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ABSTRACT

Global pandemics call for large and diverse healthcare data to study various risk factors, treatment options, and

disease progression patterns. Despite the enormous efforts of many large data consortium initiatives, scientific

community still lacks a secure and privacy-preserving infrastructure to support auditable data sharing and facili-

tate automated and legally compliant federated analysis on an international scale. Existing health informatics
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systems do not incorporate the latest progress in modern security and federated machine learning algorithms,

which are poised to offer solutions. An international group of passionate researchers came together with a joint

mission to solve the problem with our finest models and tools. The SCOR Consortium has developed a ready-

to-deploy secure infrastructure using world-class privacy and security technologies to reconcile the privacy/util-

ity conflicts. We hope our effort will make a change and accelerate research in future pandemics with broad and

diverse samples on an international scale.
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MISSION

A major lesson that the coronavirus disease 2019 (COVID-19) pan-

demic has already taught the scientific community is that timely in-

ternational data sharing and collaborative data analysis is absolutely

vital to navigate through policy decisions that have life-or-death con-

sequences. Some of the most pressing issues about COVID-19 infec-

tions require urgent sharing of high-quality data concerning, for

example, risk factors that influence infection, prognosis, and predic-

tions of drug response from phenotypic, genotypic, and epigenetic

data.1 To generate or test scientific hypotheses, we need large-scale

and well-characterized patient-level datasets to provide sufficient sta-

tistical power. Building and sharing massive datasets containing per-

sonal health information have numerous legal and ethical

implications that hinder new discoveries and prevent the scientific

community from assessing their validity.2 In this respect, the case of

2 COVID-19 related articles published by The Lancet3 and The New

England Journal of Medicine4 serves as an example. When concerns

were raised regarding the veracity of the data used to support the

conclusions in these articles, the 2 prestigious journals requested ac-

cess to the raw data to conduct independent reviews. However, the

authors could not comply with such a request, as granting access to

the data would have violated confidentiality requirements, and the 2

journals had no choice but to retract the articles.3,5 These instances

reinforce the need for a robust privacy- and confidentiality-

compliant data-processing and sharing system to address these chal-

lenges in the era of COVID-19 and future pandemics.

Numerous data-driven projects have been launched across the

globe to combat COVID-19, as summarized below. Yet, there is a

lack of systematic support to address 1 of the main impediments

that prevent and delay broad and sustainable medical data sharing:

privacy protection. To address privacy protection challenges,

researchers make trade-offs on data utility. On the 1 hand, several

data-sharing projects on COVID-19 are based on a decentralized ap-

proach, employing the computation of local statistics (sometimes

obfuscated to hide small numbers) that are subsequently shared and

aggregated through meta-analysis. However, case numbers may

sometimes be too low in certain subpopulations and could be con-

sidered identifiable information, which can make it very challenging

for hospitals to even share aggregated data. Additionally, the ap-

proach only offers limited results and often depends on voluntary lo-

cal analyses with human-in-the-loop approval and execution. On

the other hand, other projects aim to centralize patient-level data

from COVID-19 at a single site and then perform the analysis. Yet,

that approach does not easily scale to international collaborations

due to the heterogeneity and potential incompatibility of the various

legal frameworks. We believe that there are more effective and

privacy-congruent solutions to deal with this long-standing chal-

lenge and that privacy-by-design technology should be developed

and is recently available for deployment to address the utmost

urgency of data sharing by reducing administrative and regulatory

barriers driven by privacy and security concerns. With this goal in

mind, we have established an international consortium for Secure

Collective Research (SCOR)6 to deploy the next-generation distrib-

uted infrastructure and tools for secure data sharing, analysis, and

mining while respecting patient privacy and maximizing data utility

during global disease outbreaks like the current COVID-19 pan-

demic. The list of founding partners for this global initiative is pro-

vided in Supplementary Material S1.

SHORT- AND LONG-TERM GOALS

SCOR aims to achieve the following goals:

• Short-term: establish a proof-of-concept decentralized and

privacy-preserving analytics platform, taking advantage of

world-class privacy technology for COVID-19 data supporting

cohort exploration for assessing the feasibility of research study

protocols and facilitating speedy patient cohort recruitment.
• Long-term: build a distributed privacy-preserving and sustain-

able infrastructure for federated statistical and machine learning

analysis to support multicenter clinical studies of the COVID-19

outbreak and future pandemics.

