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Abstract

Background: Long terminal repeat retrotransposons are the most abundant transposons in plants. They play
important roles in alternative splicing, recombination, gene regulation, and defense mechanisms. Large-scale
sequencing projects for plant genomes are currently underway. Software tools are important for annotating long
terminal repeat retrotransposons in these newly available genomes. However, the available tools are not very sensitive
to known elements and perform inconsistently on different genomes. Some are hard to install or obsolete. They may
struggle to process large plant genomes. None can be executed in parallel out of the box and very few have features
to support visual review of new elements. To overcome these limitations, we developed LtrDetector, which uses
techniques inspired by signal-processing.

Results: We compared LtrDetector to LTR_Finder and LTRharvest, the two most successful predecessor tools, on six
plant genomes. For each organism, we constructed a ground truth data set based on queries from a consensus
sequence database. According to this evaluation, LtrDetector was the most sensitive tool, achieving 16–23%
improvement in sensitivity over LTRharvest and 21% improvement over LTR_Finder. All three tools had low false
positive rates, with LtrDetector achieving 98.2% precision, in between its two competitors. Overall, LtrDetector
provides the best compromise between high sensitivity and low false positive rate while requiring moderate time and
utilizing memory available on personal computers.

Conclusions: LtrDetector uses a novel methodology revolving around k-mer distributions, which allows it to
produce high-quality results using relatively lightweight procedures. It is easy to install and use. It is not species
specific, performing well using its default parameters on genomes of varying size and repeat content. It is
automatically configured for parallel execution and runs efficiently on an ordinary personal computer. It includes a
k-mer scores visualization tool to facilitate manual review of the identified elements. These features make LtrDetector
an attractive tool for future annotation projects involving long terminal repeat retrotransposons.
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Background
Formerly considered “junkDNA”, the intergenic sequences
of genomes are attracting increased attention among biol-
ogists. A particularly striking feature of these regions is
the prevalence of transposable elements (TEs), a type of
repeated sequence. TEs include class I elements, which
replicate using RNA to “copy-and-paste” themselves, and
class II elements, which replicate via a “cut-and-paste”
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mechanism using DNA as an intermediate [1]. Barbara
McClintock discovered transposons in the 1940s and the
1950s while studying the maize genome [2]. TEs are com-
mon to all eukaryotes, comprising around 45% of the
human genome and up to 80% of some plants like maize
and wheat [3, 4].
TEs have several important functions. Bennetzen and

Wang highlight the known functions of plant TEs [5].
Transposons are the major factor affecting the sizes of
plant genomes [6–8]. Under stressful conditions, they can
rearrange a genome [9–11]. TEs play roles in relocating
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genes [12, 13] and generating new genes [14, 15] and
new pseudo genes [16, 17]. They can contribute to cen-
tromere function [18, 19]. TEs can regulate the expres-
sion of nearby genes via several mechanisms including:
(i) providing regulatory elements, such as promoters and
enhancers, to nearby genes [14, 20–22]; (ii) inserting
themselves into genes, then targeting the epigenetic reg-
ulatory system [23]; (iii) producing small interfering RNA
specific to host genes [24–26]; and (iv) generating new
micro RNA genes modulating host genes [27–29]. Trans-
posons have been utilized in cloning plant genes in a
technique called transposon tagging [30–32]. They also
have the potential to become a new frontier in enhancing
the productivity of crops [33, 34].
Long Terminal Repeat retrotransposons (LTR-RTs) are

a particularly interesting type of class I transposable ele-
ment related to retroviruses. LTR-RTs are widespread in
plants and are considered one of their primary evolution-
ary mechanisms [35].Gonzalez, et al. summarizes some of
their functions [36]. LTR-RTs can insert adjacent to and
inside of genes and promote alternative splicing [37], They
play roles in recombination, epigenetic control [38, 39],
and other forms of regulation [36]. LTR-RTs have been
found with regulatory motifs that promote defense mech-
anisms in damaged plant tissues [40]. They can also serve
as genomic markers for evolutionary phylogeny [41].
LTR-RTs are named for their characteristic direct

repeat— typically 100–6000 base pairs (bp) long in plants.
These direct repeats surround interior coding regions
(the gag and pol genes). Lerat suggests 5 kbp–9 kbp as
a size range for LTR-RTs [1] , but based on the consen-
sus sequences of plant LTR-RTs, their lengths can exceed
20 kbp.
Computational tools are extremely important in locat-

ing repeated sequences, including LTR-RTs. Tools can be
roughly divided into knowledge-based tools, which lever-
age consensus sequence databases to search for repeats,
and de-novo tools, which use internal sequence compar-
ison and structural features to search for repeats without
prior knowledge about the target sequence [1].
Knowledge-based methods include well-known bioin-

formatics software such as NCBI BLAST [42], Repeat-
Masker (http://www.repeatmasker.org), and Censor (https://
www.girinst.org/downloads/software/censor/); they can
be utilized in locating all types of known TEs including
LTR-RTs. However, if the sequence of the repetitive ele-
ment is unknown, tools like these cannot find copies in a
genome.
Several methods for locating all types of TEs de-novo

have been developed [43–46]. Tools built specifically for
detecting LTR-RTs include LTR_STRUC [47], LTR_seq
[48], MGEScan-LTR [49], LTR_Finder [50], and LTRhar-
vest [51]. LTR_retriever is a post-processing tool, which
may help increase the accuracy of de-novo approaches

