimensions (cells of the heatmaps). The SNRs are between 4 and 0.04 (left to right), and the number of FLICA and ground truth components are 25, 50, 100 

(top to bottom). As there are 27,0 0 0 original features per modality, the reduction factor is from 270 to 9. 
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he statistical significance of differences of prediction accuracy be- 

ween two approaches are estimated by a weighted paired t -test 

pproach (Methods Section 2.8 ). 

Fig. 3 shows the Bland–Altman plots comparing the predic- 

ion accuracy of nIDPs between original FLICA and BigFLICA with 

MIGP preprocessing only ( Fig. 3 a), and with DicL preprocessing 

nly ( Fig. 3 b), and with both data reduction approaches ( Fig. 3 c), in
7 
he UKB and HCP datasets. In these comparisons, mMIGP reduced 

he data to approximately 1/10 to 1/2 of the original data size, and 

icL reduced data to approximately 1/75 of the original data size. 

verall, BigFLICA can estimate similar sets of modes with compara- 

le prediction accuracy in real multimodal neuroimaging data, i.e., 

he difference of the correlation between two methods is centered 

round zero across a wide range of mean correlation values (which 
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Table 1 

Comparison of computation time and amount of RAM usage of BigFLICA with the original FLICA in the UKB dataset (14,503 subjects, 47 different modalities). BigFLICA 

greatly increases computational efficiency in different settings. Both BigFLICA and FLICA were run on the same computer using all 24 cores in all computation stages 

with Intel Xeon CPU E7-8857 v2 @ 3.00 GHz and 2 TB RAM. 

Approaches Number of components 100 K subjects 

nIC = 25 nIC = 100 nIC = 250 nIC = 500 nIC = 750 750 components (estimated) 

Computation 

time (h) 

The original FLICA 160 h 300 h 580 h 1020 h 1680 h 12,000 h 

BigFLICA (mMIGP preprocessing) 23 h 54 h 135 h 315 h 565 h 630 h 

BigFLICA (mMIGP + DicL preprocessing) 52 h 53 h 58 h 65 h 73 h 120 h 

Peak RAM 

(GB) 

The original FLICA 801 GB 821 879 963 1066 6000 

BigFLICA (mMIGP preprocessing) 66 88 136 215 297 297 

BigFLICA (mMIGP + DicL preprocessing) 50 50 50 50 50 50 

Fig. 3. Comparison of prediction accuracy of nIDPs between BigFLICA and the original FLICA. Overall, for most of the comparisons, the differences of prediction accuracy 

are not significant. In each of the BlandAltman plots, each point represents the prediction of one nIDP, where the x -axis is the average prediction correlation of the two 

approaches while the y -axis is the difference, i.e., BigFLICA - FLICA. The z - and p -values in the titles reflected the statistical significance of the differences. The Bonferroni 

correction 0.05 threshold corresponds to a raw p -value of 1.7e3. a, Comparing FLICA with mMIGP preprocessing with the original FLICA. We used a subset of 1036 subjects 

in the UKB dataset (top) and the HCP (bottom). The number of estimated FLICA components is set to 50, and mMIGP dimensions are set from 100 to 500. b, Comparing 

FLICA with DicL preprocessing with the original FLICA. We used a subset of 1036 subjects in the UKB dataset (top) and the HCP (bottom). The dictionary dimension is set to 

a high value of 20 0 0, and the sparsity parameter is set to λ = 1 for all modalities. The number of estimated FLICA components are set from 25 to 300. c, Comparing FLICA 

with both mMIGP and DicL preprocessing combined, with the original FLICA. The mMIGP dimension is set to 500, and other settings are the same as in b. We use only a 

subset of UKB here so that running the original FLICA is computationally feasible. The lighter the blue, the higher the density of points. 

8 
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re also reflected in the insignificant p -values of weighted paired t - 

est), which demonstrates that the mMIGP and DicL approaches are 

ffective to reduce data and preserve key information in the data. 

Finally, we tested whether the set of nIDPs which were pre- 

icted better with BigFLICA than the original FLICA are relatively 

onsistent across different nIC. We calculated the differences of the 

rediction accuracy between BigFLICA and original FLICA, and then 

ested if they are correlated across different nICs ( Fig. A.6 ). How- 

ver, we did not observe a significant correlation. This might mean 

hat the nIDP-related information in extracted imaging features is 

ifferent at different scales (ICA dimensionalities), but as the space 

panned by the imaging features is increased with increasing di- 

ensionality, it seems more likely that the reduction in prediction 

f some nIDPs with increasing ICA dimensionality is a result of 

verfitting. 