POSITIONING OF SCOR REGARDING OTHER
SIMILAR INITIATIVES

SCOR is a new initiative that complements existing multicentric

data-sharing efforts to face the COVID-19 pandemic. COVID-19 re-

search moves rapidly with new initiatives announced daily. In

Table 1 we summarize the major initiatives we are aware of (as of

June 2020) and compare them to SCOR along the following axes:

• Type of analyses (cohort exploration vs meta-analysis vs distrib-

uted analytics vs centralized analytics)
• Data storage (centralized vs decentralized)
• Scope (national vs international)
• Type of data transferred (aggregate-level vs patient-level)
• Data protection mechanism (local obfuscation, global obfusca-

tion, encryption)
• Level of automation (manual analysis, semi-automated analysis,

fully automated system)

The approach proposed by SCOR is the only 1 that (i) provides

operational continuity for the long run, as it relies on a fully auto-

mated software platform for distributed data sharing; (ii) has an inter-

national scope; and (iii) provides the best data privacy/utility trade-

offs, as it enables both cohort exploration and distributed analytics

under strong privacy guarantees. These guarantees are ensured by

deploying encryption techniques for distributed secure information

aggregation across sites, lowering the need for local obfuscation.

1722 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 11



CLINICAL RESEARCH GOALS

The rapid spread of the COVID-19 epidemic globally has almost

overwhelmed health systems worldwide and it has already claimed

lives in the hundreds of thousands. Starting from Asia, followed by

Europe and next by the rest of the world, the first wave is now de-

creasing. No treatment has yet been demonstrated to be unequivo-

cally effective and the subpopulation stratification of disease risks is

still lacking, with multiple facets of presentation and prognosis. In

particular, the recognized initial respiratory signs, symptoms, and

laboratory findings have extended to many other settings, including

dermatology, neurology, and hematology. Hospitals around the

world have set up COVID-19 registries to accumulate information

on symptoms, laboratory, respiratory function, imaging, and treat-

ment to understand the disease. Joining forces will increase the num-

ber of patients that can be analyzed to address the next wave of the

pandemic. Data harmonization will be challenging but, ultimately,

essential. Similarly, the proposed secure and distributed data analy-

sis approach will overcome obstacles to information sharing which

some institutions are often reluctant to do. The SCOR network will

serve as a hub for bringing together clinical research groups based

on shared interests.

To demonstrate the utility of the SCOR approach, we will de-

velop and apply use case scenarios (Box 1) that require data aggrega-

tion across multiple sites as each site has only a narrow view of the

required information. This partial view stems from the uniqueness

of the population at each site and from the difference in research

protocols applied at each site.

SCOR REQUIREMENTS AND EXISTING DATA-
SHARING PLATFORMS

The aim of SCOR is to provide an ecosystem for privacy-preserving

distributed data analysis, which addresses all the 5 dimensions of se-

cure data management, as expressed in the Five Safes framework14

(safe projects, safe people, safe setting, safe data, safe outputs) while

overcoming the loss of data utility typical of existing decentralized

approaches based on study-level meta-analyses that rely on site-level

(ie, local) obfuscation to protect patients’ privacy. We distinguish

between (i) safes that must be addressed at the consortium level (ie,

safes that are enacted by decisions taken by the SCOR board [repre-

sentative members from each participating institution] to pursue the

high-level consortium’s privacy and security goals); and (ii) safes

that must be addressed at the platform level (ie, safes that are

enacted by technical safeguards featured by the technological infra-

structure of the SCOR analysis platform). More details about the ra-

tional and platform requirements are discussed in Supplementary

Material S0.

Table 2 briefly summarizes the most widespread distributed

medical data analytics platforms in terms of provided functionalities

and protection mechanisms to ensure safe settings and safe output

requirements. We focus our comparison on the public platforms as

they allow for an in-depth analysis. Yet, there exist also proprietary/

closed platforms such as TriNetX, InSite, and Clinerion that, to the

best of our knowledge, only partially address the data protection

requirements for the SCOR initiative.

PROPOSED PLATFORM: MEDCO

Given the SCOR platform requirements, the MedCo analysis plat-

form15 is the 1 that best addresses them (Figure 1).

PRIVACY-PRESERVING TECHNOLOGICAL
ENABLERS

Homomorphic encryption
Homomorphic encryption (HE)16 supports computation on

encrypted data (ciphertexts). Thanks to this property, homomorphi-

cally encrypted data can be safely handed out to third parties who

can perform meaningful operations on them without learning any-

thing about their content. While fully homomorphic encryption

schemes, (ie, schemes that enable arbitrary computations on cipher-

texts) are still considered nonviable due to the high computational

and storage overheads they introduce, practical schemes that enable

only a limited number of computations on ciphertexts (eg, additions

and multiplications) have reached a level of maturity that enables

their use in real scenarios.

