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Abstract

Reproducibility in the statistical analyses of data from high-throughput phenotyping screens

requires a robust and reliable analysis foundation that allows modelling of different possible

statistical scenarios. Regular challenges are scalability and extensibility of the analysis soft-

ware. In this manuscript, we describe OpenStats, a freely available software package that

addresses these challenges. We show the performance of the software in a high-throughput

phenomic pipeline in the International Mouse Phenotyping Consortium (IMPC) and compare

the agreement of the results with the most similar implementation in the literature. Open-

Stats has significant improvements in speed and scalability compared to existing software

packages including a 13-fold improvement in computational time to the current production

analysis pipeline in the IMPC. Reduced complexity also promotes FAIR data analysis by

providing transparency and benefiting other groups in reproducing and re-usability of the

statistical methods and results. OpenStats is freely available under a Creative Commons

license at www.bioconductor.org/packages/OpenStats.

Introduction

Statistics is the main inferential tool used in science and medicine to extract information from

data. It provides a set of proven steps for drawing conclusions and making decisions in spite of

the uncertainty inherent in any data, which are unavoidable due to biological variation as well

as the constraints of cost, time, and measurement precision. The inference made from the data

is subject to reproducibility in the analysis requiring precise, transparent, comprehensive and

well-documented rules to prevent unreliable, costly and even invalid results [1]. Reviewing the

literature shows that reproducibility in the data and analysis is the subject of an extensive

range of publications in different areas of science, e.g., life science, bioscience, medical and

pharmaceutical science and translational science [2–6]. Studies have shown irreproducibility

of results is often due to poor documentation of the statistical method [7–9]. This is especially

critical for the high-throughput phenomic screening when tens of thousands of data points are

generated and analysed.
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The International Mouse Phenotyping Consortium (IMPC www.mousephenotype.com) is

a G-7 recognised global research infrastructure dedicated to generating and characterising a

knockout mouse line for every protein-coding gene [10–13]. Currently, in its 8th year, the

IMPC has phenotyped over 188K+ knockout and 69K+ control mice across 13 research cen-

tres from 9 countries in 3 continents (data release 11, February 2020, www.mousephenotype.

org/data/release). These centres adhere to a set of standardised phenotype assays defined in

the International Mouse Phenotyping Resource of Standardised Screens (IMPReSS www.

mousephenotype.org/impress) that represents over 496 (116 IMPC specific) procedures and

10,266 (3,054 IMPC specific) parameters measured on mice. As part of the operating design

protocol, critical factors that can impact data collection such as reagent type or equipment are

captured as mandatory metadata. Phenotype data is then centrally collected and quality con-

trolled by trained professionals before being released for statistical analyses.

The data is then processed by PhenStat [14], a freely-available R [15] package that provides

a set of statistical methods for the identification of genotype to phenotype associations by com-

paring mutants to controls [16]. PhenStat imposes the same statistical model on the entire con-

tinuous data regardless of the nature of the original measurements. That is, the continuous

measurements are analysed using a Linear Mixed Model (LMM) [17] under the following set-

ting for the fixed effects,

Response ¼ Genotypeþ Sexþ Genotype� Sexþ BodyWeight ð1Þ

and Batch (defined as the date of measurement) in the random effect. For the cases where

LMM fails, PhenStat proceeds to an alternative method called Reference Range Plus (RR+)

[16]. The RR+ method relies on an initial setting of a quantile, default 95% in PhenStat, to

form the initial classes (Low/Normal/High) that discretises a continuous response based on

the control, wild type (WT), mice population. Mutants are then stratified into the (Low-Nor-

mal versus High) and similarly to (Low versus Normal-High) classes. One can present the RR

+ model as below,

Response� GenotypejDistribution of control mice ; Main effect

Response� GenotypejDistribution of sex specif ic control mice ; Sex specif ic effects
ð2Þ

(

where (‘|’) and (‘×’) represent the conditional operation and interaction respectively. Fisher’s

Exact Test is applied to each contingency table to test the hypothesis of the independence of

rows (discretised response) and columns (genotype). The categorical data in the IMPC are

analysed using Fisher’s Exact test for combined sexes as well as the individual sexes under the

model below,

Response� Genotype ; Main effect

Response� GenotypejSex; Sex specif ic effects
:

(

ð3Þ

Besides the advantage of providing a reliable analysis pipeline by PhenStat, a number of

limitations arise with the scalability of the input data flow and the diversity of scenarios that

can be handled by the statistical software in high-throughput screening pipelines. For instance,

the internal optimisation of PhenStat for continuous measurement relies on the repetitive use

of Likelihood Ratio Tests (LRT) for model selection that requires a predefined threshold

(default 0.05 in PhenStat). This leads to a reduction in transparency of the statistical analysis in

addition to an increase in the computational complexity of the analysis for large scale screen-

ing projects such as IMPC. There are also many instances of the data in IMPC with repetition

in the measurement values that lead to a misleading inference from the current
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implementation of the RR+ in PhenStat. These issues, coupled with the ever-growing screens

in the IMPC, especially ageing (e.g., longitudinal data), require scalable and more versatile sta-

tistical pipeline with user-defined models for different possible scenarios.

