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Abstract

Background: The association between cancer and venous thromboembolism

(VTE) is well‐established with cancer patients accounting for approximately

20% of all VTE incidents. In this paper, we have performed a comparison of

machine learning (ML) methods to traditional clinical scoring models for

predicting the occurrence of VTE in a cancer patient population, identified

important features (clinical biomarkers) for ML model predictions, and

examined how different approaches to reducing the number of features used

in the model impact model performance.

Methods: We have developed an ML pipeline including three separate feature

selection processes and applied it to routine patient care data from the

electronic health records of 1910 cancer patients at the University of California

Davis Medical Center.

Results: Our ML‐based prediction model achieved an area under the receiver

operating characteristic curve of 0.778 ± 0.006 (mean ± SD) when trained on a

set of 15 features. This result is comparable with the model performance when

trained on all features in our feature pool [0.779 ± 0.006 (mean ± SD) with 29

features]. Our result surpasses the most validated clinical scoring system for

VTE risk assessment in cancer patients by 16.1%. We additionally found

cancer stage information to be a useful predictor after all performed feature

selection processes despite not being used in existing score‐based approaches.

Conclusion: From these findings, we observe that ML can offer new insights

and a significant improvement over the most validated clinical VTE risk

scoring systems in cancer patients. The results of this study also allowed us to

draw insight into our feature pool and identify the features that could have the

most utility in the context of developing an efficient ML classifier. While a
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model trained on our entire feature pool of 29 features significantly

outperformed the traditionally used clinical scoring system, we were able to

achieve an equivalent performance using a subset of only 15 features through

strategic feature selection methods. These results are encouraging for potential

applications of ML to predicting cancer‐associated VTE in clinical settings

such as in bedside decision support systems where feature availability may be

limited.
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1 | INTRODUCTION

Venous thromboembolism (VTE) comprises both deep‐
vein thrombosis (DVT) and pulmonary embolism (PE)
[1]. The association between VTE and cancer is well‐
established with cancer patients accounting for approxi-
mately 20% of all VTE incidents [2]. While the estimated
prevalence of VTE in the general population is around 1
in 1000 [3, 4], some estimates suggest this number
increases fivefold within the cancer patient population
[1, 5, 6]. The risk increases further among patients who
receive chemotherapy as shown in a 15‐year population‐
based study [7].

VTE is a multifaceted risk in cancer patients that
exacerbates clinical consequences, significantly impacting
morbidity, mortality, and cost of patient care [1, 5, 8–11].
Specifically, VTE‐associated mortality is 2.2 times more
likely in VTE patients with cancer than in those without
[10]. VTE is the leading cause of mortality in cancer
patients, aside from mortality due to cancer itself [1, 8]. In
addition to increasing risk of mortality, VTE burdens the
cancer treatment process. When managing VTE in cancer
patients, use of anticoagulants, which thin the blood,
requires rigorous patient monitoring to achieve adequate
anticoagulation and to identify complications such as
bleeding. Compared with cancer patients without VTE,
patients with VTE have over two times the risk of
experiencing major bleeding [12]. Bleeding can worsen
anemia while reduced blood counts can delay cancer
interventions such as chemotherapy and radiotherapy and
increase the need for blood transfusions.

The recurrence rates of VTE are also high in patients
with cancer. Patients with an active malignancy have a
three‐ to fourfold higher risk of recurrence compared with
patients without cancer, and the risk is further increased
in those with metastatic cancers. According to one study,
the 1‐year cumulative risk for recurrent VTEs after the
first episode was 21% in cancer patients compared with 7%
in patients without cancer [12]. All the VTE‐related factors

discussed above can affect cancer management, increase
treatment costs, and escalate average price per hospital-
ization for cancer patients [2, 3, 12, 13].

