
polymers

Article

Enhanced Efficiency of Dye-Sensitized Solar Cells Based on
Polymer-Assisted Dispersion of Platinum Nanoparticles/
Carbon Nanotubes Nanohybrid Films as FTO-Free
Counter Electrodes

Jia-Wun Li 1,† , Yu-Sheng Chen 1,†, Yan-Feng Chen 1, Jian-Xun Chen 1, Chung-Feng Jeffrey Kuo 1,
Liang-Yih Chen 2 and Chih-Wei Chiu 1,*

����������
�������

Citation: Li, J.-W.; Chen, Y.-S.; Chen,

Y.-F.; Chen, J.-X.; Kuo, C.-F.J.; Chen,

L.-Y.; Chiu, C.-W. Enhanced Efficiency

of Dye-Sensitized Solar Cells Based

on Polymer-Assisted Dispersion of

Platinum Nanoparticles/Carbon

Nanotubes Nanohybrid Films as

FTO-Free Counter Electrodes.

Polymers 2021, 13, 3103. https://

doi.org/10.3390/polym13183103

Academic Editor: Amir

Masoud Pourrahimi

Received: 26 August 2021

Accepted: 13 September 2021

Published: 15 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Materials Science and Engineering, National Taiwan University of Science and Technology,
Taipei 10607, Taiwan; a12352335@gmail.com (J.-W.L.); Chenchen19951221@gmail.com (Y.-S.C.);
kk0960216886@gmail.com (Y.-F.C.); ch60210@gmail.com (J.-X.C.); jeffreykuo@mail.ntust.edu.tw (C.-F.J.K.)

2 Department of Chemical Engineering, National Taiwan University of Science and Technology,
Taipei 10607, Taiwan; sampras@mail.ntust.edu.tw

* Correspondence: cwchiu@mail.ntust.edu.tw; Tel.: +886-2-2737-6521
† These authors contributed equally to this work.

Abstract: In this study, polymer-assisted dispersants are used to stabilize the nanohybrids of plat-
inum nanoparticles (PtNPs)/carbon nanotubes (CNTs) through non-covalent bond forces. These
dispersants aim to replace the florine-doped tin oxide (FTO) glass in traditional dye-sensitized solar
cells (DSSCs) as counter electrodes. The large specific surface area, high conductivity, and redox
potential of PtNPs/CNT nanohybrids are used as the basis to utilize them as the counter electrode
material to fabricate a dye-sensitized solar cell. The conductivity results indicate that the resistance
of the PtNP/CNT nanohybrid film can be reduced to 7.25 Ω/sq. When carbon nanotubes are mixed
with platinum nanoparticles at a weight ratio of 5/1, the photoelectric conversion efficiency of DSSCs
can reach 6.28%. When using the FTO-containing substrate as the counter electrode, its conversion
efficiency indicates that the micro-/nano-hybrid material formed by PtNPs/CNTs also exhibits an
excellent photoelectric conversion efficiency (8.45%) on the traditional FTO substrate. Further, a large-
area dye-sensitive cell is fabricated, showing that an 8 cm × 8 cm cell has a conversion efficiency of
7.95%. Therefore, the traditional Pt counter electrode can be replaced with a PtNP/CNT nanohybrid
film, which both provides dye-sensitive cells with a high photoelectric conversion efficiency and
reduces costs.

Keywords: platinum nanoparticles; carbon nanotubes; counter electrodes; dye-sensitized solar cells

1. Introduction

The rapid growth of the population on earth and the world economy has brought
human demand for energy to an unprecedented level [1]. The large consumption of tradi-
tional fossil energy, which leads to resource depletion and environmental pollution [2,3],
has also gained increasing awareness [4]. As a result, renewable energy has become the
focus of scientific research in recent years [5]. Renewable energy, including hydropower,
wind power, tidal energy, geothermal energy, and solar energy, has shown significant
development [6,7], among which solar energy has shown great industrial development [8].
Dye-sensitized solar cells (DSSCs) have the advantages of transparency, colorfulness, sim-
plicity in manufacturing, and low production cost, making them one of the most promising
devices for solar power generation [9,10]. The main components of a typical DSSC are redox
electrolytes (such as iodide/triiodide in an organic solvent), a dye-fixed photoelectrode
(PE), and a counter electrode (CE) [11], where an ideal CE should have a high exchange
current density and low charge transfer resistance [12]. In the past few decades, various
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methods have been used to assemble DSSCs [13], for which the counter electrode is one of
the key components [14]. To improve the efficiency of dye-sensitized solar cells and reduce
the overall cost, the counter electrode has also become the main research subject, due to
its simpler manufacturing process [15,16]. Platinum is often used as a counter electrode
material because of its excellent catalytic ability [17]. However, it is expensive and has
poor stability and, hence, cannot be used in large quantities for commercial mass produc-
tion [18]. Moreover, the transparent conductive glass such as transparent conductive oxide
(TCO) and F-doped tin oxide (FTO) usually comes in the form of a thick hard substrate
with expensive coating film, which limits the reduction in the overall cost of DSSCs [19].
Therefore, considerations for cost reduction and future development play a major role
in the development of materials that can replace platinum and transparent conductive
glass [20].