[52]. LTRsift [53] and Inpactor [54] are other post-
processing tools that cluster LTR-RTs into families and
allow additional analyses.
These tools face a variety of usability, scalability, and

accuracy concerns. For example, LTR_STRUC, one of
the pioneering tools for locating LTR-RTs, was devel-
oped exclusively for an old version of Windows, making
it difficult to use nowadays. Several tools have external
dependencies which greatly complicate their installation.
None of them take advantage of the parallel multi-core
architecture of modern personal computers. Some may
struggle to process larger plant genomes such as the bar-
ley genome on an ordinary personal computer. Some
tools are highly sensitive to species-specific parameters.
All produce false positive predictions and do not retrieve
all known LTRs. Finally, only a few of these tools were
designed with post-processing manual review in mind.
Thousands of plant genomes are being sequenced

currently and in the near future. The 10KP Project
for plant genomes (https://db.cngb.org/10kp/) and the
Earth Biogenome Project (https://www.earthbiogenome.
org) aim at sequencing a large number of plant genomes.
This expansion of genomic data creates an urgent need
for modern software tools to aid in detecting LTR-RTs
in the new plant genomes; such tools should remedy the
limitations of the currently available tools.
To this end, we have developed LtrDetector, which is a

software tool for detecting LTR-RTs. LtrDetector depends
on techniques inspired by signal processing. It is easy to
install because it does not have any external dependencies.
It can run on multiple machine cores in parallel, taking
advantage of the advanced hardware available on personal
computers. It is not species specific. It is more sensitive
to known LTR-RTs than the related tools. It can process
larger genomes such as the barley genome. It can produce
images to facilitate the manual review/annotation of the
newly located LTR-RTs.
Our efforts have resulted in the following contributions:

• The LtrDetector software for discovering LTR
retrotransposons in assembled genomes. LtrDe-
tector is available on GitHub (https://github.com/
TulsaBioinformaticsToolsmith/LtrDetector) and in
Additional file 1.

• Visualization script to view scores, which should aid
in the manual verification of newly found elements —
available in Additional file 1 and the GitHub repository.

• Novel pipeline to generate ground truth (sequences of
known LTR retrotransposons). The pipeline is available
in Additional file 2 and the GitHub repository.

• Putative LTR retrotransposons of six plant genomes
(Additional files 3, 4, 5, 6, 7, 8, and 9).
Comparing the performance of LtrDetector to the per-

formances of other related tools demonstrates that LtrDe-
tector is the best de-novo tool currently available for
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detecting LTR-RTs. These results were obtained on syn-
thetic sequences and multiple genomes.

Implementation
Overview
We used a variety of computational techniques to perform
de-novo signature-based discovery of Long terminal
repeat (LTR) retrotransposons (LTR-RTs). Signature-
based tools rely strictly on specific structural features of
LTR-RTs, e.g. the presence of two flanking LTRs, without
referring to the nucleotide sequences of known elements.
The main contribution of this study is a software pack-
age called LtrDetector. The tool utilizes methods inspired
by signal processing, using the distances between copies
of k-mers — short nucleotide sequences of length k — to
determine the location of LTRs.
At a high level, LtrDetector locates LTR-RTs using the

following steps (Fig. 1):
• Mapping each nucleotide in a sequence to a positive

or negative numerical score recording the distance to
the closest exact copy of the k-mer starting at that
nucleotide;

• Processing the scores to merge adjacent stretches of
similar scores (i.e. plateaus);

• Collecting plateaus and pairing those whose distance
scores point to each other;

• Correcting LTR coordinates via local alignment of the
regions surrounding each plateau in a pair; and

• Removing faulty candidates based on sequence identity,
element length, and structural similarity to other types
of transposable elements (TEs).

Scoring the input sequence
At the time of insertion into the genome, the two LTRs of
an LTR-RT will be identical [4]. Centuries worth of muta-
tion will lead to some degeneration, but the LTRs should
retain a high degree of homology.
The goal of the scoring step is to mark the genomic dis-

tance to the nearest exact copy of every k-mer in the input
sequence using a data-structure called a hash-table. A
hash-table is conceptually similar to a dictionary, contain-
ing entries mapping a unique key to an associated value.
It employs a mathematical function called hashing to con-
vert a key into an index, which is used to look up the value
in the hash-table’s underlying array.
LtrDetector utilizes a hashing function specific to DNA

sequences. Each nucleotide (A, C, G, and T) in a k-mer
is encoded as a digit (0, 1, 2, and 3). This digit sequence
is considered as a quaternary (base-4) number and con-
verted to a decimal number (base-10) that indicates an
index within the array. Horner’s rule is used for efficiently
converting the number from its quaternary to its decimal
representation [55]. We have used similar data structures
successfully in other software tools [56–59]. For example,

the 5-mer ACCTG is transformed to 01132 (base 4) and
then to 94 (base 10), mapping it to the 94th cell in the
array. Note that the array for storing all k-mers will be of
length 4k .
LtrDetector traverses the input sequence nucleotide by

nucleotide, computing the index for the k-mer starting at
each position. As it encounters a particular k-mer for the
first time, it will fill in the hash-table value with the ini-
tial location. Whenever that k-mer is found again, it will
update the hash table with the new location and report
the score at that index as the distance between the current
copy and the previous copy.
Distances to and directions of the closest copies are

recorded both forward and backward in the genome as
positive and negative numbers. This process requires only
one pass through the sequence because the direction of
the closest copy can be calculated from the index of the
k-mer and the index of the closest copy that is stored in
the hash table. Scores will be updated if a copy is found
closer downstream. The distance between the k-mer and
its copy must be within a specific range due to the length
properties of LTR retrotransposons [1].

Processing scores
The raw scores yielded by the previous step are pro-
cessed to accentuate meaningful patterns.Wherever there
is a significant repeat in the genome, there should be
an extended, semi-continuous sequence of similar scores.
However, any mutation will cause gaps in these stretches.
LtrDetector first identifies all continuous stretches of non-
zero scores, categorizing them as “keep” — K— if they are
longer than or equal to a minimum seed value, (default:
10 bp), or “delete” — D — if they are not. The forward
merging step merges a D section with a neighboring K
section if the two are separated by a gap of less than a cer-
tain size (default: 200 bp). To merge, the scores belonging
to the D section are overwritten with the median score
of the adjacent K section, as are the scores in between.
This D section is re-categorized as a K. Neighboring K
sections will be merged by re-scoring only the gap section,
using the median score of one of the two K sections.
Next, the backward merging step proceeds in the opposite
direction, merging all D sections that appear upstream of
K sections and are missed by the forward merging step.
After both passes, all remaining D selections are overwrit-
ten to zero to reduce noise. We illustrate this procedure in
Fig. 2.