In this paper, we address the issues of scalability, extensibility, versatility, and efficiency in

the current IMPC statistical pipeline implemented using the R package PhenStat by introduc-

ing a new package that we call OpenStats in the same development environment, R. The new

software offers versatile modelling of high-throughput phenotypic data, such as modelling

time dependency in data, for example, the longitudinal data in the IMPC ageing pipeline, with

a focus on simplicity and efficiency. We assess the performance of OpenStats on the IMPC

data including more than 2.5M datasets and analyses and compare the results with the current

implementation of the IMPC stats pipeline. OpenStats is available from the Bioconductor

repository (www.bioconductor.org/packages/OpenStats) that can be installed using the stan-

dard R workflow.

Methods

The IMPC data are collected from 13 research centres around the world and consists of 45M

+ data points (Data release 11, February 2020) from different measurements on the control

and mutant mice. The Genotype effect is measured on a set of knockout mice [18], typically 14

(7 males and 7 females), and a large group of controls, normally several hundred mice, spread

over a moderately long period of time from months to years. Fig 1 shows the increase in the

number of phenotyped mice lines (left) as well as the data points (right) that are collected

along with the IMPC data major releases starting from the first release in 2012 to the current

release in 2020. This figure shows that on average the total number of the data points and the

phenotyped lines between major data releases are increased by a factor of 21% and 23% respec-

tively. Along with the scalability of the data, one challenge is the long term variability such as

seasonal effects, changes in personnel and unknown time-dependent environmental factors in

the IMPC data that is addressed by SoftWindowing method [19]. However, an accurate solu-

tion to the estimation of the long term variation in SoftWindowing requires a precisely formed

initial model that is fitted to the data. This motivates a reimplementation of the current

Fig 1. The increase in the total number of the IMPC mouse lines/data points along with the IMPC major data releases from the first release in 2012 to the current

release in 2020. There is always a chance of more than one release or some minor releases per year. Here the y-axis shows the mouse lines/data points for the specific

major release or the average from the minor releases. (Left) The total number of IMPC phenotyped lines corresponding to the IMPC data releases. (Right) The overall

increasing trend in the data points divided by the type of the data, non-time series (red), the time series (green), categorical (black) and total (blue) corresponding to the

IMPC data releases. These plots show that on average the total number of data points and phenotyped mouse lines increase by a factor of 20% between IMPC major data

releases.

https://doi.org/10.1371/journal.pone.0242933.g001
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methods with more versatility in the configuration and robustness in the implementation for

the initial model.

Building block of the software

Fig 2 shows the four-layer structure of the software package namely, input data and model

specification, data preparation, statistical analysis and reports.

The first layer, input data and model specification, data and the statistical model are manda-

tory, however, if the model is not specified, the default model is set to the same standard

model [20] as PhenStat in Eqs (1), (2) and (3) corresponding to the type of input data.

The second layer, data preparation, the data and model terms are checked for missing val-

ues where OpenStats removes the variables with more than 50% missings; or alternatively

allows basic substitution of the missings with the user specified values. Further checks are

essential terms (such as genotype effect), redundancies (e.g. repeated variables in the model or

variables that have the absolute 1 Pearson correlation), mismatching between model terms and

the input data, and normalising the different terminologies in the data e.g. sex, Sex, gender to a

unified semantic (e.g. “Sex”). Furthermore, it allows basic standard operations such as missing

specification, visualisations and summary via standard plot and summary functions.

The third layer, statistical analysis, is managed by the OpenStatsAnalysis function. This

works as a hub for different statistical methods that can be selected using the “method” argu-

ment. Regardless of the chosen method, the function checks for the concordance of the input

model and the underlying data and whether the type of data fits the chosen statistical model.

Fig 2. The schematic illustration of the OpenStats workflow. The OpenStats software is designed with a four-layer structure namely Input data and model specification,

dataset processing and preparation, statistical analysis, and reporting/exporting the results.

https://doi.org/10.1371/journal.pone.0242933.g002
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This further checks for other input arguments to the function and reports any potential errors.

