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Tumour proliferation is one of the main biological phenotypes limiting cure in oncology. Extensive research is being performed to
unravel the key players in this process. To exploit the potential of published gene expression data, creation of a signature for
proliferation can provide valuable information on tumour status, prognosis and prediction. This will help individualising treatment and
should result in better tumour control, and more rapid and cost-effective research and development. From in vitro published
microarray studies, two proliferation signatures were compiled. The prognostic value of these signatures was tested in five large
clinical microarray data sets. More than 1000 patients with breast, renal or lung cancer were included. One of the signatures (110
genes) had significant prognostic value in all data sets. Stratifying patients in groups resulted in a clear difference in survival (P-values
o0.05). Multivariate Cox-regression analyses showed that this signature added substantial value to the clinical factors used for
prognosis. Further patient stratification was compared to patient stratification with several well-known published signatures.
Contingency tables and Cramer’s V statistics indicated that these primarily identify the same patients as the proliferation signature
does. The proliferation signature is a strong prognostic factor, with the potential to be converted into a predictive test. Furthermore,
evidence is provided that supports the idea that many published signatures track the same biological processes and that proliferation
is one of them.
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The abilities to predict outcome and to identify key players in
biological mechanisms that lead to poor outcome are two
important objectives in cancer research. Recently, efforts to exploit
gene expression profiling have been made to identify gene sets, or
so-called gene signatures, that can improve diagnosis and risk
stratification (Bild et al, 2006). A drawback of most of the studies
performed is that supervised analysis methods are utilised to
acquire such signatures. In this approach, patient microarray and
clinical data are used to find gene sets that correlate with tumour
type or survival. This often results in gene sets with a very high
prognostic value in the studied data set. However, comparative
testing of these signatures in other patient data sets has been

limited, and the overlap in selected genes of different comparable
studies is small (Chen et al, 2007). If such a signature can be
applied to other data sets, it may well be restricted to a certain
patient population and cancer type. In addition, the gene sets
obtained with this method are often difficult to interpret with
respect to the underlying biological mechanism (Dai et al, 2005;
Quackenbush, 2006). Furthermore, Dupuy and Simon (2007)
showed in a recent review that many of these studies show flaws
in methodology.

An alternative approach to identify prognostic signatures is
based on defining gene sets involved in a biological process or
specific environmental condition that is suspected of influencing
treatment response or patient outcome. In this approach, in vitro
gene expression profiling is used to identify gene sets that play an
important role in a specific biological process. The identified gene
set is then applied to gene expression data from patients to
evaluate its prognostic value. This approach has a more broad
application because the gene sets can be applied in almost every
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patient group. Furthermore, it can be used not only to investigate
whether a certain process is important in a distinct cancer type or
patient group but also potentially to select patients in those groups
that would be expected to benefit from therapies directed to the
biological process of interest (Bild et al, 2006). Examples of gene
sets attained with this approach are the wound (Chang et al, 2004),
hypoxia (Chi et al, 2006; Sung et al, 2007; Winter et al, 2007) and
‘invasiveness’ (IGS) (Liu et al, 2007) signatures. These studies
show that the deduced signatures can be used for risk stratification
in very different types of cancers (Chang et al, 2004; Chi et al, 2006;
Liu et al, 2007; Winter et al, 2007), presumably because of common
core pathways that are influencing outcome in these diverse
clinical groups. Another potential benefit of this unsupervised
approach is that it can potentially identify the functional regulators
within a signature that drive the studied process (Adler et al, 2006)
and thus reveal new targeting candidates. Recently, Fan et al (2006)
compared the performance of several supervised and unsupervised
derived gene sets and found that both types of signatures showed
high concordance in prognostic power (van de Vijver et al, 2002).

One of the biological processes often implicated in gene
expression signatures is cell proliferation. The rate of tumour cell
proliferation is a major contributor to treatment response with
both chemotherapy and radiotherapy (Bourhis et al, 2006) and is
reflected in the fact that overall treatment time (e.g., duration of
radiotherapy) is an important contributor to outcome (De
Ruysscher et al, 2006). In a recent review, Whitfield et al (2006)
showed that proliferation may underlie the prognostic power of
many previously identified signatures. He showed that in almost
every supervised derived signature a large subset of genes involved
in proliferation is included (Perou et al, 1999; Dai et al, 2005;
Sotiriou et al, 2006). In some cases, these classifiers have even been
designated as ‘proliferation’ signatures, although there derivation
was not based on this phenotype. Two of these signatures have
recently made it to the clinical setting as a diagnostic tool for
patients with breast cancer (van ‘t Veer et al, 2002; Paik et al,
2004).