Treatments such as anticoagulant therapy are availa-
ble, both for prophylaxis against occurrence, as well as
for treatment of VTE in cancer patients. Appropriate and
timely use of the prophylactic measures are vital for
reducing the risk of both fatal and nonfatal PE as well as
the postthrombotic complications [14]. Anticoagulants
are drugs that interfere with blood coagulation cascade to
reduce or inhibit blood clotting. The low‐molecular‐
weight heparin (LMWH) has been found in multiple
studies to reduce the likelihood of a VTE event occurring
in a cancer patient [2, 15–17]. With these issues in mind,
it is evident that effective VTE prophylaxis in cancer
patients has the potential to drastically improve cancer
survival rates and decrease treatment costs for hospitals
and patients alike. However, while anticoagulant pro-
phylaxis and treatment is effective in primary and
secondary prevention of VTE, as mentioned above, there
are certain implications with their regular use in all
cancer patients. In particular, anticoagulants are associ-
ated with increased bleeding, require parenteral admin-
istration, training, and additional monitoring, all of
which can increase both cost and complexity of cancer
patient management [2, 12, 18]. Therefore, it is important
to stratify and define high‐risk cohorts of cancer patients
who are prone for VTE. There is thus a need for effective
VTE risk stratification systems to ensure that prophylaxis
is administered only to high‐risk patients. An accurate,
reliable, and robust VTE stratification system would help
clinicians in decision‐making about anticoagulant ther-
apy at the point of care (POC). Prophylactic measures
against VTE are often implemented for hospitalized
patients, so high‐risk stratification is particularly impor-
tant in ambulatory patients (outpatients) as they cannot
be monitored as closely as hospitalized patients.

The importance of delineating which cancer
patients are at increased risk of VTE for instituting
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anticoagulation prophylaxis, particularly ambulatory
patients, is critical as anticoagulation is associated with
significant risks and costs in already debilitated cancer
patients. Decision to provide prophylactic anticoagula-
tion in ambulatory patients clinically alone is often
difficult and providers need a decision support tool that
pinpoints the most vulnerable groups for VTE. Several
cancer‐associated thromboembolism (CAT) prediction
scores have been developed, such as Khorana [19],
Vienna CATS [20], PROTECHT [21], and CONKO [22]
based on routinely collected patient care data. These
risk‐assessment methods all use a simple scoring system
where points are added based on each of five to eight
different predictors with higher scores indicating a
higher risk of developing VTE. Some of the predictors
that these scores use include cancer site, platelet count,
white blood cell count, hemoglobin, use of red blood cell
stimulating factors, and body mass index (BMI). Of these
scores, the Khorana score is the most validated and used
[23]. However, despite its acceptance in the research
community, the Khorana score still only achieves a
positive predictive value of 6.7%, which is not meaningful
enough to make a quantified decision by the clinicians
and thus leaves plenty of room for improvement [19]. In
another study of 218 patients with cancer‐initiating
chemotherapy, it is shown that the Khorana score was
able to stratify ambulatory cancer patients according to
the risk of VTE, but not for all cancer types [24]. The
Khorana score can be used to select ambulatory cancer
patients at high risk of VTE for thromboprophylaxis, but
most events occur outside this high‐risk group [25].

During informal discussions, clinicians opined that
even a positive predictive value of 20%–30% will help
them with decision‐making, tipping the decision one way
or other with some scientific qualitative basis, and those
discussions motivated the team to explore various
features (clinical biomarkers) and develop more robust
and clinically meaningful predictive models.

In this study we use machine learning to take a data‐
driven approach to VTE prediction in cancer patients. Our
aim in this study is to not only improve upon the
performance of known risk assessment scores such as the
Khorana score but also to perform an in‐depth, data‐driven
exploration of both new and known VTE risk factors.

Traditional approaches to prediction in medicine
often focus on capturing medical expertise through a set
of carefully designated rules [26]. However, data‐driven
approaches, such as machine learning algorithms instead
can learn effective prediction decisions by observing
numerical patterns in the input data [26, 27]. One subset
of machine learning, known as supervised learning,
deals with training a model to accomplish this task of
classifying data based on a set of input data with labeled