.4. Comparing BigFLICA with multiple independent single-modality 

CA decomposition 

We also compared BigFLICA outputs against features pooled 

cross those from separate ICA processing of each modality (Meth- 

ds Section 2.10 ). Fig. 4 a shows that BigFLICA has a worse predic-

ion performance than via running ICA separately on each modal- 

ty when the dimensionality L is low. This is because at low di- 

ensional decomposition, single-modality ICA is most efficient be- 

ause the constraints imposed on the degrees-of-freedom implied 

n the FLICA model is insufficient to capture the important data 

ariation into joint components. However, when L becomes large, 

he prediction accuracy becomes better than the single-modality 

CA (e.g., � 250 in UKB). This is because, at high dimensional de- 

omposition, BigFLICA effectively combines multimodal informa- 

ion by considering cross-modal correlation in the data decompo- 

ition stage. Although the cross-modal correlation is considered in 

he final prediction stage when using single-modality ICA, the fact 

hat BigFLICA identifies and takes advantage of correlated informa- 

ion between modalities at an earlier stage in feature generation 

elps improve the prediction performance. 

In Fig. A.7 , we also compared, in the UKB data, the 750- 

imensional BigFLICA decomposition with the 25-dimensional ICA 

ecomposition concatenated across modalities, i.e., we have 25 ×
7 features in the single-modality ICA. In this comparison, the 

umber of features for the two methods are almost the same, but 

e can see that BigFLICA clearly outperforms the single-modality 

CA. 

.5. Comparing BigFLICA with hand-curated imaging-derive 

henotypes 

We compared the predictive performance of BigFLICA with IDPs 

n both HCP and UKB datasets (Methods Section 2.11 ). Fig. 4 b 

hows that, in the UKB data, when the number of modes is low, 

igFLICA has a worse predictive power than the joint performance 

f 3913 IDPs, due to the same insufficient degree-of-freedom rea- 

on as above. However, when the dimensionality becomes higher, 

igFLICA is clearly outperforming the IDPs, owing to jointly fus- 

ng multimodal voxelwise data by considering cross-modality cor- 

elation. In the HCP data, the performance is overall similar. These 

esults indicate that BigFLICA can potentially explain more pheno- 

ypic and behavioural variances than IDPs. 

In more detail, Table A.2 shows that, in the UKB dataset, the 

igh-dimensional BigFLICA (nIC = 750) has improved prediction 

ccuracy for many nIDPs that relate to cognition phenotypes and 

ealth outcomes compared with IDPs. These tables do not include 

IDPs where both methods have low predictive power ( r < 0 . 1 ). In

he HCP dataset ( Table A.3 ), BigFLICA (nIC = 100) also shows im- 
9 
roved prediction accuracy in many cognitive and health outcomes 

ariables compared with using IDPs. 

Further, when we concatenated the modes of BigFLICA and IDPs 

ogether to predict nIDPs, as shown in Fig. 4 c, the combined fea- 

ure sets have a significant improvement of prediction accuracy 

han the IDPs alone in the UKB data. There are almost no differ- 

nces for the same comparison in the HCP data. This suggests that 

igFLICA and IDPs may contain some complementary information 

f nIDPs. 

To investigate the relationships between BigFLICA and IDPs fur- 

her, we built prediction models that used modes of BigFLICA to 

redict each of the IDPs, to further characterise information over- 

ap and complementarity between the two approaches. As shown 

n Fig. A.8a and b , different types of IDPs can be predicted dif- 

erently, and the resting-state functional connectivities always had 

he worst accuracy in both the HCP and the UKB datasets, because 

hey are (relatively) noisy. However, when using BigFLICA modes to 

redict 6 new summary features of the connectivity matrices (de- 

ived by applying ICA to the matrix of subjects by network matrix 

dges) ( Elliott et al., 2018 ), the accuracy is very high ( r range from

.85 to 0.89 for a 100 dimensional BigFLICA decomposition). In ad- 

ition, when we used IDPs to predict modes of BigFLICA, as shown 

n Fig. A.8c and d , the prediction correlation almost showed a bi- 

odal distribution, which means that some of the FLICA modes 

an be predicted by the IDPs (mean r ≈ 0 . 8 ) while others cannot

mean r ≈ 0 . 2 ). These results further demonstrate that BigFLICA 

nd IDPs span significant complementary variance. 