On the basis of these results, we hypothesised that derivation of
a specific in vitro-derived signature based solely on proliferation
may provide valuable information on tumour status, prognosis
and outcome prediction across diverse tumour types.

MATERIALS AND METHODS

Data sets

Patient microarray and clinical follow-up data were collated to test
the clinical value of the signatures. Data sets are publicly available

in the microarray databases Gene Expression Omnibus (GEO) and
Stanford Microarray Database (SMD) or elsewhere. Accessory
clinical and follow-up data were also given or provided by the
authors on request. In Table 1A, an overview of the data sets and
where they are accessible is provided. Data filtering and pre-
processing are explained in the Supplementary Information
(Supplementary Materials and Methods). Data sets were imported
in Matlab (Matlab 7.1, The Mathworks, Natick, MA, USA). Unless
indicated otherwise, analyses were performed in this program.

Signature score calculation

Expression data of the genes in the signature was extracted from
the data set. The following step was used to calculate a signature
score for each patient in the data set. This score was defined as the
weighted average expression value of the genes in the signature
(Equation (1)). A weight of �1 or 1 was assigned to each gene,
dependent on the phenotype the gene represented. Weight
assignment is described in the results and Supplementary
Information (Supplementary Materials and Methods).

The signature score then reflects the status of the studied
process in a tumour. When a gene was represented by more than
one probe on an array, the expression of the probes was averaged
before signature calculation. In Table 1B, the number of signature
genes represented in the different data sets is provided for the
evaluated signatures.

Score ¼
PN

i¼1 wi � expi

N
ð1Þ

where: score, signature score; N, number of genes in the signature;
i, gene; wi, weight of gene i; expi, gene expression of gene i.

Statistical analysis

A loop of 1000 clustering repeats with the K-means clustering
function in Matlab was applied to split the patients in two
groups according to their signature score. Outcome in the two
groups was analysed and compared by the Kaplan–Meier
method. Differences in outcome were tested for statistical
significance by the log-rank test for different common end points.
For breast and renal cancer, the common end points are 5- and
10-year survival, and for lung cancer, these are 2- and 5-year
survival; all end points were analysed when follow-up was long
enough. Results for the log-rank tests are given as the average,
standard deviation and the range of the P-values, also the
percentage of P-values from the 1000 clustering runs that were

Table 1 (A) Overview of the analysed patient microarray data sets. (B) Number of signature genes represented in the microarray data set (number of
gene identifiers on the arrays are given between parentheses)

(A) Data set Cancer site No. of patients Source

Miller Breast 251 GEO accession GSE3494: http://www.ncbi.nlm.nih.gov/projects/geo/
Wang Breast 286 GEO accession GSE2034: http://www.ncbi.nlm.nih.gov/projects/geo/
Van de Vijver Breast 295 http://microarray-pubs.stanford.edu/wound_NKI/
Zhao Renal 177 SMD: http://smd.stanford.edu/
Beer Lung 86 http://dot.ped.med.umich.edu:2000/ourimage/pub/Lung/index.html

(B) Data set Signature 1 Signature 2 Wound signature IGS signature

Miller 455 (1120) 104 (228) 415 (1030) 176 (516)
Wang 350 (667) 87 (158) 346 (614) 131 (270)
Van de Vijver 192 (242) 51 (59) 171 (195) 67 (87)
Zhao 257 (415) 47 (82) 280 (446) 83 (132)
Beer 192 (224) 45 (51) 171 (195) 63 (76)
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significant was calculated to evaluate the prognostic power of the
signature and stability of the clustering.

Multivariate Cox-regression analysis with stepwise backward
selection procedure was performed in SPSS (SPSS 12.0.1, SPSS Inc,
IL, USA) to show the clinical relevance of the signature.

AUC model calculation

Matlab was used to integrate all parameters in a model with and
without addition of the signature to the clinical parameters.
Differences between the models were assessed using receiver–
operator curve (ROC) analysis by calculating the AUC. Further
details are provided in the Supplementary Information (Supple-
mentary Materials and Methods).