Pairing plateaus
The merging step should produce wide plateaus in the
scoring signal. The magnitude of their scores can be
thought of both as the height of the plateau and as the dis-
tance towards its match. The sign of the scores indicate
the direction — positive for downstream and negative for
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(a) (b)

(c) (d)
Fig. 1Method overview: LtrDetector is a software tool for locating long terminal repeat (LTR) retrotransposons (RTs). a A sequence of scores reflects
the distance to the closest exact copy of the k-mer starting at each nucleotide. b Smoothed scores are produced after adjacent spikes are merged
into a contiguous region. c Plateau regions are identified. Separate plateaus here are represented by black and red lines. d Plateaus are paired and
their boundaries are adjusted. The red triangles denote the start and end coordinates for each LTR

upstream. For instance, a plateau of width 200 and height
+8000 should imply a similarly wide plateau of height -
8000 starting about 8000 base pairs downstream. In this
way, the scores of the two plateaus point towards each
other.
Another hash-table-like data structure helps pair

matching plateaus to form a full retrotransposon. Plateaus
are assigned to a bin based on the magnitude of their
height, with each bin holding plateaus within a certain
range of height. The algorithm then steps through the
candidates, placing each positive plateau into the appro-
priate bin as it is encountered. Each negative plateau
will be assigned an initial bin, which will be searched
for a positively-scored plateau located at the proper

distance; recall that this distance is implied by the
height of the negative plateau. Because we allow for
some difference in height, the bins immediately above
and below the initial one may be inspected. If a match
is found, the two regions are returned and listed as
a candidate LTR pair. If not, the negative plateau is
discarded.

Boundary correction
The newly paired LTR candidates merely approximate the
boundaries of a putative retrotransposon because of the
sensitivity of k-mers tomutations. Next, we use the Smith-
Waterman local alignment algorithm [60] to sharpen the
LTR boundaries.
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(a)

(b)

(c)
Fig. 2 (a) Contiguous stretches of the same non-zero score are
identified and marked as keep (K) or delete (D). (b) The forward pass
merges K sections toward each other and adjacent D sections. (c) The
backward pass merges remaining D sections that are close to K
sections

As the plateaus may be of unequal length at this stage,
we define a value L equivalent to the length of the larger
plateau. From the center of each plateau, we mark a win-
dow of size 1.5 × L bp in each direction. The resulting
windows may not be longer than the maximum LTR
length parameter (6000 bp is the default). We align these

two regions, and the returned alignment indicates the cor-
rected boundaries for the putative LTR-RT. Alignment
identity scores are stored for later use. Scaling the align-
ment window based on the initial plateau length provides
for good average case run time while still allowing LtrDe-
tector to discover elements with large LTRs.

Filtering
Several filters are applied to reduce the number of false
positives. LTR identity scores from the previous step are
used for discarding all entries whose paired LTRs exhibit
sequence similarity below a given threshold (default: 85%).
Then elements are filtered by size to remove those where
either the LTR or the whole element is too small or too
large, using values typical of known LTR-RTs. Our default
range for the full element is 400–22000 and 100–6000 for
its LTRs.
Next, the candidates are analyzed to determine whether

they exhibit features of DNA transposons, which are
another type of TE that appear in high copy number
in many genomes. DNA transposons of the same family
can appear in close proximity and be falsely identified as
LTR-RTs by the previous steps. DNA transposons con-
tain terminal inverted repeats, meaning that the reverse
complement of the beginning sequence appears at the
end of the element. LtrDetector locally aligns the first 30
nucleotides of each LTR with the reverse complement of
its last 30 nucleotides. If this resulting alignment is suf-
ficiently long (>15 bp), the element may represent two
DNA transposons within close distance to each other; this
element is discarded.

Structural Annotations
Other structural features—Target Site Duplication (TSD)
and Polypurine Tract (PPT), and the TG..CA motif are
included as annotations.
A TSD is a small exact repeat that may occur at the

insertion site. LtrDetector searches for TSDs using the
longest common substring algorithm, which is a dynamic
programming algorithm that finds exactly matching sub-
strings of two strings. We run this algorithm on the
regions consisting of the 20 bp before the left LTR and
after the right LTR. The tool finds the closest TSD of at
least 4 bp — if one exists.
Additionally, LtrDetector searches for a PPT, which is a

region of highly enriched purine (A and G) content that
appears in the interior region immediately adjacent to the
3’ LTR. We calculate a search window based on the size of
the interior region on the LTR-RT. The tool searches for a
minimum length seed composed entirely of purines, then
expands in both directions from the first such seed, allow-
ing for gaps. When the maximum gap is exceeded, the
length and the purine percentage of the putative PPT are
calculated. If these values are below certain minimums,
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the algorithm proceeds to the next seed and repeats the
process. This search continues until an acceptable PPT is
found or the search window is exceeded. LtrDetector also
searches for a PPT on the negative strand by scanning the
reverse complement of the search window, giving a clue as
to the orientation of the LTR-RT.
Finally, we search for the TG..CA box. We scan the first

20 bp of the LTR-RT for the first occurrence of the TG
motif and the last 20 bp for the final occurrence of the CA
motif. If both motifs occur, we report the start and end of
the box as an alternative boundary for the full LTR-RT.

Reporting
By default, LtrDetector reports results in a tabular format,
including columns for the start and the end coordinates of
each retrotransposon, its constituent LTRs, and any found
TSD , PPT, or TG..CA Box. Alternatively, it can produce
output in BED format for easy evaluation using compari-
son utilities like bedtools. In this case, the output columns
contain start and end coordinates for the entire element
and for its constituent LTRs.