For the implemented statistical frameworks, the statistical significance is assessed and several

measures such as standardised effect sizes, confidence intervals, sex-specific effects (provided

sex is included in the input data), summary statistics of the input data and several other mea-

sures are reported. Moreover, the plot and summary are available for all methods.

The final layer in the workflow, report and export, is managed by the function OpenStats-

Report and allows the key elements of the analysis to be extracted in the form of either list or

JavaScript Object Notation (JSON www.json.org). The output of the OpenStatsReport function

has a schema that makes it versatile to be populated into databases or used by other software in

a pipeline.

Available statistical frameworks

Selection of the statistical method in the high-throughput screening pipelines that best fits the

input data and the goal of the project is crucial otherwise can lead to misleading or weak evi-

dence or increase the chance of producing Type I or Type II error in hypothesis testing [21].

However, efficiency and simplicity are essential when hundreds of thousands of analyses are

performed in the high-throughput screening pipelines such as in the IMPC. Below we describe

the three main analysis frameworks that are implemented in the OpenStats software package.

Nominal data. The majority of the nominal data in the IMPC measure the occurrence of

a rare event such as abnormal behaviour or absent/present of the tail in the mice. To comply

with the goal of the analysis, OpenStats applies Fisher’s Exact Test [22–25] with p-values com-

puted by Monte Carlo simulation for larger than 2 by 2 contingency tables. Depending on the

specification of the model, sub-tables such as male, female, lifestage (defined as Early/Late

adult mice), male/female × LifeStage interactions etc. are also formed and tested. The confi-

dence interval for the odds ratios of 2×2 tables and effect sizes, defined as the maximum per-

centage change from the corresponding contingency table, are estimated for all tables.

Continuous data. Linear mixed model. The majority of the phenotypic data from the

IMPC are continuous and analysed by performing the linear mixed model [17, 26] with Geno-

type, Sex and Bodyweight in the covariates and Batch (as the date of measurement) in the ran-

dom effect [27, 28]. OpenStats allows an open structure for the covariates, random effect and

the further structures on the within/between-group variation. This, in contrast to the PhenStat

allows modelling of complex data in the IMPC such as repeated measures by including custom

covariates/random effects. To cope with the low N, typically 4−7 mutant animals per sex in

high-throughput pipelines, OpenStats applies an optional forward/backward/stepwise [29]

optimisation to all model terms on the basis of comparing mutual AICc, a version of Akaike

information criterion (AIC) that has a correction for small sample sizes [30]. Further to the

initial model that is specified by the user, the sub-models are also fitted to the data for special

purposes such as the detection of the sex specific (sexual dimorphism) effects. The confidence

intervals, standard effect sizes [31] and standardised coefficients are also estimated for each

possible sub-model. OpenStats further allows diagnosing the fitted model by providing visuali-

sation tools and also reporting Shapiro-Wilk or Kolmogorov-Smirnov normality test statistics

[32, 33] for assessing the normality of the model residuals.

Reference Range Plus method. The Reference Range Plus (RR+) method is an intuitive, sim-

ple and conservative method that is introduced in [16, 34, 35] and is based on the concept that

a significant phenotype can be called when the majority of the mutant mice lie outside the nat-

ural variation seen in the controls/WT. More extensive implementation of the RR+ compared

to PhenStat is performed in the OpenStats that includes an open structure to make the com-

parison amongst all specified covariates as well as sub-levels. To overcome the misleading
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results from the data with repeated values, OpenStats reports empirical quantiles and adjust

the threshold to the first distinct quantile.

Comparison between analysis from OpenStats vs PhenStat

The data analysis pipeline in the IMPC requires several steps that are shown briefly in Fig 3.

This consists of importing data to the operational environment and QC’ing before applying

the statistical methods. The working datasets are formed carefully by splitting data based on

predefined metadata to ensure all relevant information are packaged into a single dataset prior

to applying the statistical analysis. The analysis engine is controlled by the statistical analysis

software namely PhenStat or OpenStats. Ultimately, the statistical results are quality controlled

for failures, errors and the agreement with the other available/manual implementations and if

approved, passed to the downstream processes.

