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Covariate misclassification is well known to yield biased estimates in single level regression models. The impact on hierarchical
count models has been less studied. A fully Bayesian approach to modeling both the misclassified covariate and the hierarchical
response is proposed. Models with a single diagnostic test and with multiple diagnostic tests are considered. Simulation studies show
the ability of the proposed model to appropriately account for the misclassification by reducing bias and improving performance
of interval estimators. A real data example further demonstrated the consequences of ignoring the misclassification. Ignoring
misclassification yielded a model that indicated there was a significant, positive impact on the number of children of females
who observed spousal abuse between their parents. When the misclassification was accounted for, the relationship switched to
negative, but not significant. Ignoring misclassification in standard linear and generalized linear models is well known to lead to
biased results. We provide an approach to extend misclassification modeling to the important area of hierarchical generalized linear

models.

1. Introduction

Misclassification and measurement error is well known to
cause bias in estimation. The exposure variable in epidemi-
ologic studies is often subject to misclassification [1-3].
While the impact of misclassification is well documented for
generalized linear models with a single level, considerable less
work has been done on multilevel models. Covariate mis-
classification has been considered for continuous outcome
models [4, 5]. Here, our focus is on multilevel models with
a count response where the primary exposure of interest is
potentially misclassified.

Partner violence can have impacts on a wide range of
outcomes on the abused partner, for instance, depression
and even suicide attempts [6, 7]. The impact on children in
the household of domestic violence has also been studied
[8-10]. Domestic violence is well known to be misclassified,
especially in survey type data [11].

Our analysis uses India National Health Survey (NFHS-3)
2005-2006. It is a nationally representative household survey
that provides a set of key variables for the study, including

the number of surviving children a woman has and the
occurrence of partner violence in the previous generation
which is subject to misclassification. Thus our interest is in
determining if previous generation spousal abuse impacts
number of children correcting for potential misclassification
in reported spousal abuse.

Our paper is organized as follows. We first describe
the National Family and Health Survey. Next, we discuss
the proposed Bayesian hierarchical model that accounts
for covariate misclassification. We discuss the results of a
simulation experiment in which we compare the proposed
model to the naive model that ignores misclassification. We
apply the proposed model to the data from National Family
and Health Survey and conclude with a discussion.

2. Data Description

According to the National Family and Health Survey in 2005,
total lifetime prevalence of domestic violence was 33.5% and
8.5% for sexual violence among women aged 15-49. More
notably, lifetime prevalence of domestic abuse ranged from
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18% to 45% in states across India. In [12], it is explored
whether female employment enhances women’s bargaining
power within the home and reduce the risk of intimate part-
ner violence. Further, [13] examined whether female employ-
ment challenges the culture of male dominance and provokes
more violence. Lastly, [14] used many of the factors from the
previous studies but also addressed misclassification bias in
violence reporting due to the significant underreporting of
intimate partner violence in surveys [15]. We explore whether
being raised in a household with spousal abuse significantly
impacts the number of children the child exposed has in
their lifetime. Data used in the analysis came from India
National Health Survey (NFHS-3) 2005-2006. The sample is
restricted to urban (mega city, large city, small city, and large
town) women from 27 different states and key variables are
physical spousal violence experience of their parents and the
number of children they have. Additional covariates include a
wide range of demographic and socioeconomic variables. The
sample includes 19,026 urban women that have no missing
variables. Lastly, we assume the spousal abuse rate varies
across the 27 different states as well as the number of children.

3. Model

We follow the general approach of [16] for measurement
error models. The approach is to specify three models, the
outcome model, exposure model, and measurement model.
The outcome model we consider has two levels with i =
1,2,...,n denoting subjects and j = 1,2,...,N denoting
clusters. The count data at level 1 are assumed to be Poisson:

¥;j ~ Poisson (ri]-)tij) , @
where ;; is an offset, often time or space, and A;; is the rate of
occurrence which is related to covariates through a log-linear
model:

P
log (Aij) = Poj + Prxij + Zﬁkzz’jk- (2)
k=2

The exposure, x;;, is assumed to be potentially misclassified.
Other covariates (z;;) are assumed to be measured without
error. f3; represents a random intercept for each cluster:

ﬁo;’ =By + u; (3)

with u; ~ N (0,0%). B, is the exposure effect of primary
interest while B, k > 1, represents the impact of other
covariates. The exposure model for binary covariate x;; is
assumed to be a logistic model:

x;; ~ Bernoulli (T[ij) (4)
with
q
logit (”ij) = Yoj + Z}’kzijk (5)
k=1

and random intercept

Yoj =Yoo tj (6)
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FIGURE 1: Directed acyclic graph illustrating how the outcome
model, exposure model, and measurement model are connected. x,
and x, are the fallible assessments of the true exposure, X;;. The
covariates measured without error, Z,-j, describe both Xij and the
outcome Y;;. Lastly, the random effects for both the exposure model
and the outcome model are represented by v; and u;, respectively.