Visualizing putative LTR-RTs
We have built this tool with manual verification in mind.
LtrDetector comes with a Python program to enable the
user to visualize the scores — distances and directions —
as well as the boundaries of the two LTRs. The visu-
alization program produces graphs. The x-axis displays
the nucleotide indexes, and the y-axis displays the for-
ward/backward distances to the closest copies. Forward
distances are represented as positive numbers, whereas
backward distances are represented as negative numbers.
Figure 1a shows the scores. The merged plateaus can also
be visualized (Fig. 1b). The boundaries of each LTR are
demarcated by two inverted, red triangles (Fig. 1d). Look-
ing at these graphs, the user can quickly assess the quality
of predicted elements by comparing the identified bound-
aries with the surrounding scores. This should provide
important information for the manual review process.

Ground truth generation
In order to assess the accuracy of our signature-based pre-
dictions, we built a pipeline for assembling ground truth
using previously known sequences of LTR-RTs. Repbase
is the most comprehensive database for repetitive ele-
ments, containing consensus sequences for a wide variety
of genomes [61]. The Repbase browser system provides
FASTA files containing the LTRs and interior sequences
for full LTR-RTs separately. The ground truth were con-
structed using two related, complementary approaches.
In the first approach, we downloaded these files and

parsed them to append the LTR sequences before and
after their associated interior sequence to form full LTR-
RT elements. We then performed a BLAST search for

these complete elements against the input genome, pro-
cessing the output from BLAST to accept only those
results that represent 100% coverage of the query as well
as 70% or more identity.
In the second approach, we built a pipeline around

RepeatMasker — the standard database-driven tool for
repeat identification. RepeatMasker also uses Repbase
as its default source of repeat consensus sequences.
Instead of concatenating the LTRs and their interior
regions before the search, we searched for them sepa-
rately in RepeatMasker’s output. These entries were used
for extracting LTR-RT coordinates by finding two 100%-
query-coverage regions of the same LTR that are 400–
22000 bp apart as defined by their start coordinates. The
corresponding interior element was required to appear
somewhere in between and to have 70% query coverage.
The outputs of the two pipelines were merged and

duplicates were removed. The reason we used both
pipelines is that the results from the RepeatMasker
pipeline are dependent upon the estimated length param-
eters, but do a better job finding LTR-RTs with more
degenerate interior regions, whereas the BLAST data is
free from guesswork but stricter about enforcing the
canonical structure of LTR-RTs.

False positive evaluation
We built a false positive detection pipeline by pars-
ing RepeatMasker output to determine when putative
LTR-RTs overlap with non-LTR repeats. RepeatMasker-
reported elements that do not belong to an LTR (excluding
simple and low-complexity repeats) are compared with
the predicted LTR-RTs. If two repeats of the same type
overlap by more than 80% with the two supposed LTRs
of a putative LTR-RT, this element is considered a false
positive. However, if other repetitive elements overlap the
interior of the predicted LTR-RT, this putative element
is not counted as a false positive because nested repeats
are very common. This approach was inspired by another
study for detecting Miniature Inverted-repeat Transpos-
able Elements (MITEs) [62]; in that study, a putative
element is considered a false positive if it overlaps with
any non-MITE elements. Repbase is by no means a com-
plete record of repetitive elements, so neither the ground
truth nor the false positive annotations will be compre-
hensive. Accordingly, a large amount of elements dis-
covered by LtrDetector will overlap with neither set and
will be impossible to evaluate against existing databases.
Nonetheless, this approach— in our opinion— is the best
available method for evaluating the false positives of tools
for discovering LTR-RTs.

Evaluation measures
True Positives (TP) are the discoveries that overlap with
an entry in the ground truth. False Negatives (FN) are



Valencia and Girgis BMCGenomics          (2019) 20:450 Page 7 of 14

elements listed in the ground truth but not found by a tool.
False Positives (FP) are the discoveries that overlap with
an entry in the false positive data set. Mutual overlap is
required to be 95%; for example, sequences A and B are
counted as equivalent if the overlapping segment between
A and B constitutes 95% of both A and B. Because we
calculate this overlap on the whole element, it is theoreti-
cally possible that this definition of overlap may overlook
some slight inaccuracies in the length of the LTRs. We
use the standard measures of sensitivity (Eq. 1) and preci-
sion (Eq. 2) to assess the performances of LtrDetector and
the related tools. Sensitivity is the ratio (or percentage)
of the true elements found by a tool, whereas precision
is the ratio (or percentage) of the true elements identified
by a tool to the total number of regions predicted by the
same tool.

Sensitivity = TP
TP + FN

(1)

Precision = TP
TP + FP

(2)

Additionally, we report the F1 measure (Eq. 3), which
combines sensitivity and precision.

F1 = 2 × Precision × Sensitivity
Precision + Sensitivity

= 2TP
2TP + FP + FN

(3)

Comparing the F1 measure to the accuracy (Eq. 4) shows
how similar these two measures are.

Accuracy = TP + TN
TP + TN + FP + FN

(4)

Here, TN stands for True Negatives — unknown in this
study. Therefore, the accuracy cannot be calculated. If we
substitute TNwith TP in the accuracy equation, we obtain
the F1 measure equation. In other words, the F1 can be
viewed as an accuracy measure when the TN cannot be
determined.