Random signature testing

A method to test a predefined number of random signatures of a
predefined size on all the data sets was developed. To show the
strength of a signature, 10 000 random generated gene sets, with
sizes equal to the size of the signature of interest, were tested on
the data sets. These random gene sets were tested in a similar
manner as the other signatures.

Mitotic index scoring

Mitotic index was assessed (as part of histological grading) in the
295 breast tumours of the van de Vijver et al (2002) data set, using
a microscope with a field diameter of 0.44 mm with a � 40
objective. The area with the highest mitotic activity was selected
and mitotic figures were counted in 10 consecutive fields. Tumours
were assigned to the following groups based on the mitotic counts:

� Group 1: 0 –5 mitoses in 10 high power fields.
� Group 2: 6 –10 mitoses in 10 high power fields.
� Group 3: X11 mitoses in 10 high power fields.

RESULTS

Signature derivation

From published microarray studies two different proliferation
signatures were compiled. Whitfield et al (2002) studied the cell
cycle in HeLa cells (cervix cancer cell line). Microarrays were
performed on synchronized cell cultures at different time points,
and genes that showed a periodic variation were selected. These
genes were grouped according to the cell cycle phase in which their
expression peaked. We propose that this gene set could be used as
a specific proliferation signature.

Another method to derive a proliferation signature with
microarrays was used by Chang et al (2004). Human fibroblasts
were serum starved for 48 h and then stimulated with serum to
simulate a wound response. One of the most consistent and
important effects in the serum response program is stimulation of
proliferation. Abnormal proliferation is also a consistent char-
acteristic of cancer cells, irrespective of a wound response (Chang
et al, 2004). Chang et al (2004) therefore discarded the genes with a
periodic behaviour to specifically study the wound response. Here,
we propose that the set of genes discarded from the wound
signature is a good representation of a proliferation signature. This
signature is a subset of the signature derived from Whitfield et al
(2002); however, we postulate that it is a better representative of
proliferation and will be a better prognostic factor, as only this
gene set shows a change in expression upon serum stimulation.

The wound (Chang et al, 2004) and IGS (Liu et al, 2007)
signature are two promising published unsupervised derived
signatures. Furthermore, the second proliferation signature is

derived from the same in vitro data as the wound signature.
Therefore, these signatures were also analysed.

Comparison of two proliferation signatures

Signature 1 (Whitfield et al, 2002) and signature 2 (Chang et al,
2004) consist of respectively 1134 and 199 cloneIDs that map to
815 and 154 unique UnigeneIDs, respectively. The distribution of
genes in the different cell cycle phases for the two signatures is
distinct (Supplementary Information Table S1), indicating that the
signatures are different. Signature 1 shows equal proportions of
genes in the defined cell cycle phases. However, in signature 2
more genes are involved in G2 and clearly less genes are involved
in M/G1.

Outcome prediction with proliferation signatures

The signatures were tested for their clinical relevance on several
publicly available microarray data sets (Table 1). Signatures were
evaluated using a signature score (Equation (1)), which is defined
as a weighted average of the expression of the genes in the
signature. To calculate the signature score, weights were defined
for each gene. After translating the signatures into UnigeneIDs
(build199) and weight assignment, several genes were discarded
from analyses, as weight assignment for these genes was
ambiguous (details are provided in the Supplementary Materials
and Methods). The final signatures consist of respectively 508 and
110 UnigeneIDs for signatures 1 and 2.

In every data set, a signature score (Equation (1)) was calculated
for each patient. The patients were separated in two groups by
clustering these signature scores, to obtain a natural separation
rather than using an arbitrary value such as the median to split the
patients. This clustering was repeated 1000 times to assess the
stability of the group assignment. Results of the log-rank tests are
given in Supplementary Information Table S2, and in Figure 1, the
Kaplan–Meier curves for signature 2 are shown. Signature 2 gives
clear risk stratification in all data sets, all P-values of the 1000
clustering runs o0.05. Results of the log-rank test show not only
that signature 2 gives a better risk stratification than signature 1,
also the overall robustness of the separation is stronger, indicated
by the small standard deviations. Nevertheless, both signatures
show very good prognostic value on the three breast cancer data
sets. The range and standard deviations of the 1000 clustering
runs also show that the results are robust for these data sets and
that the splitting patients based on clustering of signature scores is
stable.