After the dye-sensitized solar cell was invented in 1991 [21], it has become the focus
of many researchers due to its many advantages. However, after several years of research
and development by many researchers worldwide, the current laboratory efficiency is still
only about 13% [22,23], not to mention the many limitations that need to be overcome in
production. In recent years, DSSCs have been developing toward higher stability, higher
efficiency, and lower cost [24]. Therefore, manufacturing highly efficient and highly stable
DSSCs at a low cost has also become a hot research topic [25]. To reduce the cost and
pursue high efficiency simultaneously, it has been reported in recent years that hybrid
counter electrodes have been prepared by mixing inorganic substances and platinum to
improve the economic efficiency [26,27]. In particular, carbon-containing materials are one
of the main focuses of electrochemical research [28]. For example, graphene oxide and TiO2
were mixed with Pt to prepare a hybrid counter electrode, with a conversion efficiency
of 4.52% [29]. Another study used hexachloroplatinic acid to reduce Pt to the graphene
surface through chemical reduction and a highly conductive FTO substrate to prepare a
binary composite material with a conversion efficiency of 6.25–8.00% [30,31]. It was also
reported that a counter electrode composed of carbon black, and a conductive polymer
with conductive glass, can have a conversion efficiency reaching 7.24% [32]. Moreover, due
to its high chemical stability, electrical conductivity, thermal conductivity, and excellent
mechanical properties [33], multi-walled carbon nanotubes (MWCNTs) have recently been
reported on multiple accounts to show good electronic properties in the production of
DSSCs [34–36]. Samantaray et al. prepared the counter electrode of DSSCs using carbon
nanotubes, reporting a conversion efficiency of 7.00–7.81% [37]. Ho et al. used polymer-
based organic dispersants to uniformly reduce Pt to MWCNTs, which exhibited an excellent
conversion efficiency of 8.00% under the FTO substrate [38]. Liu et al. used similar polymer-
based organic dispersants to reduce Pt to the surface of the MWCNTs, without the aid of
conductive glass as the counter electrode, reporting a conversion efficiency of 6.96% [39]. In
recent studies, there have been several reports on the use of organic dispersants to reduce
metal particles into carbon nanomaterials [40,41], but there have not been related papers
published on the application of DSSCs.

In this study, four different polymer-assisted dispersants were designed and syn-
thesized, and platinum precursors was used to prepare PtNPs through chemical redox
reactions. Polymer-assisted dispersants can disperse the PtNPs uniformly and stably on
the surface of CNTs through non-covalent bond forces (such as ion-dipole interaction,
hydrophobic effect, lone pair-π stacking), and the hybrid material can improve the photo-
electric conversion efficiency of the counter electrode after hybridization. In addition, using
carbon nanotubes as the substrate can also reduce the cost of pure platinum materials in
the traditional counter electrode. Furthermore, as a one-dimensional carbon nanomaterial,
CNTs have excellent electrical conductivity and flexibility, whose high specific surface
area can be utilized to absorb platinum nanoparticles, forming a hybrid complex of two
different dimensions. This is finally applied to the DSSCs’ counter electrode, which can
improve the photoelectric conversion efficiency of the cell.
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2. Experimental
2.1. Materials

Polyisobutylene-g-succinic anhydride (PIB-SA, Mw = 1335) was purchased from
Yuang Hong Corp. (Taipei, Taiwan). A series of poly(oxyethylene)-amine and
Poly(oxyethylene)-diamine, with the designated trade name of Jeffamine® M1000
(Mw = 1000), Jeffamine® D900 (Mw = 900), Jeffamine® ED2003 (Mw = 2000), and Jeffamine®

D2000 (Mw = 2000), were obtained from Huntsman Chemical Co., Los Angeles, CA, USA.
Multi-wall carbon nanotube (CNT; diameter: 10–20 nm, length: 10–30 µm, purity: ≥97%,
specific surface area: >200 m2/g) was obtained from Conjutek Co. Ltd., New Taipei City,
Taiwan. Titanium dioxide (TiO2) paste, with the designated trade name of P300 (particle
size: 20–50 nm) and P400 (particle size: 350–400 nm), was purchased from Ruilong Co.
Ltd., Miaoli County, Taiwan. Tetrahydrofuran, hexachloroplatinic acid (H2PtCl6), sodium
borohydride (NaBH4), 4-tert-butylpyridine (tBP), lithium iodide (LiI), and guanidine thio-
cyanate (GuSCN) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Finally, iodine
(I2) was obtained from Riedel-de Haen, and 1,3-dimethylimidazolium iodide (DMII) was
purchased from Uniregion Bio Tech, Taoyuan City, Taiwan.

2.2. Synthesis of Polymer-Assisted Dispersants

In this experiment, four organic dispersants were synthesized to investigate the
dispersibility of carbon tubes: PIB-M1000 with a molecular weight of 1000 and single
branch, PIB-ED900-PIB with a molecular weight of 900 and double branches, PIB-2003-
PIB, and PIB-D2000-PIB; the latter two have a molecular weight of 2000 and double
branches. The synthesis follows the steps below. The linear oil-soluble organic dispersant
polyisobutylene-g-succinic anhydride (PIB-SA) and linear hydrophilic polyetheramine
(M1000, ED900, ED2003, D2000) are added to the organic solvent THF at 25 ◦C with a molar
ratio of 1/1 or 2/1 (which depends on whether the monofunctional group or difunctional
group is present), which allows for the amination branching reaction to be carried out for
6 h to synthesize poly(isobutylene)-PIB-amide. The resultant solution is dehydrated at
a high temperature of 150 ◦C for 6 h to finally synthesize the linear amphiphilic organic
dispersant-poly(isobutylene)-imide (i.e., PIB-imide). The synthesis reactions are shown
in Figures S1 and S2 in the Supporting Information. The Fourier transform infrared
spectroscopy (FT-IR) is used to identify the synthesis of organic dispersants, as shown in
Figure S3. The C=O of PIB-SA (anhydride) shows characteristic peaks at wavenumbers
1780 and 1710 cm−1. After 6 h of amidation branching reaction at room temperature, the
characteristic peaks of amide appear at wavenumbers 1640 cm−1 from C=O and 1540 cm−1

from N-H of PIB-amide (M1000). After 6 h of dehydration at 150 ◦C, the characteristic
peaks of C=O of PIB-imide (M1000) appear at wavenumbers 1710 and 1650 cm−1. The
other three organic dispersants all have corresponding C=O and N-H characteristic peaks.
The results of the FT-IR test show that the long-chain polymer-assisted dispersant with
hydrophilic and lipophilic segments has been synthesized successfully. To remove the
organic solvent THF, the product is concentrated under reduced pressure at 60 ◦C for 8 h
to take out the purified organic dispersant, which is then tested for solubility, as shown
in Figure S4 and Table S1. The long carbon chain of polyisobutylene-succinic anhydride
(PIB-SA) tends to dissolve in oil phase solvents. For example, low-polarity THF, toluene or
non-polar organic solvents, M series, and ED series of polyetheramine all have completely
hydrophilic polyoxyethylene (POE) segments. Therefore, PIB-M1000 and PIB-ED2003
are soluble in most polar solvents, whereas PIB-ED900-PIB is less soluble in comparison
due to the relatively lower number of POE segments. In contrast, the main segment of
the D series of polyetheramines is predominately polypropylene glycol (PPG), which is
less hydrophilic, and thus the dispersant PIB-D2000-PIB emulsifies in the water. After
amidation and branching, the main structure of the copolymer is composed of PIB-POE-PIB,
which is amphiphilic, indicating that it is soluble in both polar solvents and non-polar
solvents. Amphiphilicity can be achieved by adjusting the number of POE or PIB segments.
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2.3. Preparation of Photoanode