ground truth values [27]. Supervised learning has the
advantage over traditional rule‐based methods of being
able to leverage computational power to identify highly
convoluted patterns in massive datasets with large
numbers of potential predictors relatively quickly and
efficiently [26, 28]. Such an approach has promise in the
context of cancer patient VTE prediction, where the
currently accepted scoring systems are simple rule‐based
methods that do not necessarily capture a wide range of
the potentially complex interactions between variables
[19, 20, 22]. Ferroni et al. have designed a precision
medicine approach to exploit significant patterns in data
to produce VTE risk predictors for cancer outpatients
[29]. They have used multiple kernel learning (MKL) [30]
based on support vector machines (SVM) models to
predict VTE risk. In our research, we have examined
VTE classification performances of several standard
machine learning (ML) algorithms including SVM,
logistic regression (LR), and Random Forest (RF) and
compared these to the baseline performance of the
Khorana score.

Methods and results are described in the following
sections.

2 | METHODS

In this retrospective study of a population of cancer
patients at the University of California Davis Medical
Center (UCDMC), we used ML to explore both new and
known VTE risk factors. Our goal was to not only
develop a machine‐learning‐based VTE risk assessment
system for cancer patients but also to examine which risk
factors may be useful when taking such an approach.
From our efforts, we hope to establish a foundation for
using machine learning to eventually answer more
complex questions about VTE prediction in cancer
patients, such as how changes in a patient's condition,
as the patient continues with his/her cancer manage-
ment, affect the risk of developing VTE over time.

In this study, we examined 29 features in total,
including a selection of available features from the
Khorana score and biomolecular markers from a previ-
ous study of CAT [19, 31]. Since relevant VTE events can
occur before or after cancer diagnosis and clinical
interventions (i.e., surgery, chemotherapy, radiotherapy),
we used a set of time‐agnostic features to gain a view of
how a patient's general profile over a large period of time
may or may not be indicative of VTE risk. Each of the
features we used covered information about a patient's
background, cancer, lab values, or medications.

We then explored the utility of our feature set in
a machine learning context in a two‐phased approach.
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In the first phase, we trained several different models
with a spectrum of hyperparameter choices on four
different feature subsets that were derived both from
performed feature selection experiments and from pre‐
determined feature pools. We then identified the best‐
performing model and feature set combination and, in a
second phase of experiments, attempted to reduce the
number of used features without sacrificing perform-
ance through an iterative feature accumulation process.
Finally, we validated the performance of our chosen
model on a held‐out data set extracted from our
original data.

2.1 | Data set and data preprocessing

The data set used in these experiments was extracted
from the UCDMC‐affiliated hospital's electronic health
record system and combined with curtained and
manually curated data elements from the California
state cancer network CNExT registry, from 2015 to 2017
(C/NET Solutions). The organ system‐based cancers
which are considered high risk for VTE episodes in
previous studies were included in the study. The cancer
sites contained in the data set are: pancreas, bladder,
non‐Hodgkin's lymphoma, Hodgkin's disease, corpus
uteri/uterus, prostate, ovary, breast, lung/bronchus
(small cell and nonsmall cell), brain and stomach [32].

To study how a given cancer and its attributes may be
predictive of VTE events, each cancer instance was
treated as a separate entry in our data set. Thus, a few
patients have more than one cancer entry in the data set.
Associated with each cancer instance is a list of features
describing the cancer and patient's background.

All medications were grouped according to the
pharmacologic class of the medication. Medication data
was incorporated in the primary cancer entry cohort by
assigning a binary variable to each patient for every
medication, indicating whether or not that medication
was ever administered to the patient.

Lab test values were represented by the mean of all
pre‐chemotherapy measurements associated with that
test to eliminate noise and understand how a patient's
general condition correlates with VTE risk. We accumu-
lated such values for 45 different lab tests. This set of 45
was then reduced to only the lab tests which were
performed on at least 75% of patients. Of the 45 lab tests,
only 12 of the tests satisfied this criterion and were
included in our final feature pool. Any missing values
among these 12 lab tests were imputed using the mean
across all patients for the given test.

Exclusion criteria for our data set included patients with
missing information in any of the listed categories outside
of lab tests, patients with benign tumors, patients
with mesotheliomas, and patients with extreme outliers
(i.e., BMI> 100). These exclusion criteria were applied to
the general data set. After cleaning, the data set consisted of
1973 cancer entries across 1910 unique patients.