Data
We validated the results of LtrDetector using a variety
of genomes. An initial test replicated the experiment in
a study by Lerat [1], testing multiple tools on the X
Chromosome of the D. melanogaster (Dm3) against a
ground-truth annotation assembled from RepeatMasker.
We performed similar analysis on the following genomes:
• Arabidopsis thaliana (TAIR10): http://plants.ensembl.

org/Arabidopsis_thaliana/Info/Index
• Hordeum vulgare (HvIbscPgsbV2): http://plants.

ensembl.org/Hordeum_vulgare/Info/Index
• Oryza sativa Japonica (IRGSP1): http://plants.ensembl.

org/Oryza_sativa/Info/Index
• Sorghum bicolor (SorghumBicolorV2): http://plants.

ensembl.org/Sorghum_bicolor/Info/Index

• Zea mays (ZeaMaysAGPv4): http://ensembl.gramene.
org/Zea_mays/Info/Index

• Glycine max (Gmax_109): http://www.plantgdb.org/
XGDB/phplib/download.php?GDB=Gm

Parameter defaults
We conducted an empirical analysis of the Repbase
sequences for six genomes in order to set the element
length parameters for LtrDetector and the other tools.
Table 1 shows length statistics of LTR-RTs of these
genomes. We chose the default values to include almost
all elements found in the data. The range for LTR length is
100–6000 bp, and 400–22000 bp for whole LTR-RTs. The
whole element maximums and minimums are also used in
our ground truth generation.
The value of k is extremely important to both the effec-

tiveness and the efficiency of LtrDetector. If the chosen
value is too small, many k-mers will occur by chance
and the scores will contain a large amount of noise. If
k is too large, the signal will likely miss more degener-
ate repeats. The memory usage is also proportional to the
value of k; an increase of k by 1 increases the size of the
hash table 4-fold. We evaluated LtrDetector on both A.
thaliana and O. sativa for all values of k between 9 and
15 inclusive, and tracked the performance of each trial on
F1. Figure 3 displays these results. On the basis of this
experiment, we selected 13 as a suitable default k value
because it provides excellent performance while keeping
memory usage moderate. Users who are particularly con-
cerned with memory may want to select a smaller k; a
higher k may produce slightly better results at the cost of
memory.

Results and discussion
Results on the X chromosome of the Drosophila
melanogaster
Our initial test is based on the experiment by Lerat
[1]. Table 2 shows the performances of these four tools:
LTR_finder, LTR_seq, LTRharvest, and LtrDetector. All
are evaluated using their default parameters. Although
other tools like LTR_STRUC and MGEScan-LTR exist
to discover LTR-RTs, they all had issues with availabil-
ity and/or installation, so we were unable to get them to
produce results. LtrDetector finds one fewer element that
LTRharvest (92/96 vs. 93/96), while making 20% fewer
total predictions (160 vs. 200). LTR_seq performed the
worst of the tools on every metric, and will be excluded
from further experiments. These results are an early indi-
cation that LtrDetector performs well relative to the cur-
rently available tools.D.melanogaster has a small genomic
size and extremely well-preserved LTR sequences, mak-
ing this a relatively easy test. Further evaluations
are necessary to accurately gauge the performance of
any tool.

http://plants.ensembl.org/Arabidopsis_thaliana/Info/Index
http://plants.ensembl.org/Arabidopsis_thaliana/Info/Index
http://plants.ensembl.org/Hordeum_vulgare/Info/Index
http://plants.ensembl.org/Hordeum_vulgare/Info/Index
http://plants.ensembl.org/Oryza_sativa/Info/Index
http://plants.ensembl.org/Oryza_sativa/Info/Index
http://plants.ensembl.org/Sorghum_bicolor/Info/Index
http://plants.ensembl.org/Sorghum_bicolor/Info/Index
http://ensembl.gramene.org/Zea_mays/Info/Index
http://ensembl.gramene.org/Zea_mays/Info/Index
http://www.plantgdb.org/XGDB/phplib/download.php?GDB=Gm
http://www.plantgdb.org/XGDB/phplib/download.php?GDB=Gm
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Table 1 Length statistics to determine the default parameters of LtrDetector

A. thaliana O. Sativa G.max S. bicolor Z. mays H. vulgare

LTR length Maximum 2033 5832 2886 5645 6119 5609

Minimum 103 109 105 100 97 154

Mean 495 1128 421 731 679 1840

Standard deviation 436 1399 356 942 936 1674

Total length Maximum 14069 20595 18868 22029 20354 16260

Minimum 824 402 2565 764 536 5143

Mean 5635 5982 5516 6697 6331 9449

Standard deviation 2083 2995 1998 2979 2692 3274

These statistics were calculated on LTR-RTs of six plant genomes found in Repbase. In Repbase, an LTR-RT is reported as two sequences: the LTR sequence and the interior
sequence. Default length parameters were chosen to approximate the most extreme values found in the dataset, which appear in boldface. To calculate the total length of
an LTR-RT, we concatenated two LTR sequences to the two sides of its interior sequence

Results on synthetic data sets
We built synthetic data by randomly generating exact
repeats — long terminal repeats — within a certain size
range, mutating a selected percentage of one of them,
and inserting them with random sequences in between.

(a)

(b)
Fig. 3 The effect of different values of k — the size of the short words,
which are used as the keys in the hash table — on the F1 measure. As
the value of k increases from 9 to 11 or 12, the F1 value increases (the
higher, the better). The performance does not change markedly after
that. (a) Shows the experiment on A. thaliana, (b) shows O. sativa

Although this data set does not accurately simulate the
content of a real genome, it can help us demonstrate
the ability of a tool to discover repeats at a given level
of mutation (See Table 3). LTR_Finder is one of the
best-performing predecessor tools to LtrDetector, but
its results are not listed because its strict filtering sys-
tem requires other structural features that our synthetic
genome lacks. For each trial, both tools are run with a
sequence identity threshold of 5% lower than the similar-
ity implied by the mutation rate. For example, the trial
with 15% mutation would have an identity threshold of
80%. All other parameters are left at their defaults. Both
tools capture nearly all of the elements in well conserved
repeats (0–5%), but by 15% mutation, LtrDetector identi-
fies 74 of 92 ground truth elements, whereas LTRharvest
finds only 29. On the 20% mutation rate, LtrDetector out-
performed LTRharvest by a wide margin in terms of the
sensitivity (40/93 vs. 8/93). Neither tool is capable of reli-
ably detecting repeats at 30% or greater mutation rates.
These results are indicative of LtrDetector’s capabilities
on repeats of varying levels of degeneration.