with v; ~ N(0, 7*) and y, j- Finally, the measurement model
depends on several assumptions and the amount of data
available. Here, we assume nondifferential misclassification
and either one or two tests available used as surrogates for the
true exposure, x;;. In the one test case, we assume the fallible
method has sensitivity S; and specificity C; and conditional
on the true value we have fallible assessment x;;; which takes
values of 0 and 1 with probability

f (xlij | xij) _ [S’fuj (1 _ Sl)lfxli]‘]xij

7)
1-xy;; x5
<[ -y
If there are two conditionally independent assessments, then
the measurement model is in terms of two fallible outcomes
xy;; and x,;; with sensitivities §; and S, and specificities C,
and C, and probability function:

f (xlij | x,‘j) _ [831‘11']' (1 _ Sl)l—Xuj]xiJ'

™
) (8)
X [$5 (1 - 8,) 7]

x [y (1-cy)™ ] T

Figure 1 provides a graph showing the relationship between
all the variables in the model.

Because we are using the Bayesian framework we require
prior distributions for the model parameters. In the absence
of prior information or expert opinion, diffuse normal
prior distributions are often used for logistic and Poisson
regression coefficients; see, for example, [17, 18]. Thus, we
assume that yp, y;, . .., ¥, have independent normal prior dis-
tributions with mean 0 and variance 10. Similarly, the Poisson
regression coefficients, [, B;,...,B,, are also assumed to
be independent and normally distributed but we assume a
variance of 100 for these. We assume uniform priors for the
random effects standard deviations o and » [19]. Finally, beta
priors are used for the sensitivities and specificities. For the
two assessment case, noninformative beta (1,1) priors can
be used. If only one assessment is used, the model is not
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identifiable and thus requires informative priors for both S,
and C;.

The joint posterior is proportional to the product of the
likelihoods from the outcome, exposure, and measurement
models along with the prior distributions. The resulting
marginal posteriors for all parameters of interest are not
available in closed form. Packages such as OpenBUGS and
JAGS can be used to fit the model. Our OpenBUGS code is
available from the first author upon request.

4. A Simulation Study

To determine the size of the impact of the covariate misclas-
sification on the hierarchical count model we performed a
simulation experiment. We generate the simulated data in
order to mimic the real data. Specifically, we assume a single
exposure variable that is subject to misclassification along
with four other covariates that are assumed to be measured
correctly. The true exposure model is a binomial model with
alogit link:

logit (m;;) = (-1.5 + ;) - 021z, - 0.16z;;,

)
+0.19z;;3 - 0.29z;4
while the Poisson log-linear model for the outcome is
log (1) = (0.85+u;) + 0.4x;; + 0.25z;, - 0.2z;;,
(10)
— 0.182;); - 0.05z;3,,

where Vv~ N(0,0.1%) and uj ~ N(0,0.1%). These random
effect standard deviations of 0.1 are relatively small. We also
considered the cases of 0.2 and 0.3 and found the results to be
similar. For the measurement model we consider two cases.
The first is with a single diagnostic test with sensitivity S, and
specificity C,. As a second case, we assume two conditionally
independent tests, the first with sensitivity S, and specificity
C, and the second with sensitivity S, and specificity C,. For
the first test we fix S; = 0.55 and C, = 0.95. For the second test
we have S, = 0.7 and C, = 0.8.

For the simulation we set N, the number of clusters,
to be 25 and n; = 200 for all clusters. We simulated 50
data sets and fit three models. The first is the naive model
where the misclassified covariate is assumed to be measured
without error. The second model is the case of a single
fallible diagnostic test. Finally, we consider the case of two
conditionally independent diagnostic tests. For the case of
a single diagnostic test we require informative priors for
the sensitivity and specificity. We use a beta (10, 8) for S,
and a beta (165.7,9.7) for C,. Note the prior mean for S,
is 0.55 and the prior mean for C, is 0.94. So the priors are
centered near the truth, but the 95% prior interval for S, is
(0.33,0.77), which allows for a wide range of possible values.
These priors are consistent with [15] which accounts for errors
in the domestic abuse question in a survey. Note there is
considerably more certainty about the specificity than the
sensitivity. This makes intuitive sense in that people who are
not victims are unlikely to say they are, but victims are much

TABLE 1: Averages across 50 simulated data sets for f3,. True value is
0.4.