The presence or absence of a VTE diagnosis date
served as our binary target variable for prediction in our
machine‐learning models. The full list of features in our
curated data set is detailed in Table 1.

2.2 | Model training

We performed an 80:20 split on the data set, allocating
80% of the data for cross‐validation of different model
and feature set combinations. We used the remaining
20% as a hold‐out data set for testing the generalizability
of our best‐performing model. Our approach to perform-
ing model training and feature selection was twofold:

a. First, we trained seven different model configura-
tions, each on four different feature sets. The model
configurations and feature set choices are described
in the remainder of this section and in Sections 2.3.1
and 2.3.2.

b. Second, we took the highest‐performing model
configuration and used a stepwise feature selection

TABLE 1 Feature pool.

Feature type Features (29)

Cancer Site, grade, stage, behavior, histopathological type

Patient Gender, body mass index (BMI), age, race list, race count

Binary medications Antineoplastic‐aromatase inhibitors, immunosuppressives, antineoplastic‐antiandrogenic agents,
steroid antineoplastics, antineoplastic‐alkylating agents, antineoplastic systemic enzyme
inhibitors, antineoplastic‐antimetabolites

Lab tests Albumin, hematocrit, hemoglobin, creatinine serum, red blood cell count, calcium, white blood cell
count, platelet count, mean corpuscular hemoglobin concentration (MCHC), mean corpuscular
hemoglobin (MCH), protein, mean corpuscular volume (MCV)
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approach to attempt to find a reduced subset of
features that would provide comparable performance.
The implementation of this feature selection
approach is described in Section 2.3.3.

To prevent overfitting, all models were trained and validated
on our training data set using 10‐fold cross‐validation. We
evaluated our trained models using the area under the
receiver operating characteristic curve (AUROC) and the
DeLong test for statistical significance [33]. We also
evaluated the AUROC generated by the Khorana score
on our data set and used this for baseline performance
comparisons with our models.

For the first phase of our study, we trained and
evaluated models using the machine learning algorithms
and parameter configurations listed in Table 2.

All LR, SVM, and RF models were implemented
using the Scikit‐learn library in Python [37]. Each of
these models was cross‐validated on four different
feature sets/subsets:

a. All 29 available features in our feature pool.
b. Features used for calculating the Khorana score:

cancer site, platelet count, hemoglobin level, white
blood cell count, and BMI.

c. Features selected by our clinical team. We will refer
to this feature selection method as the “clinical
expert” method.

d. Features selected based on statistical correlation with
VTE incidence. We will refer to this feature selection
method as the “filtering” method.

For the second phase of the experiment, we identified the
model with the highest performance based on AUROC
values and DeLong test results for statistical significance.
We then used this model to perform a stepwise forward
feature selection method to identify a minimum subset
of features required to attain equivalent performance.
We will refer to this feature selection method as the
“wrapper” method. The implementations of this and the
clinical expert and filtering methods are described in
detail in the following section.

Finally, we tested our best‐performing model on the
held‐out data set to better examine the generalizability of
the model and ensure that we did not overfit the training
data set.

2.3 | Feature selection methods

In training different machine learning models for
predicting VTE, we experimented with three different
feature selection methods. The first was an expert‐
driven feature selection process in which we used
domain expertise from clinicians and researchers at
UCDMC to derive a subset of known clinically relevant
features as a feature set for training our machine
learning models. The second was a filtering approach
which identified the highest statistically correlated
features with our target. The third was a wrapper
approach that bootstrapped the model training process
to iteratively accumulate an optimal set of features for a
chosen ML classifier [38].

The clinical expert and filtering approaches were
used in the first phase of our study for comparing
performances of different machine‐learning approaches
across several feature sets. The goals of performing these
feature selection approaches were to:

a. Examine the utility of commonly accepted VTE risk
factors in a machine learning approach.

b. Identify new risk factors or combinations of risk
factors which may add value to predicting VTE
incidence in cancer patients using machine learning.