The size of the substrate is designed to be 1.5 × 2.0 cm2, which is cleaned using the
improved RCA cleaning method invented by Werner Kern in 1970 at the Radio Corporation
of America. To keep the conductive glass transparent during the cleaning process, the
RCA cleaning method is utilized to clean the substrate. The substrate is to be first wiped
with anhydrous alcohol wipe to remove dust particles and then soaked in deionized water
containing surfactant, pure deionized water, acetone, and isopropanol for 30 min each
to remove oil stains and surface organic matter. After the cleaning is completed, the
adsorption layer is prepared by coating the P300 titanium dioxide slurry on the conductive
surface of the conductive glass. The coating area is controlled with tape, and the coating
thickness is set to 2250 µm by a film thickness controller based on the conductive glass
thickness of 2.2 mm. The P300 titanium dioxide slurry is evenly coated onto the conductive
glass at a set speed of 5 mm/s of the knife coater. After each layer of coating is applied, it
is heated at 250 ◦C with a hot air gun to be smoothened. This procedure is repeated three
times, and the coated layers are sintered to 500 ◦C for 2 h under atmospheric conditions
such that the titanium dioxide layer and FTO can form a dense bond and completely
transform the phase into anatase phase. Subsequently, the scattering layer is prepared in
the same manner as the adsorption layer with P400 slurry containing larger particles. After
coating and sintering, the titanium dioxide layers containing the adsorption layer with
smaller particles and the scattering layer with larger particles are completed. Following
which, N719 of 0.3 mM concentration is added to a mixed solution containing tert-butanol
and acetonitrile at a volumetric ratio of 1:1. The annealed titanium dioxide photoanode is
put into this N719 solution for 24 h of adsorption to prepare the photoanode.

2.4. Preparation of the PtNPs/CNT Hybrid Material

In this experiment, 25 mg of carbon nanotubes were prepared as an aqueous solution
with a weight concentration of 0.25 wt.%, into which a polymer-assisted dispersant with a
weight ratio of 1:1 to the carbon nanotubes is added. Then, this mixture was pre-dispersed
with a probe-type ultrasonic oscillator, with amplitude 10, a pulse-on time of 30 s, and a
pulse-off time of 3 s. The mixture was processed for 30 min at a frequency of 37 kHz, and
then 210, 105, and 10.5 mg of 10 wt.% hexachloroplatinic acid (H2PtCl6) solved in alcohol
were added, respectively, to prepare the solutions, along with a ratio of carbon nanotubes to
platinum as 5/1, 10/1, and 100/1. The dispersant solution was further oscillated for 10 min
and placed into an ice bath, while 10.5, 5.25, and 0.525 mL of 0.01 M sodium borohydride
were all added gradually to the respective dispersant and stirred under a magnet for
1 h. After the reaction was completed, the liquid was rinsed with deionized water five
times to remove the remaining sodium borohydride and then freeze-dried to obtain the
PtNP/CNT powder.

2.5. Preparation of CNTs, PtNPs/CNT Dispersant, and Counter Electrode, and DSSC Packaging

The CNTs and PtNPs/CNT are mixed with N-methylpyrrolidone in a 0.25 wt.%
solution, which is to be pre-dispersed with a probe-type ultrasonic oscillator. At an
amplitude of 10, a pulse-on time of 30 s, and a pulse-off time of 3 s, the solution is processed
for 10 min at a frequency of 37 kHz. An organic dispersant (PIB-ED2003-PIB) with carbon
nanotubes-to-dispersant ratios of 2:1, 1:1, and 1:2 is added into the dispersed solution,
respectively, to assist the dispersion and stabilization of inorganic particles. The resultant
solution is further oscillated under the same conditions above for 10 min to obtain the
CNTs and PtNPs/CNT dispersant liquid. Subsequently, 0.5 mL of the above solution is
used to drop-coat the FTO substrate and the FTO-free glass substrate, respectively, and
then dried at 110 ◦C to become film. This process is repeated ten times once the film is dry.
Following which, the dispersant is to be removed to reduce the surface resistance. The film
is sintered to 350 ◦C for 1 h under atmospheric conditions to form the ten-layer FTO and
FTO-free CNT/PtNPs counter electrodes. The working electrode and the counter electrode
are tightly sealed together with 60-micrometer heat sealing glue to form a sandwich-like
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structure. The electrolyte made of 0.1 M LiI, 0.6 M DMII, 0.03 M I2, 0.1 M GuSCN, and
0.5 M tBP, with a volumetric ratio of acetonitrile to valeronitrile of 85:15, is injected into
the pre-drilled holes. Finally, the holes are sealed with heat-resistant tape to complete the
packaging of the dye-sensitized solar cell.