The comparison between the statistical analyses from OpenStats versus PhenStat is shown

in Table 1 where two instances of the IMPC statistical pipeline equipped with OpenStats and

PhenStat simultaneously ran on a cluster computing machine. The results consist of process-

ing 226 distinct procedures (S1 Table) including 41 IMPC specific procedures such as IMPC

calorimetry (IMPC_CAL), clinical blood chemistry (IMPC_CBC), haematology (IMPC_

HEM), acoustic startle, pre-pulse inhibition (IMPC_ACS), insulin blood level (IMPC_INS)

and body composition (IMPC_DXA), and over 3.8K parameters (1K+ IMPC parameters)

Fig 3. Schematic view of the IMPC statistical pipeline. The measurement of several parameters per specimen are collected from 13 centres all over the world, inspected

for possible QC issues, carefully filtered to form individual working datasets, pre-optimised for being processed by the cluster computing platform and ultimately passed to

the statistical analysis engine either PhenStat or OpenStats for the statistical analysis. The analysis engine is in charge of applying a proper statistical method to each

working dataset and stores the analysis results in a format that enhances the downstream processes. All outputs from the statistical engine are inspected for the failures,

errors and must pass a random QC check prior to being released to the downstream processes.

https://doi.org/10.1371/journal.pone.0242933.g003
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(S2 Table). The complete list of IMPC procedures and parameters are available from www.

mousephenotype.org/impress/pipelines. Because the analyses are performed on a farm of

machines controlled by the cluster computing software, the direct measurement of time elapsed

for each procedure/parameter is not straightforward. To alleviate this issue, the statistical pipe-

line reports the time spend per analysis/machine. Then, we report the average time for analysing

the datasets in each procedure/parameter, which is normally the average of several hundred

analyses. This ensures an unbiased estimation of the performance of the software.

The analysis of the entire IMPC data using OpenStats and PhenStat on a hypothetical sin-

gle-core machine takes a total of 24 months (~21.5 months for the IMPC specific procedures),

including the categorical and continuous data. From that 24 months, 22 (92%) months (20

months for IMPC procedures) are accounted for by PhenStat and 2 (8%) months (1.5 months

IMPC procedures) by OpenStats. Fig 4 (top row) shows the distribution of average time saved

(in minutes) by utilising OpenStats software across the specific IMPC procedures (top ten)

(left) and parameters (top 30 to save space) (right) whereas the bottom plots show the cases

where PhenStat performs more efficient in time than OpenStats. These plots show a significant

reduction in computational time from the OpenStats versus PhenStat software for processing

the entire IMPC data. The full table of comparisons over all procedures is available in supple-

mentary materials S3 Table.

We further performed a confirmatory analysis to compare the agreement between the sta-

tistical results, Genotype effect p-value in particular, from PhenStat and OpenStats. Our results

show an overall agreement of 99% between the two software, 99.9%, 99.9%, and 98.9% for

Fisher’s exact test, Reference Range plus, and Linear Mixed model frameworks respectively.

The main cause of the disagreement between the two software is using Monte Carlo simula-

tion-based method for the Fisher’s exact test and Reference Range plus as well as new model

selection strategy based on Akaike information criterion for small samples (AICc) for the

internal optimisation of the software and the natural diversity in the data that sometimes vio-

lates the assumptions of the applied model for the Linear Mixed model frameworks. For

instance, https://bit.ly/2WxI2Io is an example dataset from IMPC Acoustic Startle and Pre-

pulse Inhibition (PPI) procedure. This data is right-skewed and should be considered carefully.

In this example, the internal optimisation of PhenStat removes the effect of the bodyweight (at

the level of 0.05) as a covariate in the linear mixed model under the settings in Eq. (1) whereas

OpenStats preserves it in the model. The consequence is a 2-fold decrease in the magnitude of

the genotype effect p-value, 0.49 in PhenStat and 0.18 in OpenStats. We should stress that

there is no right answer in this example as there is a violation of the model assumptions/resid-

uals. The next example in https://bit.ly/2YB4int represents a dataset from the IMPC Haematol-

ogy procedure and depicts the inconsistency in the statistical results that is a product of the

missing values in body weight (14% in total) and the outliers in response (5% based on Tukey’s

criteria with k = 3). In this case, PhenStat omits the bodyweight effect from the linear mixed

model in Eq (1) (Genotype effect p-value 0.0004) whereas OpenStats keeps the body weight in

Table 1. The comparison between OpenStats and PhenStat for analysing the IMPC continuous and categorical data.