The wrapper approach was used in the second phase
of our study on the best‐performing model and feature
set from the first phase. The goal of this approach was
primarily to:

Minimize the number of features required for the
best‐performing model configuration to achieve optimal
performance.

The implementation details for these feature selection
methods are described in the following sections.

2.3.1 | Clinical expert method

Our first feature selection method involved consulting
with our team of physicians to determine a subset of
features that are known risk factors in the development
of VTE. The decisions made in this process were based
both on clinical expertise and review of literature in the
area [19–22, 29, 32].

TABLE 2 Machine learning model configurations.

Model Parameter choices

Logistic regression
(LR) [34]

–

Support vector machine
(SVM) [35]

Radial basis function
(kernel, linear kernel

Random forest (RF) [36] 50, 100, 200, 500 trees
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2.3.2 | Filtering method

Since our data consists of both categorical and continu-
ous data, we divided our feature filtering approach into
two tasks. For the categorical features, we determined
the likelihood of each feature being linearly independent
of our target variable using a χ2 test [39].

Meanwhile, for each continuous feature in our data
set, we observed the distribution of the feature across
VTE‐diagnosed patients as well as the distribution of the
feature across patients without a VTE diagnosis. We then
compared these distributions to determine the likelihood
that they came from one common distribution using a
Kolmogorov–Smirnov (KS) test for goodness of fit [40].

We acquired our final statistically filtered feature set
by selecting only the features from both of the above tests
which resulted in p< 0.05.

2.3.3 | Wrapper method

The final feature selection process we used was an
empirical forward feature selection method that served
the purpose of maximizing the performance of our model
while minimizing the dimensionality. While a high‐
dimensional model is appealing from a performance
standpoint, it may not always be practical in a clinical
setting due to limitations in available lab test results or
other information. Performing a forward feature selec-
tion process allows us to directly identify only the n best‐
performing features on our data set and thus reduce the
amount of required information without significant
sacrifices in performance.

While the filtering method that is discussed in the last
section is valuable for identifying variables directly
correlated with the target, it fails to examine how
different combinations of these variables may affect the
predictive power of our chosen ML classifier [33]. To
cover the full space of variable interactions, we would
ideally train a model on every possible combination of
features from our feature pool, but doing so would take
several years of model training and would be computa-
tionally infeasible. We used the wrapper method to
shortcut this process and only test a small subset of all
possible unique feature combinations.

In our approach, we accumulated features one at a
time under the assumption that the best‐performing
feature at each iteration is part of the optimal set [41].
This process started by training 29 separate models:
one trained on each feature in our set. Each training
cycle included 10 iterations of 10‐fold cross‐validation.
The best‐performing feature was then selected and the
process repeated with the remaining 28 features, this

time also including the best‐selected feature(s) from
the previous iteration(s) and so on. We continued to
accumulate features in this fashion until we no longer
saw improvements in performance for a predetermined
number of iterations. To provide a small buffer for
temporary drops in performance, we set this number to
two iterations.

It should be noted that, while the clinical expert and
filtering feature selection methods are determined
independently of any model choices, the wrapper
selected features are specific to one model as they are
accumulated by iterative model training. Since we used
this method in the second phase of our study to optimize
the feature set for a selected model, we found it sufficient
to only perform the wrapper feature selection process for
our best‐performing model.

3 | RESULTS

3.1 | Model selection

The first phase of our study involved training several
model configurations on different selected feature sets.
Each model was evaluated by generating an AUROC
value and confidence interval from 10 iterations of
10‐fold cross‐validation. The results of this model training
and feature selecting are presented in this section and in
Section 3.2. Table 3 shows the performance of each model
configuration on the training data set (80% of the original
data set) across the four different feature sets listed in
Section 2.2. Each row represents a unique model
algorithm or scoring system and each column represents
a unique feature set. To make a fair comparison between
different models that are using different feature sets, we
have included a model trained on the features that the
Khorana score uses as shown in column 3 Khorana (n= 5)
of Table 3. The performance generated by using the
standard Khorana scoring system itself is also included as
a baseline in the last row of Table 3. All model ROC curves
were compared with that of the baseline Khorana score in
the last row of Table 3 via the DeLong test. The differences
that were statistically significant based on a p value < 0.05
are marked with an asterisk in the table. The full list of
model‐to‐model DeLong comparisons is also provided in
Appendix B.