.6. Examples of BigFLICA modes in the 14k UKB dataset 

We now give four examples of significant associations between 

igFLICA modes and nIDPs, namely, Fluid intelligence, Age started 

earing glasses or contact lenses, Handedness and hypertension . In 

ig. 5 , we show the top four most strongly associated modalities 

n FLICA modes that correlate with a given nIDP. Fig. A.16 shows 

he population cross-subject mean maps for several task and rest 

MRI modalities fed into FLICA. This helps give interpretive context 

or the FLICA mode maps, which depict subject variability in the 

ctivity/connectivity relative to these group mean maps. 

For Fluid intelligence , using all modes (ICs) from the 750 di- 

ensional BigFLICA decomposition as features (predictors) in mul- 

ivariate elastic-net prediction, a cross-validated prediction corre- 

ation of r = 0 . 26 is achieved. When we correlated each of the

igFLICA modes and IDPs with the fluid intelligence score in the 

KB, we found that several task-fMRI-related BigFLICA modes have 

he strongest associations ( Fig. 5 a). The first (IC 25) involves task 

ontrast “faces” and “faces > shapes” and the second (IC 57) in- 

olves contrast “shapes” and “face” (see Table A.6 for the full list 

f these modalities). As the correlation of the mode IC 25 (i.e., 

ts subject weights vector) with fluid intelligence is negative ( r = 

0 . 14 ), this means that the negative-weights voxels (such as in 

he anterior insula) are positively correlated with intelligence. The 

MRI task (Hariri faces-shapes matching Hariri et al., 2002 ) has, 

s expected, the greatest population average activation in sensory- 

otor areas (plus some amygdala involvement due to the emotion- 

lly negative nature of the faces), as seen in Fig. A.16 . However, the 

ain brain areas involved in these modes are distinct, including 

nterior cingulate cortex, frontal pole, inferior frontal gyrus, and 

nterior insula; it is therefore interesting that the areas found by 

igFLICA to be modulated in these components (and found to asso- 

iate with intelligence) are more “frontal, cognitive” areas than the 

ensory-motor areas primarily activated on average. The top asso- 

iations between fluid intelligence and IDPs also involve task-fMRI 

DPs ( Table A.4 ), but these were a factor of two weaker than asso-

iations with BigFLICA modes. 
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Fig. 4. Comparison of prediction accuracy of nIDPs between BigFLICA against single-modality ICA and the IDPs. Overall, for high-dimensional BigFLICA decompositions in the 

UKB dataset, BigFLICA achieved statistical significant increases of prediction accuracy of nIDPs compared with single-modality ICA and IDPs. Combining BigFLICA and IDPs 

together future improves compared with IDPs alone. In each of the Bland–Altman plots, each point represents the prediction of an nIDP, where the x -axis is the average 

prediction correlation of the two approaches, while the y -axis is the difference. The z - and p -values in the titles reflected the statistical significance of the differences. The 

Bonferroni correction 0.05 threshold corresponds to a raw p -value of 1.7e3. a, Comparing BigFLICA with the concatenation of single-modality ICA outputs. Top: UKB; Bottom: 

HCP. The number of FLICA components is set from 25 to 750. b, Comparing BigFLICA with IDPs. Top: UKB; Bottom: HCP. The number of IDPs is 3913 in UKB and 5812 in the 

HCP. c, Comparing the concatenation of BigFLICA and IDPs against IDPs only. Top: UKB; Bottom: HCP. The lighter the blue, the higher the density of points. 
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For Age started wearing glasses or contact lenses , BigFLICA 

chieved a prediction correlation of r = 0 . 16 . Several resting-state 

onnectivity and task modalities showed associations in primary 

isual areas ( Fig. 5 b), which is consistent with the fact that this is a

ision-related health variable. Lower age of first wearing glasses is 

orrelated with stronger activity in primary visual areas, and also 

ith strength of resting-fMRI connectivity (or functional coher- 

nce) within the relevant areas of group-average connectivity; in- 

erestingly, in nearby distinct (but still primary visual) areas, there 

s reduction of correlation (blue voxels), suggesting greater differ- 

ntiation of primary visual areas. 