2.6. Characterization and Instruments

Fourier transform infrared spectroscopy (model (FTS-1000)) is used to monitor the
reaction process of SMA-amide. The sample is applied to the KBr thin plate and scanned
under infrared light of 500 to 4000 cm−1. An FTIR curve is obtained in an average of
32 scans. FE-SEM (JSM-6500F) is used to inspect the surface of the conductive film. The
inspected sample is coated with a thin layer of platinum before the photo shooting. The
resistance of the conductive film is measured with a four-point probe low resistance
tester (Mitsubishi Chemical Corporation, MCP-T600, Tokyo, Japan). A dynamic material
testing machine (MTS-370, Sinodynamics Enterprise Co., Ltd, Taipei, Taiwan) is used to
perform different tensile strain tests on the conductive film. A multimeter is then used to
check the changes in resistance before and after the film strain. A transmission electron
microscope (TEM, Zeiss EM 902A, Oberkochen, Germany) is used to observe the adsorption
of CNT/PtNPs. A measurement sample solution of mass concentration 1 wt.% is first
prepared, which is then deposited onto the carbon-coated copper mesh; vacuum is then
applied until dry, and TEM is used to inspect the residue. In addition, the weight loss curve
can be obtained by using the TA instrument Q-500 (United States DE, New Castle, DE, USA)
for thermogravimetric analysis (TGA), in which 5–8 mg of sample is weighed and heated
to 600 ◦C in nitrogen. The electrocatalytic properties of CNT/PtNPs to the I−/I3

− redox
couple are studied using cyclic voltammetry. Same as the previous measurement of CV,
platinum (Pt) is used as the counter electrode (CE), saturated silver nitrate (Ag/AgNO3)
is used as the reference electrode, and CNT/PtNPs is used as the working electrode in
the three-electrode system. The electrolyte used is 0.1 M LiCl4, 0.01 M LiI, and 1 mM I2 in
acetonitrile. The CNT/PtNPs of three different ratios are discussed. The current density of
the oxidation-reduction potential measured shows the catalytic properties of the electrode
to the electrolyte. The photocurrent density (J)-photovoltage (V) curve uses AM 1.5 G
to simulate the characteristics of the cell under sunlight, where the AM 1.5 G simulated
sunlight is generated by a 150 W A-type solar simulator (model 92250A, Oriel), with an
illumination intensity of 100 mW/cm−2. The incident light intensity is calibrated by a
standard crystalline silicon solar cell (Oriel reference cell, 91, 550 V), and a power meter
(Keithley 2400) is used to measure the response of the solar cell.

3. Results and Discussion
3.1. Influence of Polymer-Assisted Dispersant on the Dispersion of CNTs

In this study, four polymer-assisted dispersants were synthesized. The lone pair of
electrons on the molecular chain of the dispersant was used to cause the lone-pair inter-
action between the carbon nanotubes. The hydrophilicity group on the ED2003 chain
(OCH2CH2) and hydrophobicity group on the end of the PIB chain were both adjusted to
make the carbon nanotubes more stable in the solvent. Moreover, the ion-dipole interaction
formed between O− and Pt3+ in the molecular chain of the dispersant was used to ensure
that platinum can be more stably reduced around the carbon nanotubes. This phenomenon
has already been reported by a previous study [42–44], as shown in Figure 1a. To verify the
effectiveness of the four dispersants on carbon nanotubes, carbon nanotubes of 0.25 wt.%
dispersed in NMP were prepared, with the dispersant-to-carbon nanotubes ratio fixed at
1:1; the mixture was placed under ultrasonic oscillation for 30 min and then left to stand
for several days. The macroscopic observation of its dispersion is shown in Figure S5.
The single-branch PIB-M1000 and the double-branch PIB-ED900-PIB with similar molec-
ular weights were compared first to assess the effect on the dispersibility of the carbon
tubes. It can be observed that on the second day, the carbon tube solution dispersed by
PIB-M1000 already shows little precipitation, with aggregated particles sticking to the
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wall, which becomes much more serious after 20 days. In comparison, the dispersion of
carbon nanotubes due to PIB-ED900-PIB is much milder, indicating that the double-branch
dispersant has better performance than the single-branch dispersant. Subsequently, the
double-branch PIB-ED900-PIB and PIB-ED2003-PIB with different molecular weights were
compared for their performance in dispersing carbon nanotubes. It can be observed that,
while the PIB-ED2003-PIB with a larger molecular weight shows the stable dispersion of
carbon nanotubes on both the second and the 20th day, there are no significant agglom-
erated particles on the cup wall for the dispersant solution with PIB-ED900-PIB having a
smaller molecular weight. This indicates that hydrophilic polyetheramine with a larger
molecular weight in the synthetic organic dispersant can effectively help stabilize the
carbon nanotubes. Finally, the double-branch organic dispersants PIB-ED2003-PIB and
PIB-D2000-PIB with different degrees of hydrophilicity were compared. It can be observed
that the less hydrophilic PIB-D2000-PIB causes more precipitation and agglomeration of
particles on the cup wall as compared to the more hydrophilic PIB-ED2003-PIB, indicating
that changing the polyetheramine segment to adjust the hydrophilic and hydrophobic
properties will change the dispersibility of the carbon nanotubes. After this preliminary
understanding of the effects of the four dispersants on the dispersion of carbon nanotubes,
the penetration of the solution was measured using UV–vis for further confirmation. The
dispersion of carbon nanotubes is tested with the specific wavelength of 550 nm through
an ultraviolet–vis spectrometer to determine the dispersion effect of the carbon nanotubes
since 550 nm wavelength light is most sensitive to human eyes [45]. Thus, Figure S5a,b,
respectively, show the transmittance at a 550-nanometer wavelength under different ratios
of CNT and dispersant for 2 and 20 days later. When the penetration is lower, it can
indicate that the CNTs have no precipitation and are more dispersed in the solution, so
that most of the suspended CNTs in the solution absorb the 550-nanometer light and make
the penetration lower. When CNT precipitation occurs, the number of suspended CNTs
in the solution decreases, resulting in a decrease in light penetration resistance and an
increase in 550-nanometer penetration. The results show that single-branch PIB-M1000
and double-branch PIB-ED900-PIB with the same molecular weight of polyetheramine was
compared for the UV–vis transmittance, which is 62 for the carbon nanotube solution, with-
out adding the dispersant. This value drops to 56 and 35, respectively, after the dispersant
is added at a weight ratio of 1:2. However, after standing for 20 days, this value improves
for the two types of dispersant solutions at different weight ratios, up to 67.3 and 55.8,
respectively, with a weight ratio of 1:2. This indicates that the carbon nanotubes have pre-
cipitated and aggregated. The double-branch PIB-ED2003-PIB is then compared with the
double-branch PIB-ED900-PIB, with a different molecular weight, and the double-branch
PIB-D2000-PIB with a different degree of hydrophilicity for the dispersion effects on carbon
nanotubes. It can be observed that, regardless of the weight ratio, PIB-ED2003-PIB always
has a lower UV–vis penetration than PIB-ED900-PIB, which is consistent with the macro-
scopic observation results, indicating that PIB-ED2003-PIB has a better dispersion effect
on carbon nanotubes. After the CNT is dispersed with the assistance of PIB-ED2003-PIB,
it can effectively stabilize the CNT solution, and result in the hindrance of precipitation.
Therefore, PIB-ED2003-PIB can be used as one of the effective dispersants of CNT. This is
particularly true after the solution is left to stand for 20 days, as PIB-ED2003-PIB shows
good stability in dispersing carbon nanotubes. The dispersed carbon nanotubes by the
four types of dispersants at their respective optimal weight ratio are observed for their
microstructures and the dispersion with a transmission electron microscope, as shown in
Figure 1b. While the carbon nanotubes, without the dispersant added, are entangled and
agglomerated, those with dispersants added show an improvement in the agglomeration,
which is especially significant with PIB-ED2003-PIB. This is consistent with the above
experimental results, and PIB-ED2003-PIB is, therefore, used as the main dispersant for
subsequent experiments.
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3.2. Preparation of Counter Electrodes with CNT/PIB-ED2003-PIB