In general, every model outperformed the Khorana
score baseline when trained on our entire feature space
(though this difference for the SVM models was not
statistically significant). The RF models trained on the
same features used in the Khorana score all achieved a
small but significant improvement over the Khorana
score, suggesting that using ML alone instead of a simple
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point system may offer an improvement over currently
used clinical risk assessment scores. However, the results
of the models trained on the other feature sets indicate
that this is not the maximum attainable performance and
that adding additional risk factors to the model could
result in even larger performance improvements.

Every RF model also outperformed the LR and SVM
models on each feature set suggesting that a RF is likely
the best‐suited algorithm choice for this task among our
tested classifiers. For the ease of viewing, the p values of
all pair‐wise model comparisons by feature set are not
listed here but can be viewed in Appendix B.

The RF models also showed similar trends across
feature sets with performance being highest when trained
on all features followed by the filtered feature set, clinical
expert feature set, and then the Khorana score feature set.
The highest‐performing models were the four RF models
trained on all features and on the filtered feature set. Since
the difference between these models was generally not
statistically significant, we chose the most complex model
—the RF model with 500 trees—as our best‐performing
model for the second phase of the study. The reasoning
for this choice was that a more complex model,
while more prone to overfitting, is also capable of learning
more complex variable relationships leading to potential
performance improvements. As mentioned in the
methodology, we combat and assess overfitting by
performing 10‐fold cross‐validation on all experiments
and further validating our best‐performing model on a
held‐out data set.

Based on these results, we will focus on the
performance of the 500‐tree RF model for the remainder
of our analysis where we will explore optimizing the set
of required features using the wrapper feature selection
method and will validate our model performance on our
held‐out data set. But first, details on the results of the
clinical expert and filtering feature selection processes
are provided in the following section.

3.2 | Feature selection results

3.2.1 | Clinically important features

Our first feature selection method involved reducing our
feature set to a list of only five features deemed clinically
important to the prediction of VTE by a team of UCDMC
physicians and researchers. These features are:

platelet count, white blood cell count,
hemoglobin, cancer site, cancer stage.

The first four of these are the same four features that
are common across the Khorana, Vienna CATS, PRO-
TECHT, and CONKO scoring systems while cancer stage
is an additional feature deemed relevant by our team
[19–22]. The RF model with 500 trees trained on these
features outperforms the AUROC of the Khorana score on
our data set by 10%. This improvement can be attributed
to the fact that the RF model is capable of making
decisions that are much more nuanced than the decisions
made in any of the listed scoring systems, which involve
only simple point additions based on binary categoriza-
tions of the data [39]. Despite this improvement in
performance, the model still falls short of the model
trained on the full feature set by 8.5%, indicating that there
are other potentially useful features in predicting VTE that
were not initially deemed clinically relevant.

3.2.2 | Filtered features

To further examine the known clinically relevant
features and identify new features, we used statistical
methods to filter our feature pool and identify features
highly correlated with our target variable. The feature
filtering method described previously yielded a set of 20
features that were significantly correlated with the binary

TABLE 3 AUROC (mean ± SD) of predictive models by feature set.

All (n= 29) Khorana (n= 5) Clinical (n= 5) Filtered (n= 20)

Logistic regression 0.684 ± 0.054* 0.668 ± 0.077 0.662 ± 0.074 0.672 ± 0.047*

SVM (radial basis function kernel) 0.652 ± 0.061 0.562 ± 0.061* 0.576 ± 0.056* 0.617 ± 0.072

SVM (linear kernel) 0.644 ± 0.042 0.577 ± 0.040* 0.589 ± 0.048* 0.669 ± 0.036*

Random forest (50 trees) 0.751 ± 0.068* 0.672 ± 0.062* 0.681 ± 0.072* 0.748 ± 0.071*

Random forest (100 trees) 0.752 ± 0.062* 0.676 ± 0.066* 0.683 ± 0.072* 0.743 ± 0.073*