Secure multiparty computation
Secure multiparty computation (SMC)17 protocols allow multiple

parties to jointly compute functions over their private inputs (eg,

confidential patient-level data) without disclosing to the other par-

ties more information about their inputs than what can be inferred

Table 1. Comparison of SCOR with similar data-sharing initiatives

Initiative Type of analysis Data storage Scope

Type of data

transferred

Data protection

mechanism

Level of automa-

tion

4CE meta-analysis decentralized international aggregate-level local obfuscation manual analysis

ACT Network cohort exploration decentralized national (USA) aggregate-level local obfuscation fully automated

system (SHRI-

NEa)

LEOSS centralized analyt-

ics

centralized international (only

EU)

patient-level anonymization manual analysis

OHDSI meta-analysis decentralized international aggregate-level local obfuscation manual analysis

PCORNet CDRNs meta-analysis decentralized national (USA) aggregate-level local obfuscation manual analysis

N3C centralized analyt-

ics

centralized national (USA) patient-level anonymization manual analysis

SCOR cohort exploration

and decentral-

ized analytics

decentralized international aggregate-level encryption &

global obfusca-

tion

fully automated

system (Med-

COa)

aComparison of fully automated systems for COVID-19 data sharing is reported in Table 2 below.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 11 1723



from the output of the computation. This class of protocols is partic-

ularly attractive in privacy-preserving distributed analytic platforms

due to the great variety of secure computations they enable. How-

ever, this flexibility often comes with a number of drawbacks that

hinder their adoption, including high network overhead and the re-

quirement of parties to be online during the computation. HE and

SMC can be fruitfully employed in combination to mitigate their re-

spective overheads and limitations and to provide effective solutions

for privacy-preserving distributed analysis on sensitive data.

Data obfuscation
Data obfuscation techniques reduce the input data detail to an ac-

ceptable minimum and limit the information leakage stemming from

the disclosure of the results. Indeed, even if data are kept private, the

results of analyses performed may still reveal information about sub-

jects that can be used to infer sensitive properties. Data obfuscation

techniques alter data in a deterministic manner (eg, k-anonymity18

often applied to input data) or statistical manner (eg, differential pri-

vacy19 often implemented into processing methods to ensure safe

Box 1. Demonstrative research study protocols that are planned to be conducted on the SCOR secure infrastructure.

Use case 1: Risk stratification for COVID-19 patients

We will collect patient demographics (sex, age, race/ethnicity), smoking status, vitals and/or their fluctuation over time (BMI,

oxygen saturation, and blood pressure), comorbidities (diabetes, lung disease, cancer, immunodeficiency, heart disease, hy-

pertension, asthma, kidney disease, and gastro-intenstinal/liver disease), and the outcome (length of stay in hospital or in

ICU, discharge, or death), and apply multivariate (nonlinear) machine learning classifiers to create a personal risk score that

accounts for regional differences.

Use case 2: Efficient treatments for COVID-19 patients

We will collect candidate medications assembled and manually curated by the Bar-Ilan University in Israel from trials and

studies8 and study their effectiveness in treating COVID-19 patients. Using doubly robust methods that integrate standardiza-

tion and inverse probability weighting techniques9 (considering time-dependent treatments, left-truncation, interventions like

ventilators and extracorporeal membrane oxygenation, demographics, smoking status, and comorbidities), we will study av-

eraged treatment effects on the treated and conduct time-to-event analysis on mortality, respiratory failure, ICU admission,

and length of hospitalization.

Use case 3: Hospital readmission risk factors and prediction of post-hospitalization COVID-19 patients

Despite the fact that COVID-19 can cause severe respiratory failure and death, the majority of patients hospitalized for

COVID-19 are discharged alive, amounting to 50% in China and 80% in the US.10,11 Whether COVID-19-discharged patients

are at increased risk of hospital readmission remains unknown, as there is no available data regarding the readmission rate

of COVID-19 inpatients at 30 days yet. Similarly, the impact of the COVID-19 pandemic on hospital readmission of non-

COVID-19 patients is unknown. We aim at assessing readmission risk during the coronavirus outbreak in medically hospital-

ized patients and whether COVID-19 inpatients are at increased risk of readmission compared to non-COVID-19 inpatients.

This information can be used as a proxy for the quality of healthcare systems and will provide crucial information on the ca-

pacity of different health systems to respond to a global sanitary problem, whether linked to a subsequent wave of COVID-

19 infection or any future pandemic.