Statistical analysis of signature scores

Multivariate Cox-regression analyses were performed to investi-
gate whether the association between the best proliferation
signature and outcome was independent of clinical prognostic
factors. The variables analysed differed per data set, as
different clinical factors are provided (Supplementary Information
Table S3). A stepwise backward selection procedure was performed
to select the variables that are prognostic factors; the end point is
10 years for breast and renal cancer and 5 years for lung
cancer. Follow-up time in the Wang et al (2005) data set is not long
enough, in that data set 5 years was used. In Table 2, the factors
selected with this procedure are given for all the data sets,
choosing another end point did not influence the results
dramatically (Supplementary Information Table S4). In four
out of five data sets, the proliferation signature is included in
the model as a prognostic factor of outcome. In three data sets this
was highly significant and in the fourth it reached border
significance.
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AUC calculations

The area under the receiver–operator curve (AUC) was calculated
for each clinical parameter and the best proliferation signature.
Results of this analyses show that the proliferation signature has a
high AUC compared to the clinical parameters in all data sets
(Supplementary Information Table S3).

To quantify the gain in prognostic power obtained with this
signature, a model of the clinical factors with and without the
signature was generated and evaluated with the AUC. Part of the
data set was used as training set, to generate the model, and the
other part as a test set. Only the data sets with more than 1 clinical
parameter and more than 150 patients are included. Different sizes
of training and test sets were evaluated; the overall performance
did not change significantly (data not shown). The results shown
in Figure 2 were produced with 150 and 100 samples as training set
for the breast cancer and the renal cancer data sets, respectively. In

two out of three data sets, the AUC increased significantly when
the proliferation signature was added to the model (Figure 2,
P-values paired t-test 50.0001).

Random signature testing

To show the strength of the proliferation signature, 10 000 random
generated signatures were tested on all data sets. Of these 10 000,
no signature gave a significant result on all data sets.

Comparison to other signatures

Log-rank tests and Kaplan– Meier survival curves show that the
wound and IGS signature give clear risk stratification in four and
five data sets, respectively (Supplementary Information Table S2).
Furthermore, inclusion of these signatures in multivariate
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Figure 1 A signature score was calculated for each patient in the different data sets. These scores were used to cluster the patients in two groups, one
with low expression and one with high expression of the signature. Kaplan–Meier survival curves for the two groups were compared ((A) Miller data set,
(B) Wang data set, (C) van de Vijver data set, (D) Zhao data set, (E) Beer data set).
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Cox-regression analyses (Supplementary Information Table S4)
gives the indication that combining signatures, such as the
proliferation and IGS signature in one of the data sets, can
strengthen the prognostic power of microarray profiling in a

clinical setting. Combining the proliferation and wound signature
did not add value in any of the data sets.

To investigate whether different signatures identify the same
patients, two-way contingency table analyses (Supplementary
Materials and Methods) were performed to compare the patient
classification of the proliferation signature to the classification of
other signatures. For the gene sets identified in three of the five
data sets (Beer et al, 2002; van de Vijver et al, 2002; Miller et al,
2005), group classification was available (details are provided in
the Supplementary Materials and Methods); these and the wound
and IGS signatures were evaluated. Contingency table analyses and
Cramer’s V statistics (Supplementary Information Tables S5–S9)
show that the proliferation signature has a strong association with
all other signatures evaluated, indicating that these signatures
identify the same patients.

Proliferation signature validation

The proliferation signature is extracted from in vitro data;
however, this does not necessarily mean that the signature truly
tracks proliferation in vivo. To investigate this, mitotic index (MI)
was assessed for the van de Vijver et al (2002) data set, which was
scored in three classes. In Figure 3 a boxplot is shown of the
proliferation score vs the MI. There is a clear correlation between
the average proliferation signature score and the three classes of
MI (correlation coefficient: 0.968).

DISCUSSION

We derived a proliferation signature from in vitro microarray
studies based only on genes that differ in expression in different
parts of the cell cycle (Whitfield et al, 2002; Chang et al, 2004).
Results show that the proliferation signature has a high value in
patient risk stratification in five large clinical studies involving

Table 2 Clinical parameters selected with stepwise backward selection
in multivariate Cox-regression analyses including signature 2

Hazard ratio (95% CI) P-value

Miller
Tumor size 3.3 (1.7–6.6) 0.0006
LNSa 2.8 (1.6–5.0) 0.0003
Proliferationb 3.4 (1.4–8.2) 0.0052