Total procedures Total parameters Total processed datasets Total failures

(individual analysis)

Total average time in hours (months)

OpenStats 226 (41) 5190 (1533) 2,551,026 135 1497 (2|1.5 IMPC)

PhenStat 226 (41) 5190 (1533) 2,550,141 1020 16168 (22|20 IMPC)

Each procedure contains several parameters that need to be analysed separately. Time elapse is estimated by adding up all spent times by carefully generated multi-

processing jobs that equally fed into the OpenStats and PhenStat simultaneously. In all cases, the same procedure, parameter and data and analysis method are processed

by OpenStats and PhenStat.

https://doi.org/10.1371/journal.pone.0242933.t001
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the model but excludes the missing values from the analysis (OpenStats Genotype effect p-

value 0.97). We should stress that regardless of the statistical software, unusual cases should be

interpreted carefully.

Discussion

Establishing precise, robust, reliable, and reproducible statistical pipelines for high-throughput

phenotyping screens is challenging and is the subject of recent research topics [16, 19, 27, 28,

36–38]. With ever-growing phenotypic data, more consideration is required for scalability and

versatility of the statistical pipeline to model different possible scenarios as efficiently as possible.

One challenge the International Mouse Phenotyping Consortium (IMPC) faces is the diversity

in data that demands more complex statistical methods with minimal latency. Here we intro-

duced OpenStats, a freely available R package that allows systematically analysing different

Fig 4. The comparison of the IMPC statistical pipeline analysed by OpenStats and PhenStat with respect to the time efficiency. (Top row) The left and right charts

show the top (average) saving time in minutes by using OpenStats versus PhenStat over the IMPC procedures and parameters. The bottom row shows the top best

(average) loses in minutes where PhenStat performs faster than OpenStats. These plots show that OpenStats improves the efficiency of the IMPC statistical pipeline.

https://doi.org/10.1371/journal.pone.0242933.g004
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statistical scenarios in the high-throughput phenotypic data. The R package allows a fully cus-
tomised analysis plan for the implemented methods namely: linear mixed model, Fisher’s exact

test and Reference Range plus, as well as a comprehensive workflow with a focus on simplicity,

efficiency, scalability and completeness that offers more than the raw statistical results and more

than the counterparts in the literature. The performance of the new software compared to the

current implementation of the statistical pipeline in IMPC is assessed on more than 45M data

points and 4M+ analyses. Our comparisons show on average 90% reduction in time spent by

adopting the new software while 99% of the results remain similar between OpenStats and the

closest counterpart, PhenStat, for the IMPC data. The speed efficiency of OpenStats lies in the

fact that the software utilises a “start-update” strategy instead of “start-terminate”. That is, each

model is formed by updating the previous one in contrast to fitting a brand-new model at each

step. Besides the advantages of the software, there are a number of limitations to OpenStats

including dependency to the statistical pipelines built on R and difficulties with exchanging the

statistical methods with other statistical analysis software such as Python.

OpenStats addresses other challenges beyond the need to scale/versatile analysis to large data-

sets. One example is irreproducibility in results from animal experiments that is cited as a major

contributor to explain many drugs failure in the development pipeline [39]. To address this con-

cern, the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines have recently

been updated to emphasis reporting on statistical methods including clearly stating the statistical

method that is used and whether the data meet the assumptions of the statistical approach [40]. As

part of its operation, OpenStats assesses whether data fits the requirements for a statistical test, such

as not having enough data for performing interaction tests in the linear mixed model or assessing

the normality of input data/model residuals. OpenStats also provides the visualisation tools

required to diagnose the fitted model. The resulting analyses are clearly defined by which method

was used, promoting reproducibility and repeatability of the results and the statistical models.

Increasingly researchers and stakeholders such as funders are demanding that biological

research data and their analyses follow the FAIR principles—Findable, Accessible, Interoperable,

and Reusable [41]. OpenStats contributes to FAIR data by assessing input data for completeness,

redundancy, and any mismatch in variable format and/or labels. It also provides semantic nor-

malisation such as sex, Sex and gender to a unified term “Sex” for common biological data vari-

ables in order to promote interoperability and reusability of data. Critically, OpenStats enables

reusability of statistical methods by being freely available from the well-known BioConductor soft-

ware project (www.bioconductor.org/packages/OpenStats) allowing any researcher to reproduce

and reuse analyses from others’ research while ensuring their own analysis is FAIR.

In summary, OpenStats promotes FAIR data and better reproducibility of biological

research results while providing a means to scale to the larger and more complex datasets

being generated by the research community.

Future study

Future work could be deriving a quality score that represents the quality of individual statisti-

cal analysis from the high-throughput genomic pipelines by testing the different aspects of the

input data and the analysis results for the specified analysis framework.

Supporting information

S1 Table. The list of IMPC procedures that are involved in the IMPC statistical pipeline

comparison between OpenStats and PhenStat.

(XLSX)
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