As it is known that PIB-ED2003-PIB can effectively disperse carbon nanotubes, PIB-
ED2003-PIB and carbon nanotubes will be used to prepare the counter electrode. First,
0.25 wt.% was applied to the counter electrode using a drop-coating method at 0.45 mL
each time and then dried at 110 ◦C to form a film. This film formation process is observed
macroscopically, as shown in Figure 2a. The results show that, without the dispersant, the
counter electrode based on carbon nanotubes causes multiple locations of agglomeration
that are distributed unevenly. With the dispersant added at a ratio of 2:1, agglomeration
is still found at different places; only when the ratio is 1:1 does the agglomeration show
good evenness; yet when the ratio is increased to 1:2, the excessive dispersant on the
surface affects the overall integrity. Subsequently, when the ratio of CNT to PIB-ED2003-
PIB is 1:1, the sheet resistance and thickness are measured using a four-point probe, as
shown in Figure S6. As the number of layers and thus thickness increase gradually, the
sheet resistance decreases from 206.7 to 12.7 Ω/sq., which reaches the limit between
12 and 15 Ω/sq. after 10 layers. Therefore, the subsequent preparation of the counter
electrode will be based on 10 layers of coating as the standard. Following which, the sheet
resistance with different weight ratios of CNT and PIB-ED2003-PIB is analyzed, as shown
in Figure 2b. It can be observed that, as the ratio of dispersant increases, the resistance of
the CNT-based counter electrode increases from 15.2 to 62.9 Ω/sq. This is because excessive
dispersant wraps around the carbon nanotubes, which reduces the electron transferability.
Therefore, considering the uniformity of the film and the sheet resistance, the weight
ratio is determined to be 1:1 in future experiments. As the polymer-assisted dispersant in
the final product gradually affects the counter electrode due to its poor conductivity, the
pyrolysis temperature of PIB-ED2003-PIB is determined using TGA, as shown in Figure S7,
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to improve the conductivity of the counter electrode. The counter electrode is sintered to
350 ◦C for 1 h. The temperature is determined because the highest temperature of pyrolysis
for the polymer-assisted organic dispersant is at 294.5 ◦C. SEM was used to observe the
morphology of the counter electrode before and after sintering, as shown in Figure 2c. It can
be observed that, before sintering, there are many uniformly distributed carbon nanotubes
with one-dimensional structures on the surface of the counter electrode, which appear to be
wrapped in polymer-assisted dispersant. After sintering, the CNT-based counter electrode
has a clearer, rougher, and interlaced carbon nanotube structure on its surface. The sheet
resistance is measured with a four-point carbon needle and recorded in Table 1. The sheet
resistance of the counter electrode is detected to be 8.45 Ω/sq. after sintering, which is
close to the value of 7 Ω/sq. for FTO glass. Therefore, to further study the electrocatalytic
properties of CNT-based counter electrodes and the influences of different specific surface
areas on the I−/I3

− redox couple, cyclic voltammetry (CV) is carried out, as shown in
Figure 2d. The results show that carbon nanotubes have obvious wave patterns at both
reduction and oxidation potentials, which means that the material has excellent redox
properties. Although the waveforms are similar when the weight ratio is 2:1 and 1:1, the
reduction potential is higher for the former than the latter, indicating that the reactivity of
the I−/I3

− redox couple is higher when the weight ratio is 2:1. The CV data is summarized
in Table 1. In contrast, the overpotential (∆Ep) is lower when the weight ratio is 1:1. As
∆Ep is inversely proportional to the rate constant of the standard electrochemical redox
reaction, it implies that a smaller ∆Ep represents better catalytic activity. This also indicates
that appropriately increasing the specific surface area of the CNT-based counter electrode
creates more sites that are in contact with the I−/I3

− ions in the electrolyte, which helps
in improving the catalytic activity of the I−/I3

− ions in the electrolyte and the capability
to transfer electrons. In addition, when PIB-ED2003-PIB is added at a weight ratio of 1:2,
the ∆Ep and Ipc based on CV analysis both perform poorly. This indicates that, even if
excessive dispersant is removed through the sintering process, it will nevertheless affect
the content of the carbon nanotube layers, which, in turn, affects the integrity and redox
properties of the film.

Table 1. CV analysis table of CNT/PIB-ED2003-PIB at different weight ratios.

Counter Electrode Epp
(V) a

Ipc

(mA cm−2) b
Sheet Resistance

(ohm/sq.)