Results on six plant genomes
Our main experiment was an evaluation of three tools
(LtrDetector, LTR_Finder and LTRharvest) on six plant
genomes (including several important crops) of varying
size and repeat content.

Table 2 Results on the X Chromosome of D. melanogaster: We
evaluated four de-novo tools on a ground-truth annotation
provided by Lerat [1]

Total TP Sensitivity Memory Time
Tool Of 96 % MB sec.

LTR_Finder 57 48 50.0 300.3 390

LTR_seq 204 48 50.0 874.4 7262

LTRharvest 200 93 96.9 190.5 23

LtrDetector 160 92 95.3 1209.3 15

Total is the number of proposed LTR-RTs, TP stands for true positives
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Table 3 Results on synthetic genomes: We constructed several
synthetic chromsomes with randomly generated direct repeats
mutated at a given percentage of nucleotides (0–30%) to assess
performance at different levels of LTR conservation

Tool Total TP GT

Mutation 0%

LTRharvest 90 90 90

LtrDetector 90 90 90

Mutation 5%

LTRharvest 92 91 92

LtrDetector 90 90 92

Mutation 10%

LTRharvest 78 74 91

LtrDetector 88 88 91

Mutation 15%

LTRharvest 32 29 92

LtrDetector 74 74 92

Mutation 20%

LTRharvest 10 8 93

LtrDetector 40 40 93

Mutation 30%

LTRharvest 1 0 90

LtrDetector 2 2 90

Total is the number of proposed LTR-RTs, TP is number of true positives, GT is
number of elements in the synthetic ground truth

In this experiment, all tools were run using param-
eters determined on sequences found in Repbase (see
Table 4). Results for LTR_Finder are unavailable for
the Hordeum vulgare (barley) genome because memory
demands repeatedly caused the computer to crash on four
computer cores, and a subsequent trial on one core was
unable to finish over two weeks of run time (2/7 chro-
mosomes finished). The results of this experiment suggest
substantial performance gains for our tool over previous
methods.
Aggregate sensitivity (excluding the H. vulgare genome)

is the classification measure in which we saw the most
improvement, with our software tool identifying 79.1%
of known LTR-RT overall, in comparison to 65.3%
by LTR_Finder (improvement of 21.1%) and 68.2% by
LTRharvest (improvement of 16.0%). When considering
the aggregate sensitivity on the six genomes, LtrDetector
outperformed LTRharvest (improvement of 23.4%). Addi-
tionally, LtrDetector produced fairly consistent results
across the different genomes we tested, ranging from
74.5% on H. vulgare to 81.9% on the smaller O. sativa.
LtrDetector was the most sensitive tool on all six
genomes.

LTR_Finder predicted very few false positives and was
the most precise tool overall at 99.5%. LtrDetector came
in second at 98.2% followed by LTRharvest at 96.0%. All
three tools found many more true positives than false
positives, resulting in high precision overall.
On the F1 composite measure (excluding the H. vulgare

genome), LtrDetector again achieves the highest score,
outperforming LTR_Finder by 11.0% (87.6 vs. 78.9) and
LTRharvest by 9.9% (87.6 vs. 79.7). When the H. vulgare
genome is included, LtrDetector showed improvement
of 14.4% over LTRharvest. These results demonstrate
that LtrDetector strikes a balance between thorough
collection of known LTR-RTs and avoiding spurious
predictions.
Our evaluation criteria are dependent on the consen-

sus sequences available in Repbase, so we will not be able
to definitively classify the majority of putative LTR-RTs
as true positives or false positives. Such elements will be
unconfirmed, but could potentially be novel discoveries.
On the first five genomes (excluding barley), LtrDetector
and LTRharvest propose similar numbers of retrotrans-
posons — 176197 and 165721, respectively. LTR_Finder is
more conservative with only 90458 discovered elements.
The total number of identified elements helps in deriv-

ing an estimate of the percentage of a given genome
that is composed of full-length LTR-RTs. We summed
the length of each discovery in base pairs and divided
this total by the number of base pairs in the entire
genome. This produced estimates of 10.6% LTR-RT con-
tent for A. thaliana, 18.5% forO. Sativa, 25.9% forG. max,
39.2% for S. bicolor, 48.2% for H. Vulgare, and 62.4% for
Z. mays.
The three tools have vastly different run times. LtrDe-

tector can work on multiple FASTA files in parallel,
whereas we had to configure the other two tools to
process several chromosomes simultaneously using the
GNU parallel command utility. The experiments were
run on all four cores of an Intel i5 machine with 16
GB RAM running Ubuntu. We recorded wall-clock time
using the Linux time command. LTRharvest was by far
the fastest tool, capable of processing the five smallest
genomes in just over 33 min. On the other end of the
spectrum, LTR_Finder took about 153 h — more than 6
days. LtrDetector’s runtime efficiency was in the middle
(around 8 h).
LTRharvest uses far less memory overall. LTR_Finder

requires moderate memory on the small genomes. LtrDe-
tector consistently had the highest memory requirements
of the the three tools.
The above experiments suggest that LtrDetector repre-

sents a substantial advance in the available methods for
discovering LTR-RT elements de-novo. In comparison to
related software tools, it delivers more accurate predic-
tions in reasonable time using memory readily available
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Table 4 Results on six plant genomes: We tested three tools on one model organism, A. thaliana, and five important crops of varying
genomic size and repeat content

Tool Total TP GT FP Sensitivity Precision F1 Time (hr:min:sec) Memory (GB)