Random forest (200 trees) 0.762 ± 0.065* 0.684 ± 0.070* 0.692 ± 0.074* 0.746 ± 0.075*

Random forest (500 trees) 0.761 ± 0.065* 0.684 ± 0.073* 0.696 ± 0.071* 0.755 ± 0.067*

Baseline: Khorana score – 0.632 ± 0.019 – –

*p< 0.05 from DeLong test when compared with Khorana score (bottom row).
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presence of VTE. The full list of this filtered feature set
includes the following features:

site, grade, stage, histopathological type,
gender, age, race list, antineoplastic‐
aromatase inhibitors, albumin, hematocrit,
hemoglobin, creatinine serum, red blood cell
count, calcium, white blood cell count,
platelet count, mean corpuscular hemoglo-
bin concentration (MCHC), mean corpuscu-
lar hemoglobin (MCH), protein, mean cor-
puscular volume (MCV).

Notably, all of the clinically essential features
identified above were also found to be significantly
correlated with our target. All of the features used in the
Khorana score were also selected with the exception of
BMI. All of the lab tests in our feature pool were selected
as well while all but one pharmacologic class, that is,
antineoplastic‐aromatase inhibitors, were left out. The
RF model with 500 trees achieved a 19.5% improvement
over the Khorana score and did not result in a significant
decline in performance based on the DeLong test
compared with the model trained on all features.

3.3 | Model optimization

For the second phase of our study, we looked at optimizing
the feature set for our best‐performing model configuration
and validating the performance on our held‐out test
set. Based on the results presented in Table 4, we used
the 500‐tree RF model trained on our entire feature pool as
a baseline for our best‐performing model. In this section,
we present the results of using this model with the
previously described wrapper feature selection method to
reduce the dimensionality of the feature set while attempt-
ing to maintain the same level of model performance.

3.3.1 | Wrapper selected features

Table 4 compares the cross‐validation performance of the
500‐tree RF model using the wrapper‐selected feature
set to the results from the first phase of the study.
When compared with the model trained on all features,
the wrapper and filtered feature sets are the only feature

sets that did not result in a statistically significant decline
in performance. This confirms that the wrapper method
was effective in identifying a reduced subset of features
(52% of the whole feature pool and 75% of the filtered
feature pool), without sacrificing performance.

The ordered list of features accumulated when
performing the wrapper feature selection method with
the RF model of 500 trees are:

creatinine serum, antineoplastic‐aromatase
inhibitors, MCHC, red blood cell count,
stage, immunosuppressives, antineoplastic‐
antiandrogenic agents, protein, site, MCV,
antineoplastic‐alkylating agents, albumin,
antineoplastic‐antimetabolites, MCH, histo-
pathological type.

The curve illustrated in Figure 1 shows the relationship
between these features and the AUROC of our model during
feature accumulation. Each model evaluation came from the
average result of 10 iterations of 10‐fold cross‐validation. The
x‐axis represents each iteration of the recursive accumula-
tion of features, while the y‐axis represents the AUROC
associated with the model trained after each added feature.
The model trained on this set of recursively selected features
not only matched the performance of the model trained
on all features with no statistical difference between ROC

TABLE 4 Cross‐validation of 500‐tree random forest (mean ± SD) on all feature sets.

All (n= 29) Khorana (n= 5) Clinical (n= 5) Filtered (n= 20) Wrapper (n= 15)

Random forest (500 trees) 0.761 ± 0.065 0.684 ± 0.073* 0.696 ± 0.071* 0.755 ± 0.067 0.769 ± 0.072

*p< 0.05 from DeLong test when compared with model trained on all features (first column).

FIGURE 1 Mean area under the receiver operating
characteristic curve (AUROC) of 500‐tree random forest (RF)
model during wrapper feature accumulation.
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outputs, but also did so with only 15 features, reducing the
size of our feature set by 14. The ROC and PRC curves
resulting from training a model on these 15 features are
contained in Figures 3 and 4, respectively.