CNT:PIB-ED2003-PIB 2:1 0.93 6.09 –
CNT:PIB-ED2003-PIB 1:1 0.73 4.75 8.45
CNT:PIB-ED2003-PIB 1:2 1.23 3.55 –

CNT-ED2003/PtNPs 100/1 c 1.01 3.93 8.35
CNT-ED2003/PtNPs 10/1 c 0.89 4.97 7.59
CNT-ED2003/PtNPs 5/1 c 0.51 5.70 7.25

Pt d 0.58 4.40 –
a peak-to-peak separation; b cathodic current density; c CNT-ED2003 represents the ratio of CNT to PIB-ED2003-
PIB was 1:1; d Pt were fabricated by sputtered, for 90 nm thickness.
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3.3. Preparation of the Highly Conductive CNT/PtNP Counter Electrode

It is known that the appropriate weight ratio of CNT:PIB-ED2003-PIB should be 1:1.
The solution with this weight ratio is prepared, into which hexachloroplatinic acid is
added. The solution is then reduced with sodium borohydride. SEM and EDS are used to
observe the morphological changes and contents for the different ratios of platinum, as
shown in Figure 3a. It can be observed that the CNT/PtNPs thin film has a rough surface
composed of one-dimensional carbon nanotubes. However, it is not easy to observe the
attachment of platinum nanoparticles. This is due to the size of the platinum nanoparticles,
which is 1–3 nm, making it difficult for them to be observed using SEM. In contrast,
the EDS elemental analysis reveals that the Pt content attached to the film increases as
the weight ratio increases, indicating that the thin film contains platinum nanoparticles.
Subsequently, the result of the synthesis is identified using the soft matter analysis through
transmission electron microscope (TEM), as shown in Figure 3b. It can be found that after
the synthesis of CNT/PtNPs, the platinum nanoparticles on the tubular carbon nanotube
material are evenly attached to the walls of the carbon nanotubes. As the platinum
content drops to 100/1, the attached nanoparticles also become less. The dispersant PIB-
ED2003-PIB is added at a weight ratio of CNT/PIB-ED2003-PIB of 1:1, which stabilizes
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the carbon nanotubes in the solvent. At 0.25 wt.%, the NMP solution with the dispersant
did not precipitate after standing for 20 days. The results of TEM and SEM reveal that
the dispersant helps to disperse and stabilize the CNT/PtNPs hybrid material in the
liquid phase. Furthermore, the four-point probe helps measure the sheet resistance of the
film, as shown in Table 1. It can be seen that without an addition of platinum, the sheet
resistance of CNT film alone reaches 8.45 Ω/sq., which is close to the 7 Ω/sq. of transparent
conductive glass, indicating that CNT-based counter electrode film has the potential to
replace FTO. In addition, as the content of platinum increases, the sheet resistance decreases
accordingly, becoming even closer to that of the transparent conductive glass. This shows
that the platinum nanoparticle not only increases the surface area, but also enhances the
conductivity of the film after synthesis. Cyclic voltammetry is then used to analyze the CNT-
based counter electrode with different ratios of platinum, as shown in Figure 3c. This result
of CNT shows that the reduction in the current density is greater than the oxidation current
density, which may be because CNTs can effectively promote the reduction reaction. Thus,
the film that contains CNTs shows a higher reductive current density; this result is similar
to other reports [46,47]. The data of all the samples are summarized in Table 1. The results
show that adding a small amount of PtNPs does not lead to a significant improvement in
Epp and Ipc for the CNT-based counter electrode, but rather a trend of deterioration. It is
speculated that the NaBH4 added for the reduction process when synthesizing CNT/PtNPs
may have affected the surface energy of CNTs, causing the reactivity to the electrolyte to
reduce. This is why Epp and Ipc drop from 0.73 V and 4.75 mA cm−2 with pure CNT to
1.01 V and 3.96 mA cm−2 with CNT/PtNPs. Nevertheless, the trend is reversed when
the ratio is changed from 10/1 to 5/1. In comparison to pure CNT, CNT/PtNPs at a ratio
of 5/1 show a 30% improvement in Epp of the original value, and a 20% improvement
in terms of Ipc, indicating that enough platinum nanoparticles can serve as the catalytic
sites for carbon nanotubes, which improves the catalytic activity. At the same time, the
CNT/PtNPs hybrid material is also compared with pure platinum. The data show that
platinum has extremely obvious oxidation and reduction peaks, indicating that it has an
excellent redox capability and is sensitive. However, in terms of Epp and Ipc, pure platinum
does not perform as well as the CNT/PtNPs hybrid material at the optimal ratio of 5/1, the
values of which are 0.55 V and 4.4 mA cm−2, respectively. This indicates that CNT/PtNPs
can provide a higher current density for the catalysis of I3

−; that is, CNT/PtNPs allow a
higher catalytic current than Pt. In summary, by adding platinum nanoparticles that have
excellent catalytic properties, carbon nanotubes also gain in specific surface area, exhibiting
extremely excellent redox capabilities. As such, CNT/PtNPs may be a relatively suitable
material for counter electrodes. Further, it is predicted that CNT/PtNPs at a ratio of 5/1
are the best for application to a counter electrode, while hybrid materials with ratios of
100/1 and 10/1, as well as pure CNT material, are less suitable. In addition, it is expected
that the CNT/PtNPs hybrid material can surpass or approach the dye-sensitized solar cells
formed by the platinum-based counter electrode in terms of efficiency.



Polymers 2021, 13, 3103 11 of 17

Polymers 2021, 13, x FOR PEER REVIEW 11 of 17 
 

 

of 100/1 and 10/1, as well as pure CNT material, are less suitable. In addition, it is expected 
that the CNT/PtNPs hybrid material can surpass or approach the dye-sensitized solar cells 
formed by the platinum-based counter electrode in terms of efficiency. 

 
Figure 3. (a) SEM and EDS diagrams of CNT/PtNPs at different ratios: (1,4) 5/1 ratio, (2,5) 10/1 ratio, and (3,6) 100/1 ratio; 
(b) TEM diagrams of CNT/PtNPs at different ratios: (1,4) 5/1 ratio, (2,5) 10/1 ratio, and (3,6) 100/1 ratio; (c) Cyclic voltam-
metry spectra of CNT/PtNPs at different ratios. 