For Handedness , BigFLICA achieved a prediction correlation of 

 = 0 . 23 . BigFLICA identified several multimodal, lateralized (or lat- 

rally asymmetric) modes, including resting-state mode 14 (left- 

ateralized language network), task, surface area and white matter 

racts ( Fig. 5 c). There are several resting-state connectivity-related 

DPs correlated with handedness ( Table A.4 ), consistent with a re- 

o

10 
ent study ( Wiberg et al., 2019 ) that also used UKB IDPs, while no

DPs related to other modalities are found significant; in both cases 

he maximum IDP correlation only reached r = 0 . 12 , whereas the 

trongest association with BigFLICA modes was almost double this. 

For a health variable hypertension ( Fig. 5 d), BigFLICA achieved 

 prediction correlation of r = 0 . 22 . Several TBSS-related modali- 

ies showed consistent associations in the External Capsule tracts. 

eanwhile, white matter hyperintensity (T2-Lesion volume) in the 

orresponding areas is also higher in people with hypertension. 

everal consistent findings have been reported in the literature 

 Moon et al., 2005; Allen et al., 2016; Hannawi et al., 2018 ). 

.7. BigFLICA comparison with mCCA and reproducibility 

We tested whether BigFLICA (independent components-based 

patial modelling) was better than mCCA (eigendecomposition 

ased modelling, which could be considered to be similar to the 

utput of BigFLICA without running the final core FLICA unmixing 
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Fig. 5. Examples of BigFLICA modes in the 14k UKB dataset. For each subfigure, each row shows one IC (BigFLICA mode or independent component) with top 4 most strongly 

associated modalities. a, Two BigFLICA modes that significantly correlate with fluid intelligence (IC25: r = −0 . 14 ; IC57: r = −0 . 12 ). b, Two BigFLICA modes that significantly 

correlate with Age started wearing glasses or contact lenses (IC164: r = −0 . 10 ; IC13: r = −0 . 05 ). c, Three BigFLICA modes that significantly correlate with handedness (IC235: 

r = −0 . 23 ; IC569: r = 0 . 07 ; IC232: r = −0 . 04 ). d, Three BigFLICA modes that significantly correlate with hypertension (IC259: r = 0 . 12 ; IC13: r = −0 . 11 ; IC319: r = −0 . 09 ). The 

Bonferroni corrected 0.05 threshold corresponds to an uncorrected p-value of 9 . 2 × 10 −9 (corrected for number of components (750) and number of nIDPs (7245)). All of the 

above correlations passed the Bonferroni threshold except for IC232 with uncorrected p = 2 . 1 × 10 −7 . 
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 note that to enable mCCA to run requires the same mMIGP ini- 

ial processing that we have added in this work) in three ways. The 

umber of extracted components was the same when performing 

his comparison. First, for the prediction accuracy of nIDPs, Fig. A.9 

hows that, in the UKB data, BigFLICA has a (very slightly) im- 

roved prediction accuracy compared with mCCA. Then, we pro- 

osed a hypothesis that modes of BigFLICA are more parsimonious 

eatures of nIDPs compared with mCCA, or in other word, a smaller 

umber of modes of BigFLICA can predict the nIDPs. Results shown 

n Fig. A.10 validate this hypothesis: for a given number of com- 

onents and a given nIDP, BigFLICA modes have a (on average) 

igher proportion of zero weights in the elastic-net predictions, 

hen compared with mCCA modes. The advantage is that a more 

arsimonious representation usually has a better biological inter- 

retability. Finally, we estimated and compared the split-half re- 

roducibility of BigFLICA and mCCA. As shown in Fig. A.11 (right), 

igFLICA has a much higher between-subject reproducibility than 
c

11 
CCA (median BigFLICA correlation greater than 0.9 in all cases, 

hile many mCCA dimensionalities have median correlation less 

han 0.5). 