Use case 4: Changes in the characteristics of COVID-19 over time

It is a common observation in the western hospitals that COVID-19 patients are not the same in May as they were at the be-

ginning of the pandemic in March. The severity of the hospitalized patients is decreasing while some complications, such as

venous thromboembolism,12–14 might be increasing due to increased medical awareness. Making use of claims data first

and registry data next, we may be able to use a multivariate and machine learning approach to model this particular phe-

nomenon with many implications for health organizations and decision-makers.

Use case 5: Host genetics in previously healthy COVID-19 life-threatening patients

The clinical presentation of COVID-19 ranges from mild respiratory symptoms to severe progressive pneumonia, multiorgan

failure, and death. A variety of risk factors have been associated with severe COVID-19, but extremely severe clinical presen-

tations of COVID-19 are also observed in young patients with no comorbidity. The identification and characterization of rare

genetic variants responsible for the most severe forms of SARS-CoV-2 infection in otherwise healthy individuals will help un-

cover the genes and pathways that play a crucial role in viral pathogenesis and in antiviral response, which will inform drug

and vaccine development.

Table 2. Comparison between available medical distributed analysis platforms

Functionalities Safe settings Safe output

Platform Cohort exploration Distributed analytics Secure aggregation Local obfuscation Global obfuscation

SHRINE � �
Medical Informatics Platform � �
DataShield � � �
MedCo � � � � �
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outputs). For the results to remain useful, the amount of noise intro-

duced by data obfuscation has to be carefully calibrated to reach the

desired trade-off between utility and privacy. Studies show that k-

anonymity and differential privacy sometimes give disappointing

results when the target sample size is small.20,21 It is not a problem

of both mechanisms but the unavoidable challenges in maneuvering

statistics with limited flexibility. This issue is alleviated when safe

settings are used to create large (protected) virtual datasets com-

pared to applying data obfuscation to local datasets.

OPERATING PRINCIPLES

By using MedCo, health professionals and scientists can query data

scattered among diverse institutions as if it were stored in a single lo-

cation (virtual collective dataset) but without the need of seeing nor

moving the data (see Figure 2). As such, it facilitates compliance

with stringent data protection regulations such as the EU General

Data Protection Regulation22 and the US Health Insurance Portabil-

ity and Accountability Act.23 We include details about access con-

trol and accountability in Supplementary Material S7 and SCOR

deployment plan in Supplementary Material S8.

ETHICAL ISSUES

Ethical issues in data sharing and analysis are on the rise. Our tech-

nology provides privacy and security safeguards to automate global

information exchange, but it might make the direct assessment of

healthcare disparity harder due to the obfuscation. Fairness, equity,

and transparency of medical informatics models represent the funda-

mental considerations for public trust and clinical usability. Many

seemingly objective models are indeed influenced by their design,

which can significantly over- or underestimate the risks on different

subpopulations and introduce an unjustified basis for discriminating

against a subpopulation. Such problems might be aggravated in a

federated network with strong security protection and, if unnoticed,

could result in significant ethical challenges. As a community, we

should take a high standard in addressing these problems by design

to consider fairness, equality, and justice to conduct responsible

medical research.

CONCLUSION

There is an urgent need for data sharing and analysis in COVID-19,

but we should not give up privacy in responsible research under pan-

demics. It is crucial to work together and build a robust and scalable

infrastructure with state-of-the-art security and privacy technology

to enable automated federated data analysis to accelerate scientific

discoveries to combat the SARS-CoV-2 outbreak and future pan-

demics. We are fully committed to establishing this international

consortium of collective data and a knowledge discovery network to

support clinical research to answer important questions.

Figure 1. MedCo core technologies. MedCo is a decentralized software sys-

tem that uses cutting-edge privacy-preserving technologies to enable the se-

cure sharing of medical data among health institutions. It builds on 3 core

privacy-preserving technologies: homomorphic encryption, secure multiparty

computation, and data obfuscation. These technologies are used in synergy

to combine information owned by multiple institutions and reveal otherwise

hidden global insights while addressing legal and privacy concerns.

Figure 2. The SCOR MedCo approach: when an institution queries the virtual collective dataset, it engages in a distributed cryptographic protocol with all the

other institutions to securely obtain the result of the query. MedCo provides end-to-end protection against unauthorized access to data thanks to homomorphic

encryption, which allows keeping the data in an encrypted state not only at rest and in transit but also during computation (safe settings). MedCo also removes

the need for a central trusted authority by leveraging secure multiparty computation. The result of a query/analysis can be decrypted only through a distributed

protocol that involves the approval of all the participating institutions. If 1 or more institutions are compromised by a cyber attack, the others can refuse to decrypt

the data, thus keeping the data secure.
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