3.4. Fabrication and Photoelectric Conversion Efficiency of DSSCs 
The above samples are packaged for dye-sensitized solar cells (DSSCs), as shown in 

Figure 4a,b, which are, respectively, the schematic diagram and cross-sectional view of 
the DSSC composition of the study. The counter electrode made without conductive glass 
for the DSSC with PIB-ED2003-PIB/carbon nanotubes at different ratios is first packaged 
into the cell, then placed under a solar simulator. The J–V curve is as shown in Figure 4c, 
and the data are summarized in Table 2. It can be observed that the maximum value of Jsc 
changes from 11.82 (at 2:1 ratio) to 10.4 (at 1:1 ratio) and finally to 5.84 (at 1:2 ratio). In 
comparison, the value is 10.04 for platinum on the glass. This implies that when the ratio 
of dispersant is increased to 1:2, the CNT-based counter electrode is not quite effective in 
catalyzing iodide ions, nor poses a strong resistance to the diffusion of iodide ions, and 
the difference in conductivity causes the conversion efficiency to be merely 1.83%, which 
is consistent with the prediction based on the above experimental results. In comparison, 
when the ratio is 2:1, Jsc shows a J–V curve that drops in value at an earlier stage, indicat-
ing that the FF value is relatively low at only 0.44. This shows that the counter electrode 
based on pure carbon nanotubes with a relatively small amount of dispersant does not 
show effective catalytic capability when in contact with the iodide-containing electrolyte. 
As a result, with a uniform dispersion process (at 1:1 ratio), the CNT-based counter elec-
trode shows relatively good catalytic properties (FF of 0.63), which is close to that of plat-
inum (fill factor (FF) of 0.68). Hence, its conversion efficiency of 4.03% is also close to the 
4.37% of platinum, indicating that CNT can be considered a replacement for platinum. 
The highly conductive CNT/PtNPs counter electrode, fabricated by adding platinum, is 
packaged using the same method, the J–V curve obtained through measurement on non-

Figure 3. (a) SEM and EDS diagrams of CNT/PtNPs at different ratios: (1,4) 5/1 ratio, (2,5) 10/1 ratio, and (3,6) 100/1
ratio; (b) TEM diagrams of CNT/PtNPs at different ratios: (1,4) 5/1 ratio, (2,5) 10/1 ratio, and (3,6) 100/1 ratio; (c) Cyclic
voltammetry spectra of CNT/PtNPs at different ratios.

3.4. Fabrication and Photoelectric Conversion Efficiency of DSSCs

The above samples are packaged for dye-sensitized solar cells (DSSCs), as shown in
Figure 4a,b, which are, respectively, the schematic diagram and cross-sectional view of the
DSSC composition of the study. The counter electrode made without conductive glass for
the DSSC with PIB-ED2003-PIB/carbon nanotubes at different ratios is first packaged into
the cell, then placed under a solar simulator. The J–V curve is as shown in Figure 4c, and the
data are summarized in Table 2. It can be observed that the maximum value of Jsc changes
from 11.82 (at 2:1 ratio) to 10.4 (at 1:1 ratio) and finally to 5.84 (at 1:2 ratio). In comparison,
the value is 10.04 for platinum on the glass. This implies that when the ratio of dispersant
is increased to 1:2, the CNT-based counter electrode is not quite effective in catalyzing
iodide ions, nor poses a strong resistance to the diffusion of iodide ions, and the difference
in conductivity causes the conversion efficiency to be merely 1.83%, which is consistent
with the prediction based on the above experimental results. In comparison, when the ratio
is 2:1, Jsc shows a J–V curve that drops in value at an earlier stage, indicating that the FF
value is relatively low at only 0.44. This shows that the counter electrode based on pure
carbon nanotubes with a relatively small amount of dispersant does not show effective
catalytic capability when in contact with the iodide-containing electrolyte. As a result,
with a uniform dispersion process (at 1:1 ratio), the CNT-based counter electrode shows
relatively good catalytic properties (FF of 0.63), which is close to that of platinum (fill factor
(FF) of 0.68). Hence, its conversion efficiency of 4.03% is also close to the 4.37% of platinum,
indicating that CNT can be considered a replacement for platinum. The highly conductive
CNT/PtNPs counter electrode, fabricated by adding platinum, is packaged using the same
method, the J–V curve obtained through measurement on non-conductive glass is shown
in Figure 4d, and the data for analysis are summarized in Table 2. The results show that the
data agree with the prediction results. At a ratio of 5/1, CNT/PtNPs achieves its optimal
conversion efficiency of 6.28%. As the percentage of PtNPs increases, it can be observed
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that the short-circuit current density (Jsc) increases from the 10.40 mA cm−2 of pure CNT
to the maximum value at 14.63 mA cm−2, while the FF is kept within the range of 0.60–0.63,
indicating that the thin film is relatively uniform. Comparing the conversion efficiency of
the counter electrode made of the film (4.37%) and pure platinum on non-conductive glass,
it can be seen that the efficiency improves significantly, indicating that CNT/PtNPs is a
potential material to replace platinum on non-conductive glass. Other than conducting the
analysis of photoelectric conversion efficiency on non-conductive glass, the J–V curve of the
DSSC composed of the same material on the traditional FTO is also discussed, as shown in
Figure S8, and the data of which are summarized in Table 3. The results are similar to those
of the experiments conducted on non-conductive glass. When the CNT/PtNPs ratio is 5/1,
the maximum efficiency is 8.45%, which even exceeds the 8% efficiency of platinum on FTO.
Moreover, the DSSC formed on FTO shows improvement in the open-circuit voltage (Voc),
short-circuit current density (Jsc), and FF. This is because the FTO can provide a relatively
better catalytic current in terms of conductivity, which also implies that the preparation
on FTO still has certain advantages. To show the uniformity and stability of the counter
electrode based on CNT/PtNPs hybrid film prepared by the organic dispersant in this
study, a performance analysis is also carried out for a relatively large-scale DSSC, the
preparation process of which is shown in Figure S9, with specifications in Figure 4e.

Table 2. Efficiencies of the counter electrodes made of dispersant/CNT at different weight ratios and
CNT/PtNPs at different ratios without FTO substrate.

Counter Electrodes a VOC
(V)

JSC
(mA/cm2) FF η

(%)

CNT:PIB-ED2003-PIB 2:1 0.62 11.82 0.44 3.22
CNT:PIB-ED2003-PIB 1:1 0.62 10.40 0.63 4.03
CNT:PIB-ED2003-PIB 1:2 0.55 5.84 0.57 1.83

CNT-PIB-ED2003-PIB/PtNPs 100/1 b 0.69 11.94 0.60 4.94
CNT-PIB-ED2003-PIB/PtNPs 10/1 b 0.68 13.32 0.61 5.52
CNT-PIB-ED2003-PIB/PtNPs 5/1 b 0.68 14.63 0.63 6.28

Pt c 0.64 10.04 0.68 4.37
a Film thicknesses were around 55 µm, made by drop coating 10 times, with a 0.5-milliliter drop each time and
heating under 110 ◦C; b CNT-PIB-ED2003-PIB represents the ratio of CNT to PIB-ED2003-PIB was 1:1; c Pt was
fabricated by sputtered, for 90 nm thickness.