.8. Reproducibility of BigFLICA 

To test whether BigFLICA’s spatial independent components are 

stimated reliably, the whole UKB dataset was divided into two 

arts: the first part contained 70 0 0 subjects and the second part 

ontained the remaining 7503 subjects. We applied BigFLICA to 

he two parts separately. After estimating the subject modes, we 

econstructed the z-score normalized (voxel-wise) spatial maps of 

ach modality by regressing the subject mode against the mMIGP- 

educed data. The spatial independent components of each modal- 

ty were concatenated spatially and greedily paired, based on the 

bsolute correlation between two runs. When we computed the 

orrelations, only voxels whose absolute z-scores that are both 
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arger than 3 in two runs were preserved (to reduce noise, given 

hat there are huge numbers of empty voxels across all modali- 

ies for a given FLICA component in general; this does not bias 

he metric of reproducibility towards finding common similar pat- 

erns). Fig. A.11 (left) shows that the FLICA components have very 

igh reproducibility in the split-half test across a varying number 

f components. 

We further tested the reproducibility of prediction accuracy of 

igFLICA for predicting nIDPs. We ran BigFLICA separately on two 

alves of the dataset as above, and then predicted each of the 

IDPs using elastic net regression in each half. Fig. A.12 shows the 

rediction accuracy of all nIDPs. We can see that the prediction 

ccuracy of nIDPs are highly correlated, especially for nIDPs that 

ave a high prediction accuracy ( r = 0 . 57 for a 25 dimensional de-

omposition, and r > 0 . 7 for higher dimensions). 

Finally, we investigated the influence of sample size on the re- 

roducibility. We performed the same split-half reproducibility test 

n two random subsets of 1500 and 3500 subjects. Fig. A.13 shows 

hat across different numbers of components, BigFLICA has a repro- 

ucibility of from 0.6 to 0.7, which is expected to be lower than the 

0 0 0 subject case. We can also see that there is a slight increase

f reproducibility when the number of components increases. This 

ifferent behaviour compared with the 70 0 0-subject cases may be 

ue to the fact that many of the components are empty when the 

umber of components is larger than 250 (i.e., there is not enough 

ata to support the ICA dimensionality), so that we can only com- 

ute the reproducibility index based on the non-empty compo- 

ents. 

.9. Stability of BigFLICA prediction 

We evaluated the stability of prediction accuracy of BigFLICA 

gainst different train-test subject splits. We estimated the pre- 

iction correlation of each nIDP using 5 different train-test sub- 

ect splits, and calculated the mean accuracy of prediction correla- 

ions for each nIDPs. We then computed the difference of the mean 

rediction correlation and the prediction correlation of one of the 

ve random predictions. As shown in Fig. A.14 , the differences are 

entered around zero with extremely small spread, which demon- 

trated the stability of BigFLICA against different random train-test 

plits. 

Among the 25 resting-state dual-regression spatial maps in- 

luded in the analysis, four of them had been originally identified 

s non-neural components ( Miller et al., 2016 ). Non-neural com- 

onents likely reflect non-neuronal physiology and therefore may 

elp prediction, particularly for the nIDPs that relate to basic phys- 

ology (e.g., blood pressure). Therefore, we tested the prediction ac- 

uracy of nIDPs when we exclude the four non-neural modalities 

rfMRI components). Fig. A.15 shows that an increased prediction 

ccuracy was observed for some nIDPs in the 25-dimensional de- 

omposition when compared with using all 47 modalities, a simi- 

ar prediction accuracy was observed for 100- and 250-dimensional 

ecompositions, while a decreased prediction accuracy was ob- 

erved for 500- and 750-dimensional decompositions. The set of 

IDPs that are better predicted by inclusion of 4 non-neural com- 

onents at high dimensions are those that relate to physical mea- 

ures. Researchers may choose to include artifactual rfMRI compo- 

ents (e.g., where this helps maximise nIDP associations), or may 

xclude them (e.g., to maximise interpretability of associations). 

.10. Contribution of different modalities in a BigFLICA decomposition 

Besides using BigFLICA for exploring the relationships between 

maging and non-imaging phenotypic and behavioural data, we can 

lso use it to investigate the relationship between different modal- 

ties. For each mode, BigFLICA estimates a vector of positive num- 
12 
ers reflecting the contributions of different modalities (i.e., the di- 

gonal of each W (k ) , where the higher the number, the more im- 

ortant is one modality to a mode). We concatenated all such vec- 

ors across all modes so that it is a mode-by-modality matrix W, 

nd normalized each column to sum to one. Six examples of such 

atrices are shown in Fig. A.17 , with different numbers of esti- 

ated modes in the UKB dataset. 