A. thaliana

LTR_Finder 399 106 248 0 0.427 1.000 0.599 0:30:46 0.86

LTRharvest 2301 180 248 6 0.726 0.968 0.829 0:01:08 0.24

LtrDetector 1714 187 248 9 0.754 0.954 0.842 0:04:02 4.45

O. sativa

LTR_Finder 5324 1163 1760 14 0.661 0.988 0.792 5:19:03 0.95

LTRharvest 9761 1392 1760 182 0.791 0.884 0.835 0:03:09 0.34

LtrDetector 7343 1442 1760 119 0.819 0.924 0.868 0:15:30 5.31

S. bicolor

LTR_Finder 11734 4219 6565 67 0.643 0.984 0.778 10:43:26 1.62

LTRharvest 22700 4476 6565 502 0.682 0.899 0.776 0:04:23 0.60

LtrDetector 24682 5285 6565 214 0.805 0.961 0.876 1:10:47 6.1

G. max

LTR_Finder 12141 1748 3130 7 0.558 0.996 0.716 25:18:21 1.88

LTRharvest 29016 2171 3130 20 0.694 0.991 0.816 0:09:35 0.48

LtrDetector 25537 2542 3130 12 0.812 0.995 0.894 0:43:06 6.11

Z. mays

LTR_Finder 60860 11411 16839 13 0.678 0.999 0.807 111:21:37 12.36

LTRharvest 101943 11244 16839 102 0.668 0.991 0.798 0:15:00 2.36

LtrDetector 116923 13122 16839 71 0.779 0.995 0.874 5:53:08 9.62

H. vulgare

LTR_Finder – – – – – – – – –

LTRharvest 207016 4378 9164 492 0.478 0.899 0.624 1:33:29 * 5.12

LtrDetector 213367 6824 9164 199 0.745 0.972 0.843 17:24:04** 14.15

Total (Excluding H. vulgare)

LTR_Finder 90458 18647 28542 101 0.653 0.995 0.789 153:13:13 –

LTRharvest 165721 19463 28542 812 0.682 0.960 0.797 0:33:15 –

LtrDetector 176197 22578 28542 425 0.791 0.982 0.876 8:06:33 –

Total (Including H. vulgare)

LTRharvest 372737 23841 37706 1304 0.632 0.948 0.759 02:06:44 –

LtrDetector 389564 29402 37706 624 0.780 0.979 0.868 25:30:37 –

Parameters used for each tool can be found in the “Implementation” section. We used an additional utility to process each of LTR_Finder and LTRharvest in parallel because
neither supports multi-threading. We did so to ensure fair comparison in terms of time since our tool, LtrDetector, is concurrent by default. Total is the number of proposed
LTR-RTs, TP is number of true positives, GT is number of elements in the ground truth, FP are false positives. Sensitivity, Precision, and F1 are defined by Eqs. 1, 2, and 3. We
report all measures for each genome and in total. Note: Results for LTR_Finder are unavailable for the Hordeum vulgare (barley) genome because memory demands
repeatedly caused the computer to crash on four computer cores, and a subsequent trial on one core was unable to finish over two weeks of run time (2/7 chromosomes
finished). All trials run on four cores unless otherwise noted. * LTRharvest run on one thread for H. vulgare. ** LtrDetector run on three threads for H. vulgare

onmodern personal computers. Its capabilities are proven
not only on simple model organisms but also on a wide
variety of plant genomes.
Crucially for researchers, the tool is easy to install

and run and will perform well on an ordinary desktop
computer. It provides a robust set of default parameters
for maximum generality, but still allows for user con-
figuration via command-line options. As more genome

sequences become available, the utility of tools like
LtrDector will only increase.

Gene validation
We obtained protein sequences for the gag/pol genes
from the UniProt database and used tBLASTn (protein to
nucleotide) to search for them inside of our predictions.
We recorded the percentage that exhibited more than 25%
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query coverage. The results for the ground truth dataset
and the predictions by LTR_Finder, LTRharvest, and
LtrDetector are found in Table 5. For instance, the 24.9%
of the identified elements with gag/pol for LtrDetector on
G.max compares favorably with the 19.7% for LTR_Finder
and 17.6% for LTRharvest. LTR_Finder’s putative LTR-
RTs contain slightly more genes on A. thaliana (49.1% to
LtrDetector’s 48.0%). LtrDetector’s low rate of 10.4% on
S. bicolor is in line with the 9.0–11.0% from the ground
truth and the other two tools. Even with our strict ground
truth generation (at least 70% of the interior of an LTR-
RT is required to be covered at 70% or more identity), the
proteins did not consistently appear in this ground truth
data set. The sequences gag/pol are the best available on
the UniProt database, but we stress that they are uncon-
firmed and should only be taken as a primitive sign of
the biological relevance of all predictions. These results
show that LtrDetector’s putative LTR-RTs are enriched
with fragments of these two genes, suggesting the qual-
ity of elements identified by LtrDetector relative to those
predicted by the other tools.

Nested element discovery
Although this feature was not enabled for the above anal-
ysis, the current version of the software includes beta
functionality for finding nested LTR-RTs. The first pass
of LtrDetector discovers non-nested elements and nested
elements that are small enough tomeet the length require-
ments of LTR-RTs. Optionally, it conducts an equivalent
search around each discovered element, automatically
adjusting the scoring system parameters to identify ele-
ments that fully enclose the elements discovered in the
first pass.

Post-processing manual annotation aid
LtrDetector is unique in providing a simple visualization
tool to aid with manual verification of putative LTR-RTs.
For each LTR-RT identified by LtrDetecor, the script will
produce a colorful graph showing distances between k-
mers (short words of length k) and their nearest copies
as well as markers for the start and end locations of each
LTR. See Fig. 1 for examples. This signal will ideally show
two flat plateaus representing two LTRs.