Wang
Proliferationb 2.6 (1.5–4.4) 0.0004

Van de Vijver
Age 0.95 (0.91–0.99) 0.0096
Tumour sizec 1.5 (0.93–2.5) 0.0962
Elston grade 2.2 (1.4–3.4) 0.0003
Proliferationb 21 (1.8–234) 0.0148

Zhao
Performance status 1.3 (1.1–1.6) 0.0069
Grade 1.5 (1.0–2.1) 0.0260
Stage 3.3 (2.5–4.4) o 0.0001

Beer
Age 1.0 (1.0–1.1) 0.0338
Stage 2.3 (1.5–3.5) 0.0002
Proliferationb 1.8 (0.9–3.5) 0.0884

aLNS¼ lymph-node status. bProliferation: proliferation signature 2. cCategories:
p2 or 42 cm.
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Figure 2 A model of the clinical factors with and without the signature was generated. Receiver–operator curves (ROC) were used to compare the two
models in three data sets. ((A) Miller data set, (B) van de Vijver data set, (C) Zhao data set).
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more than 1000 patients and three different cancer sites. This
contrasts with previous studies that rarely validate signatures in
more than one large independent data set.

Our data indicate that the proliferation signature can be
combined with other phenotype-based signatures, to further
improve patient stratification. The fact that large clusters of
proliferation genes are identified in many gene signatures (Perou
et al, 1999; Rosenwald et al, 2003; Dai et al, 2005; Dyrskjot et al,
2005; Sotiriou et al, 2006; Larsen et al, 2007; Liu et al, 2007) raises
the possibility that many of previously reported gene signatures,
including the wound signature, may be highly influenced by
proliferation. Fan et al (2006) has previously suggested that many
signatures track a common set of biological phenotypes and
therefore have a similar prognostic strength. Whitfield et al (2006)
has further suggested that one of these processes is proliferation.
The performance of the proliferation signature in our study
supports this idea. Comparisons of the proliferation signature to
five other gene sets showed that these signatures primarily identify
the same patients as the proliferation signature.

Some reports refer to their signature as a proliferation signature
(Rosenwald et al, 2003; Dai et al, 2005). However, in these
supervised studies not all genes in the signature are related to
proliferation and therefore cannot be referred to strictly as general
proliferation signatures. For example, Dai et al (2005) used a
supervised approach to determine a signature associated with
metastasis. Many of the identified genes were known to
be involved in cell cycle regulation and these authors thus referred
to their classifier as a proliferation signature. However, only 17 out
of 50 genes in this signature are cell cycle related when assessed in

the initial gene list of Whitfield et al (2002). The same applies
to the study of Rosenwald et al (2003), only 28 of the 48 genes
that were associated with length of survival are related to
proliferation.

The proliferation signature has a high prognostic power, similar
to many signatures; however, it is one of the few signatures that
may also have a predictive value. It can possibly be used to
prescribe a treatment targeting tumour proliferation. Studies
indicate that the fast proliferating tumours can benefit from
accelerated radiotherapy or chemoradiotherapy (Corvo et al, 2000;
Gasinska et al, 2004). The proliferation signature could possibly be
used as basis for a predictive test for patient selection for these
treatments.

Previous studies have tried to assess the predictive value of
proliferation by means of MI, Ki67 staining and potential doubling
time (Tpot) calculation. Overall results of these single-parameter
indicators are disappointing (Begg et al, 1999). Mitotic index and
Ki67 staining are the most promising parameters; however, results
for these markers are controversial (Begg et al, 1999; Daniels et al,
2002; Caly et al, 2004; Jalava et al, 2006). This can be because of the
large chance of misclassification with these single-parameter
indicators (Jalava et al, 2006; Whitfield et al, 2006). Application
of multiparameter indicators, such as the proliferation signature, is
therefore a more attractive method (Whitfield et al, 2006). The
proliferation signature shows a clear correlation with MI in one of
the tested data sets.

In conclusion, we have shown that the application of phenotype-
based signatures such as the proliferation signature can be used in
patient risk stratification, in addition to clinical parameters. It has
a high prognostic value and unlike other signatures it has the
potential to be converted into a predictive test. Furthermore, we
provide evidence that supports the idea that many published
signatures track the same biological processes and that prolifera-
tion is one of them. Whether the proliferation signature can be
converted into a predictive test should be evaluated in a large
prospective trial in which other measures for proliferation should
also be evaluated.
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