We then calculate each row’s sum (across columns) in W, 

hereby reflecting the overall contribution of each modality in the 

igFLICA decomposition. As shown in Fig. A.18 , across all FLICA 

imensionalities (numbers of estimated modes), each of the 25 

esting-state fMRI dual-regression spatial maps usually has a low 

verall contribution, followed by task fMRI maps, while modalities 

eflecting more about structure of the brain (e.g., structural MRI 

nd diffusion MRI) generally have high overall contributions. The 

elative differences of modality contribution between functional 

RI-related modalities and structural/diffusion MRI-related modal- 

ties become larger with increasing number of estimated modes. 

e further estimated the total shared variances between a lower 

imensional BigFLICA decomposition and a higher dimensional de- 

omposition. Table A.5 shows that a higher dimensional decompo- 

ition explains almost all variances of a lower dimensional decom- 

osition (upper triangle of the table), while a lower dimensional 

ecomposition can explain a large proportion of the variances of a 

igher dimensional decomposition. 

.11. Relationship between different modalities in a BigFLICA 

ecomposition 

We calculated the cosine similarity between different columns 

f W (using the 750-dimensional BigFLICA decomposition), to mea- 

ure the similarity of different modalities in terms of their con- 

ribution to the BigFLICA decomposition, i.e., the more similar in- 

ormation two modalities carry, the more likely they will have 

imilar contribution to a mode. Fig. A.19a shows that the modal- 

ty relationship matrix is clearly grouped into three large clus- 

ers. The first is all resting-state modalities, while the second is 

he task fMRI maps, and the third is the diffusion MRI, struc- 

ural MRI-related modalities and swMRI. The white matter hyper- 

ntensity map (T2 lesions) forms a single cluster. As a comparison, 

e also performed a 50-dimensional ICA decomposition within 

ach modality, and calculated the shared variances between every 

air of 50 ICs in two modalities using a simple multivariate regres- 

ion model. As shown in Fig. A.19b , we also observed a similar pat- 

ern as Fig. A.19a . The main difference is that in Fig. A.19a , there

re relatively stronger correlations within resting-state modalities 

nd between resting-state and other modalities, but weaker corre- 

ations between task modalities and structural related modalities. 

hese results reflect the fact that the multimodal modelling effects 

f BigFLICA learn different inter-modality relationships compared 

ith single-modality ICA. 

. Discussion 

In this paper, we presented BigFLICA, a multimodal data fu- 

ion approach which is scalable and tuneable to analyze the full 

K-Biobank neuroimaging dataset, and other large-scale multi- 

odal imaging studies. To the best of our knowledge, this is the 

rst approach for data-driven (unsupervised) multimodal analy- 

is in a brain imaging dataset of this size and complexity. Build- 

ng on the top of the powerful FLICA model, we proposed a two- 

tage dimension-reduction approach that combines an incremen- 

al group-PCA (mMIGP) and dictionary learning (DicL) to effec- 

ively preprocess the multimodal dataset and reduce the compu- 

ational load of the final FLICA, while maintaining or even im- 

roving performance, with as much as a 150-fold “intelligent” re- 
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uction in data size. We provide effective ways of choosing the 

yper-parameters of BigFLICA, so that it is free of tuning except 

or choosing the final number of estimated components. Although 

his approach is motivated by the need for analyzing extremely big 

euroimaging data, it is also applicable to other kinds of data such 

s genetics and behavioural measures. An easy-to-use version of 

his software will be integrated into an upcoming version of the 

SL software package ( Smith et al., 2004; Jenkinson et al., 2012 ). 

igFLICA results on UKB will also be released via the UKB database 

s new data-driven IDPs (image features), for further epidemiolog- 

cal and neuroscientific research. 