Mean SD Coverage
Naive 0.001 0.03 0
One test 0.38 0.11 1
Two tests 0.34 0.11 0.91

more likely to underreport. For the rest of the parameters we
use noninformative priors, specifically, normal (0, 10) for the
logistic regression coefficients, normal (0, 100) for Poisson
coefficients, and uniform (0, 3) priors for both random effect
standard deviations. For the two diagnostic test cases, we do
not require informative priors, and use beta (1, 1) priors for
S1,Cy, Sy, and C,.

The results across the 50 simulations for the main param-
eter of interest, f3,, are displayed Table 1. Note the true
value is 8; = 0.4 The naive model performs particularly
poorly illustrating the problem of ignoring the misclassifica-
tion. The average posterior mean across the 50 data sets is
approximately 0 and none of the 95% intervals contained the
true value. The two corrected models performed significantly
better with both having empirical coverage over 90% and
significantly less bias. The main cost of the misclassification
model over the naive is larger variability. For instance, the
posterior standard deviation for f3; averages only 0.025 for
the naive model but is about 0.11 for both misclassification
models. Accounting for misclassification and measurement
error commonly inflates variability in estimates, but this is
preferred to the large bias and low coverage of the naive
model. Though f; has the largest degree of bias for the
naive model, most of the other parameters are also somewhat
biased and coverages of the intervals below nominal. The
performance for all the parameters are provided in Appendix.

5. Application

We apply the proposed Poisson regression model with a
misclassified covariate to the India National Health Survey
(NFHS-3) 2005-2006 data accounting for the 27 states as a
cluster random effect. We consider five covariates: a binary
indicator for whether a parent reported being abused, the
age of the female, the education level of the female, a binary
indicator as to whether the family considers themselves reli-
gious, and a continuous variable indicating their wealth. The
number of children each woman surveyed has is the outcome
variable and we assume the counts are distributed Poisson. All
of the variables are considered to be reported correctly other
than the binary variable indicating whether a female was
abused or not. Because the one test Poisson model is noniden-
tifiable we must supply the prior on the sensitivity and speci-
ficity relatively informative beta distributions. Information
from [14, 15, 19] on reporting of partner violence in develop-
ing countries indicates the distribution of the sensitivity could
easily vary between 20 and 60%. Using the same sources, the
specificity is found most likely to be above 90%. Using this
information, we specify the priors as S ~ Beta (5, 7.6) and
C ~ Beta (165.7,9.7). The priors indicate a substantial degree



TABLE 2: Posterior summaries for naive and misclassification mod-
els.

Mean  SD 95% interval
B, 102 003  (0.96,1.08)
B, 003 001  (0.01,0.06)
B, 025 001  (0.24,0.26)
Naive results B, -0.19 0.01 (-0.20,-0.17)
By -019 001 (-0.21,-0.17)
Bs —0.07 001 (-0.08,-0.05)
o 0.13 0.02 (0.09,0.18)
B, 103 003  (0.96,1.09)
B, —0.02 002 (-0.05,0.02)
B, 0.25 0.01 (0.24,0.26)
B, —0.19 001 (~0.20,-0.18)
B, -019 001 (-0.21,-0.17)
Bs —0.07 0.01 (-0.08,-0.06)
o 013 002  (0.090.18)
Assuming misclassification Yo -178 026 (-2.27,-1.25)
. -0.19 004 (-0.26,-0.12)
y, 05 006 (-0.62,-0.39)
ys 014 008  (-0.01,0.29)
ys —0.44 006 (—0.56,—0.34)
v 1.12 0.21 (0.78,1.62)
C 0.98 0.01 (0.97,0.99)
S 0.52 0.05 (0.44,0.61)

of underreporting with a prior mean of only 40% for the
sensitivity. Conversely, the specificity is expected to be quite
high, with a prior mean over 94%. We also consider the naive
model and report the posterior estimates of the response
model; however, it is unnecessary to consider the exposure
model.

