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What is it like to be a bat? This is a question that has
haunted philosophers and neuroscientists for decades
(Nagel, 1974; Ulanovsky & Moss, 2008). We will probably
never have a full answer to the above question (for bats,
or any other organism). What we can know, however, is
what happens in the bat brain when the animal listens to
sounds or performs actions.

Interest in bats as a model organism started as early as
1794, when the Italian priest Lazaro Spallanzani first
described bats’ ability to navigate in the dark (Spallanzani
& Vassalli, 1794) This ability was later termed echoloca-
tion (Griffin, 1958). The most interesting thing about
experiments in bats is the link between the bats’ unique
behaviours and specializations in the brain. This has led
to several discoveries, including large areas dedicated to
echolocation in the bat cochlea and central auditory sys-
tem (Hechavarría et al., 2013; Kössl & Vater, 1985; Suga &
Jen, 1976; Suga & O’Neill, 1979; Wenstrup & Portfors,
2011); the description of three-dimensional place cells
in the bat hippocampus (Yartsev & Ulanovsky, 2013);
dynamic neural networks that enable the production and
modulation of echolocation sounds (Weineck et al., 2020);

and circuits for social interactions that are important in
bats (Rose et al., 2021; Zhang & Yartsev, 2019).

Detection of deviant stimuli and the underlying
neural mechanism is one study area in which bats have
not been used extensively as an animal model. Deviance
detection, studied in humans with EEG recordings,
appears as a mismatch negativity (MMN) signal occurring
in response to an unexpected sensory event (Näätänen
et al., 1978). MMN can be measured at birth, and it occurs
in wakefulness, sleep, and even in coma (Koelsch et al.,
2006; Morlet & Fischer, 2014; Nashida et al., 2000).
Deviance detection has been studied in laboratory ani-
mals (mostly rats and mice) at the single neuron level,
where it takes the form of stimulus-specific adaptation
(SSA; Nieto-Diego & Malmierca, 2016; Parras et al., 2017;
Ulanovsky et al., 2003). SSA and MMN may be linked to
each other and may be the microscopic and macroscopic
manifestations of the same physiological mechanism of
deviance detection (Carbajal & Malmierca, 2018; Nelken
& Ulanovsky, 2007). SSA and MMN have received partic-
ular attention in the auditory domain with several studies
linking these two phenomena to predictive coding theory
(Malmierca & Auksztulewicz, 2021; Parras et al., 2017).

So, what could the study of bats contribute to
our understanding of deviance detection? One possible
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answer is neuroethology. An animal model that uses rich
vocal repertoires to communicate and navigate could
help us correlate the strength and dynamics of
SSA/MMN responses with the signals’ behavioural value.
There have been few investigations of deviance detection
in bats. We know that a subpopulation of neurons in the
bat midbrain display stimulus-specific adaptation to
artificial sounds, very similar to that found in laboratory
rodents (Thomas et al., 2012). The occurrence of
unexpected natural sounds, such as echolocation sounds
following a sequence of communication calls, and vice
versa, also elicit responses in the bat cortex that resemble
deviance detection signals (L�opez-Jury et al., 2021).

A new study of deviance detection in bats appears in
this issue of European Journal of Neuroscience. Wetekam
et al. (2021) present a characterization of brain activity in
fruit bats (Carollia perspicillata). The authors use auditory
brainstem responses (ABRs) to investigate the correlates
of deviance detection in the bat ascending auditory path-
way. This technique is common in human studies and has
been used previously to study deviance detection in
rodents (Duque et al., 2018). Wetekam et al. report that
the underlying mechanisms of deviance detection vary in
a frequency-specific manner in bats and are very much
related to the physical structure of echolocation and com-
munication sounds used by the animals in their natural
habitats. The latter point shows the value of neu-
roethology for understanding how the brain copes with
sensory stimuli. The article also concludes that deviance
detection in bat ABR signals is best decoded from slow
waves. Slow waves are often overlooked in ABR studies as
they filter out slow components (i.e., <300 Hz). The origin
of slow waves in ABRs may bear further investigation,
especially if they illustrate a method to study complex phe-
nomena, such as deviance detection, with minimally inva-
sive techniques that are useful across model organisms.
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