A strength of our work is that, unlike previous work that was 

imited to more moderate datasets and a few phenotypic and be- 

avioural variables ( Calhoun et al., 2006; Liu et al., 2009; Beck- 

ann and Smith, 2005; Groves et al., 2011; Sui et al., 2012 ), we

sed two of the largest, high-quality multimodal neuroimaging 

atasets, and thousands of phenotypic and behavioural variables 

o validate the proposed approach. We demonstrated that BigFLICA 

s not only much faster than the original FLICA (and can be run on 

ery large data that is simply not analysable with FLICA or other 

xisting methods), but also estimates similar modes with a com- 

arable performance for predicting the non-imaging-derived phe- 

otypes in real data (when tested on a large data subset that is 

ust small enough to allow for comparison against FLICA). We pro- 

ide insights into the advantages of data-driven multimodal fusion 

n big datasets by quantitative analysis ( Calhoun and Sui, 2016; 

luda ̆g and Roebroeck, 2014 ). First, when comparing BigFLICA with 

impler IDP-based approaches (and also single-modality ICA ap- 

roaches), we demonstrated that a high-dimensional BigFLICA has 

mproved predictive power overall. We demonstrated the value of 

ultimodal fusion instead of analyzing each modality separately. 

econd, when combining high-dimensional BigFLICA-derived fea- 

ures with IDPs together, the predictive power increased further 

ompared with using either method alone. In addition, when we 

sed BigFLICA-derived features and manually created (with expert 

nowledge) IDPs to predict each other, they cannot predict each 

ther perfectly (although they are derived from the same imaging 

ata). This indicates that BigFLICA-derived features and IDPs can 

e complementary to each other, both therefore providing poten- 

ially important imaging biomarkers that capture different signal 

n the imaging data. An interesting finding is that although a high- 

imensional BigFLICA has a much higher predictive power than a 

ow dimensional decomposition, a low dimensional decomposition 

an still explain more than 80% of the total variance of the high di- 

ensional decomposition. This suggests that some the phenotypic 

nd behavioural variables are explained by only small proportions 

f variance of imaging data. Third, in addition to the value of us- 

ng BigFLICA-derived features for relating imaging to non-imaging 

ata, BigFLICA components (particularly at lower dimensionalities) 

ay allow us to learn more about how the different brain imag- 

ng modalities (and hence different spatial and biological aspects 

f the brain’s structure and function) relate to each other. Finally, 

hen new primary data becomes available from new subjects, this 

ata would need to have new IDPs calculated (at the subject level) 

nd then combined with existing IDPs from previous subjects, for 

 complete between-subject analysis. The approach presented here, 

hile not avoiding any of the necessary new computations, will 

ake these efficient. Further, note that it is alternatively possible 

o use an existing decomposition and apply this to new subjects 

y projecting them onto the existing spatial bases to generate new 

ubject weights (loadings) against the ICA features. 

We see opportunities to improve the current approach. First, 

igFLICA is limited to linear feature estimation, while the “ideal, 

rue” information in imaging data may be highly nonlinear. There- 

ore, a nonlinear extension of BigFLICA, which might be achieved 

ith kernel methods or deep neural networks, is an important 
13 
rea of further research. Second, BigFLICA is an unsupervised di- 

ension reduction and feature generation approach. However, in- 

egrating some supervision, i.e., the target variable (such as dis- 

ase outcomes), into the dimension reduction may boost the per- 

ormance of the algorithm. Additionally, because BigFLICA gener- 

tes data-driven features, as opposed to expert-created IDPs, the 

iological or anatomical interpretation of features is often likely 

ot to be immediately obvious, requiring potentially intensive ex- 

ert study. Future work could attempt to automate this interpreta- 

ion process, for example by relating features to existing anatom- 

cal templates and atlases, and even by mining imaging literature. 

inally, BigFLICA, or extensions, may be an effective way of dis- 

overing imaging confound factors ( Li et al., 2020 ) that cannot be 

ound by traditional approaches. 

ata availability 

BigFLICA-derived features will be available from the UK 

iobank database. For UK Biobank, all source data (includ- 

ng raw and processed brain imaging data, derived IDPs, and 

on-imaging measures) is available from UK Biobank via their 

tandard data access procedure (see http://www.ukbiobank.ac.uk/ 

egister-apply ). For HCP, data can be downloaded via website ( http: 

/humanconnectome.org/data ) and ConnectomeDB. 

ode availability 

BigFLICA code is available at https://github.com/weikanggong/ 

igFLICA , and will also be released as part of an upcoming version 

f FSL. Matlab software for performing prediction using elastic-net 

egression is available at https://github.com/vidaurre/NetsPredict . 
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