We fit the data with both the proposed model and a naive
model that does not account for the misclassification. The
models were fit in OpenBUGS and inferences were based
on 20,000 iterations after 10,000 burn-ins. The results for
both models are provided in Table 2. The main parameter
of interest is the spousal abuse parameter, f3;. For the naive
model, the posterior of f3; is positive and the 95% inter-
val is completely above 0 indicating statistical significance.
Thus the inference would be that parental partner violence
would lead to an increase in number of children. For the
misclassification model, the coefficient is not significant as
the interval does contain 0. This is not unusual because
misclassification is well known to bias estimates towards the
null. What is particularly interesting here is that though the
interval contains 0, the posterior mean is negative, thus by
accounting for the misclassification the majority of the pos-
terior shifted from positive to negative. This further illustrates
the importance of accounting for covariate misclassification
in hierarchical count models. The other covariates in the
response model are all significant and are very similar in
both models. Age has a positive relationship with number
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of children while education, religiosity, and wealth all have
negative relationships. The naive model has no estimates
for the y parameters or the sensitivity and specificity since
these are all concerned with the misclassification model.
For the misclassification model, we see that age, education,
and wealth all reduce the probability of abuse among the
parents and are statistically significant. Religiosity appears
to have a positive relationship with abuse, but the 95%
interval contains 0, so the relationship is not strong. The
standard deviation of the random slopes for the outcome
model is relatively modest with a posterior mean of 0.13.
This indicates only a small degree of heterogeneity of the
baseline average number of children across the 27 states.
For the misclassification model, the random effect standard
deviation has a posterior mean of 1.12 indicating considerably
more heterogeneity of the baseline probability of abuse across
the 27 states. Finally, the sensitivity and specificity both have
posteriors that are centered around larger values than the
priors. This indicates there is less misclassification in the
data than was expected, but still considerable underreporting
since the sensitivity is still centered around a value less than
0.5.

6. Conclusion

In this paper, we have addressed the problem of covariate
misclassification in a hierarchical count model. Through
simulation, we illustrated that ignoring the misclassification
can lead to biased estimates and undercoverage of interval
estimators. Our real data example demonstrated an extreme
possibility in that the naive model yielded results that were
statistically significant (95% interval completely above 0)
while the bias corrected model had a point estimate that was
negative, though not statistically significant. There are several
extensions to the model we have proposed. In some cases,
the count response may also be subject to misclassification.
Accounting for under- or overreporting of the response in
a hierarchical model such as this would be an interesting
follow-up work. An important limitation to note is that while
the information for our priors for the example is from devel-
oping countries including studies from India specifically, we
have not matched subjects with our current data; thus there is
no guarantee that the populations match perfectly. This is one
reason why the two diagnostic case approaches are preferred
because the information on the sensitivity and specificity
come from the current data. However, the one diagnostic test
case essentially works as a Monte Carlo sensitivity analysis
where the priors dictate a range of likely values for the
sensitivity and specificity. In that sense, our results are robust
with respect to a large number of possible true values of the
sensitivity and specificity.

Appendix

In Tables 3-5 we provide the summaries for all parameters
from the simulation study of Section 2.
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TABLE 3: Simulation results for naive model.

Truth Mean SD Coverage
B 0.85 0.94 0.02 0.04
By 0.4 0.00 0.03 0
B, 0.25 0.24 0.01 0.66
Bs -0.2 -0.21 0.01 0.78
B -0.18 -0.17 0.01 0.73
Bs -0.05 -0.07 0.01 0.39
o 0.1 0.10 0.02 0.96
TABLE 4: Simulation results for one diagnostic test case.
Truth Mean SD Coverage
B 0.85 0.86 0.04 0.87
B 0.4 0.37 0.11 1
B, 0.25 0.25 0.01 0.98
B, -0.2 -0.2 0.01 0.93
B -0.18 -0.18 0.01 0.96
Bs -0.05 -0.04 0.01 0.97
Yo -1.5 -1.76 0.40 0.94
" -0.21 -0.3 0.11 1
% -0.16 -0.21 0.1 0.96
7 0.19 0.28 0.11 0.9
Vs -0.29 -0.39 0.12 0.96
S 0.55 0.52 0.09 0.94
C 0.95 0.93 0.02 0.88
o 0.1 0.19 0.13 0.98
v 0.1 0.1 0.02 0.94
TABLE 5: Simulation results for two diagnostic test cases.
Truth Mean SD Coverage
Bo 0.85 0.86 0.04 0.94
B 0.40 0.34 0.11 0.91
B, 0.25 0.24 0.01 0.94
B -0.20 -0.20 0.01 0.95
B, -0.18 -0.17 0.01 0.98
Bs -0.05 -0.05 0.01 0.92
Yo ~1.50 -1.61 0.25 0.92
" -0.21 -0.21 0.06 0.96
Y, -0.16 -0.16 0.06 0.98
Vs 0.19 0.18 0.06 0.92
Vs -0.29 -0.29 0.06 0.96
S, 0.70 0.57 0.07 0.95
S, 0.55 0.72 0.07 0.94
C, 0.95 0.94 0.01 0.90
C, 0.90 0.89 0.02 0.92
T, 0.10 0.12 0.08 1.00
T, 0.10 0.10 0.02 0.98
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