Table 3. Efficiency of counter electrodes made of dispersant/carbon nanotubes at different weight
ratios and carbon nanotubes/platinum nanoparticles at different ratios under FTO substrate.

Counter Electrode a VOC
(V)

JSC
(mA/cm2) FF η

(%)

CNT:PIB-ED2003-PIB 1:1 0.65 10.82 0.64 4.52
CNT-PIB-ED2003-PIB/PtNPs 100/1 b 0.64 11.49 0.64 4.67
CNT-PIB-ED2003-PIB/PtNPs 10/1 b 0.66 15.78 0.69 7.19
CNT-PIB-ED2003-PIB/PtNPs 5/1 b 0.68 17.50 0.71 8.45

Pt c 0.68 18.65 0.63 7.99
a Film thickness was around 55 µm, made by drop coating 10 times, each time drop 0.5 mL and heating under
110 ◦C. b CNT-PIB-ED2003-PIB represents the ratio of CNT to PIB-ED2003-PIB was 1:1. c Pt was fabricated by
sputtered, for 90 nm thickness.
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The J–V curves of the large-scale DSSC and the small-scale DSSC are compared, as
shown in Figure 4f, and the data are summarized in Table S2. The results show that when
the working area is increased to 8 cm × 8 cm, the efficiency of the DSSC is 7.95%—an
overall 6% decrease compared to the 8.45% efficiency of the DSSC with a working area
of 0.4 cm × 0.4 cm. This indicates that the organic/inorganic CNT/PtNPs hybrid film
material prepared in this experiment has certain stability and can be used for the large-scale
industrial production of DSSCs.
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4. Conclusions

In this study, a counter electrode material without FTO glass was prepared success-
fully, which is proven to have a high photoelectric conversion efficiency in DSSCs. Carbon
nanotube powder generally faces the problems of entanglement and aggregation in the
liquid phase, which rely on the effects of Van der Waals force and hydrophobicity. These
problems were improved with the use of polymer-assisted dispersants. The chemical
structures of various dispersants were compared, including the differences in hydrophobic
single/double-branch PIB segments, molecular weight, and hydrophilicity/hydrophobicity.
Based on the comparison, PIB-ED2003-PIB, which has double branches with a large molec-
ular weight and is relatively hydrophilic, was selected as the optimal dispersant, as it can
effectively increase the dispersibility of CNTs. After further processing by solution drop
coating, a CNT-based counter electrode without conductive glass (FTO) was prepared.
This electrode has high roughness, which increases the contact area with the electrolyte so
that it can effectively provide active sites to catalyze triiodide ions. Compared with the
platinum counter electrode, it has similar photoelectric conversion efficiency, indicating
that carbon nanotubes can replace platinum as a counter electrode material. Furthermore,
carbon nanotubes were mixed with platinum nanoparticles to make a counter electrode
material. The platinum nanoparticles can increase the catalytic current density of carbon
nanotubes and then increase the specific surface area, reducing the diffusion resistance
of the electrolyte and the overall sheet resistance of the film. However, it is necessary
to find an optimal ratio of the platinum nanoparticles to add to achieve the best overall
performance. With the aid of non-conductive glass, the photoelectric conversion efficiency
of the DSSC made with carbon nanotubes/platinum nanoparticles with a weight ratio of
5/1 can achieve a conversion efficiency of 6.28%. This value increases to 8.45% with the
aid of FTO, while the current density is 17.50 mA cm−2. This is higher than the 7.99% con-
version efficiency achieved by the 90-nanometer platinum used in an FTO-based counter
electrode. Furthermore, a large-scale DSSC was prepared, and its excellent stability was
demonstrated. Therefore, the results of this study show that platinum nanoparticles have
the potential to replace conductive glass (FTO).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13183103/s1, Figure S1. PIB-M1000 block copolymer synthesized from
polyisobutylene-g-succinic anhydride and polyetheramine monoamine functional group Jeffamine
M1000 through amination and imidization. Figure S2. PIB-imide-PIB triblock copolymer synthesized
from polyisobutylene-g-succinic anhydride and polyetheramine diamine functional groups Jeffamine
ED900, ED2003, D2000 through amination and imidation, Figure S3. FTIR spectra of reactions with
(a) PIB-M1000, (b) PIB-ED900-PIB, (c) PIB-ED2003-PIB, and (d) PIB-D2000-PIB, Figure S4. Photos of
solubility tests with (a) PIB-M1000, (b) PIB-ED900-PIB, (c) PIB-ED2003-PIB, and (d) PIB-D2000-PIB
on (1) H2O, (2) DMF, (3) NMP, (4) EtOH, (5) Acetone, (6) MEK, (7) THF, and (8) Toluene, Figure S5.
Influences of different dispersants on the penetration of solutions with different weight ratios of
carbon nanotubes at a wavelength of 550 nm after (a) 2 days, (b) 20 days of storage and actual photos
of the solutions. Figure S6. Corresponding resistance and thickness based on different numbers of
coating layers, Figure S7. TGA and DTG curves of PIB-ED2003-PIB, Figure S8. J–V curves of counter
electrodes made of carbon nanotubes/platinum nanoparticles at different ratios without FTO, and
J–V curves of counter electrodes made of carbon nanotubes/platinum nanoparticles at different ratios
with FTO, Figure S9. Schematic of large-scale (8 cm × 8 cm) DSSC fabrication, Table S1. Solubility
test results of various dispersants in different solvents, Table S2. Data for efficiency analysis of
DSSCs of different working areas, Video S1. Demonstration of the DSSCs based on polymer-assisted
dispersion of PtNPs/CNTs nanohybrid films as FTO-free counter electrodes was used both indoors
and outdoors.
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