Table 5 Gene content validation: We searched for
species-specific fused gag/pol in the interior of the known and
the predicted LTR-RTs

A. thaliana O. sativa G. max S. bicolor

Ground truth 0.65 0.43 0.51 0.10

LtrDetector 0.48 0.31 0.25 0.10

LTR_Finder 0.49 0.28 0.20 0.11

LTRharvest 0.35 0.21 0.18 0.09

Comparisons to related tools
LtrDetector represents an innovative approach to repeat
discovery that differs greatly from its predecessor tools.
LtrDetector uses techniques inspired by signal process-
ing. The use of a signal of k-mer distances as an indication
of repeat locations is the first of its kind. Both of our
closest competitor tools use suffix-arrays, which are com-
plex data structures that have been widely used in text
processing [63]. LTRharvest uses a suffix-array to iden-
tifies initial maximal repeats — seeds — and a greedy
dynamic programming algorithm called X-drop extension
to expand from the seeds [51]. It can filter based on length,
LTR identity, target site duplications, and the palindromic
LTR motif (i.e. TG..CA box). LTR_Finder begins with all
sets of exact repeats found by the suffix-array [50]. Each
member in every set is considered in a pair-wise fash-
ion. The region between the two start coordinates in a
pair is aligned with the region between the two end coor-
dinates. The pairs are merged if the alignment is above
a certain threshold. Similarly to LtrDetector, LTR_Finder
uses the Smith-Waterman local alignment algorithm [60]
for boundary adjustment. LTR_Finder concludes with an
aggressive filtering system based on searching for target
site duplications, the TG..CA box, primary binding sites,
and the proper protein domains in the interior sequence.

Future work
Future work will seek to improve time efficiency, largely
by reducing our dependence on local alignment, which is
very slow on longer sequences. This may include replac-
ing the Smith-Waterman algorithm with more efficient
approximations. We will seek to reduce memory con-
sumption by optimizing the C++ code-base and develop-
ing an iterative approach that will allow LtrDetector to
sequentially load pieces of larger chromosomes from stor-
age. We will add the option to use the structural features
(TSD etc) as filters rather than just annotations. We will
also work to improve the beta version of the nested LTR
discovery that is included with the software.

Conclusions
In this study, we developed and tested a software
tool called LtrDetector, which identifies Long Terminal
Repeat Retrotransposons (LTR-RTs) de novo in assembled
genomes. Our software addresses some of the scaleabil-
ity and usability concerns of older tools and is better
capable of matching the performance of tools that lever-
age consensus sequnces. LtrDetector revolves around a
novel repeat detection methodology that calculates k-mer
distance scores to recover underlying repeats. It supple-
ments this with an alignment-based correction and filters
to enforce the structure of LTR-RTs. This methodology
provides accurate predictions across a diverse range of
input genomes. Using consensus sequence predictions
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from six plant genomes, including maize and barley,
we proved that our tool is significantly more sensitive
than the previous two most successful software tools,
LTR_Finder and LTRharvest.
We believe that LtrDetector can provide valuable

computational support to researchers, particularly those
studying plant genomes. It reports biologically relevant
features of the LTR-RTs and includes a k-mer score visu-
alization script to aid with manual review. It is simple
to use and performs well on an ordinary personal com-
puter. As the number of sequenced genomes increases
by the day, the potential impact of LtrDetector also
increases. Automated, accurate identification of LTR-RTs
will enable researchers to further investigate the regula-
tory capacities of LTR-RTs, and could hold great promise
in understanding plant evolution and crop productivity.

Availability and requirements
The source code (C++ and Python) is available as
Additional file 1.

Project name: LtrDetector.
Project home page: https://github.com/TulsaBioinformatics
Toolsmith/LtrDetector
Operating system(s): UNIX/Linux/Mac.
Programming language: C++ and Python.
Other requirements: BLAST (https://blast.ncbi.nlm.nih.
gov/Blast.cgi) and Bedtools (http://bedtools.readthedocs.
io/en/latest/). Python: NumPy, Matplotlib, Pandas.
License: The software is provided as-is under the GNU
GPLv3.
Any restrictions to use by non-academics: License
needed.

Additional files

Additional file 1: The LtrDetector software and the visualization script.
This compressed file (.tar.gz) includes the C++ source code of LtrDetector
and the Python script for visualizing putative elements as well as
instructions on how to compile and run the programs. (TAR.GZ 145 kb)

Additional file 2: Script for ground truth generation pipeline. This
compressed file (.tar.gz) includes the Python code for the evaluation
pipeline. (TAR.GZ 5 kb)

Additional file 3: The synthetic sequences. This compressed file (.tar.gz)
includes the synthetic sequences with different mutation rates. (TAR.GZ
1872 kb)

Additional file 4: Long Terminal Repeat (LTR) retrotransposons found by
LtrDetector in Arabidopsis thaliana. This compressed file (.tar.gz) includes
the LTR retrotransposons found by LtrDetector in BED format. (TAR.GZ 62
kb)

Additional file 5: LTR retrotransposons found by LtrDetector in Glycine
max. This compressed file (.tar.gz) includes the LTR retrotransposons found
by LtrDetector in BED format. (TAR.GZ 929 kb)

Additional file 6: LTR retrotransposons found by LtrDetector in Hordeum
vulgare. This compressed file (.tar.gz) includes the LTR retrotransposons
found by LtrDetector in BED format. (TAR.GZ 7488 kb)

Additional file 7: LTR retrotransposons found by LtrDetector in Oryza
sativa Japonica. This compressed file (.tar.gz) includes the LTR
retrotransposons found by LtrDetector in BED format. (TAR.GZ 268 kb)

Additional file 8: LTR retrotransposons found by LtrDetector in Sorghum
bicolor. This compressed file (.tar.gz) includes the LTR retrotransposons
found by LtrDetector in BED format. (TAR.GZ 891 kb)

Additional file 9: LTR retrotransposons found by LtrDetector in Zeamays.
This compressed file (.tar.gz) includes the LTR retrotransposons found by
LtrDetector in BED format. (TAR.GZ 4278 kb)

Abbreviations
bp: Base pairs; LTR-RT: Long terminal repeat retrotransposon; LTR: Long
terminal repeat; RT: Retrotransposon; TE: Transposable element
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