Unlike in the clinical expert and filter‐selected feature
sets, seven different medications were included in the
wrapper‐selected feature set, although only two appeared
in the first twelve selected features. Furthermore, the
white blood cell count and platelet count lab tests were
excluded despite being included in both of our other
examined feature sets as well as the Khorana score. This
exclusion is not to undermine the usefulness of the
features to the task of VTE prediction, but rather to show
that they were not necessary for achieving optimal
performance with reduced dimensionality on our data set.

3.3.2 | Feature set comparisons

Table 5 lists the overlap between the feature sets of the three
presented feature selection methods. The full list of features
selected by each method is provided in Appendix A.

All features deemed clinically relevant were also found
to be statistically correlated with the presence of VTE in our
filtered feature set. Furthermore, all three feature selection
methods selected the cancer site and stage as important
features for VTE prediction. While cancer site is a widely
used risk factor for VTE, cancer stage is not typically
included in currently used scoring systems [19–22]. The
clinical team further concurred with the data‐driven finding
of the importance of clinical staging information.

The overlap of the clinical expert and wrapper feature
sets matches the overlap of the clinical expert, filter, and
wrapper feature sets and is thus omitted from the table.

3.4 | Performance validation
on held‐out data

The remainder of the results section shows the perform-
ance when validating our RF model trained with 500
trees on our held‐out data (20% of the original data set).

The ROC curve in Figure 2 illustrates the test
performance of the RF model with 500 trees being
trained on our entire feature pool in comparison to the
ROC curve generated from the Khorana score on our
held‐out test data set. The model achieves a statistically
significant improvement in AUROC of 16.1% compared
with the Khorana score. This increase in performance
confirms the potential for improving VTE prediction
through the inclusion of new risk factors in a machine‐
learning approach. Next, we validated the 500‐tree
RF model with each of the previously examined feature
subsets.

The ROC curves in Figure 3 show this performance
by feature set when run on our held‐out data. As in the
results in Section 3.3.1, the model trained on the
wrapper‐selected features did not result in a statistically
significant decline in performance compared with the
model trained on the entire feature pool. This validates
our takeaway that the wrapper feature selection process
provided an effective way to reduce the feature space
without impacting performance. A full list of DeLong test
comparisons for the 500‐tree RF models on the held‐out
data set are provided in Appendix B.

For additional validation, we evaluated the precision‐
recall curve (PRC) for the 500‐tree RF model on each
feature set. These results are displayed in Figure 4.

Similar to the ROC results, the PRC curves in Figure 4
show that the models trained on all features and on the
wrapper‐selected features are the best‐performing models
and achieve comparable performance.

4 | DISCUSSION

In this study, we examined the utility of using machine
learning to predict VTE in cancer patients. We accom-
plished this through a carefully designed set of steps
adhering to a typical machine‐learning pipeline. First, we
selected a feature pool based on the data availability
within our patient population. We also set aside 20% of
the data in a held‐out data set for final model validation.
We then performed a number of feature selection

TABLE 5 Overlapping features between feature sets.

Feature selection methods Features

Expert + Filter +Wrapper* Site, stage

Filter +Wrapper Site, stage, antineoplastic‐aromatase inhibitors, albumin, creatinine serum, red blood cell count,
mean corpuscular hemoglobin concentration (MCHC), mean corpuscular hemoglobin (MCH),
protein, mean corpuscular volume (MCV), histopathological type

Filter + Expert Site, stage, hemoglobin, platelet count, white blood cell count

*The overlap of only the expert and wrapper feature sets produces the same list of features.
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methods and trained multiple machine learning classifi-
ers with different hyperparameter configurations to
identify a best‐performing model for our use case.
Finally, we iteratively trained the best‐performing model
to accumulate a minimum set of required features and
thus reduce the complexity of the model without
impacting model performance.

The results of this process allow us to draw insight
into how a machine learning classifier might offer an
improvement in performance over traditionally used
clinical VTE risk assessment systems in cancer patients.
With these results, we are able to examine our feature
pool and identify those features that are most useful in
the context of developing an efficient machine learning
classifier by comparing the selected features and result-
ing model performance across multiple unique feature
selection methods.

This project was an effort to showcase the improved
predictive performance of various ML models over the
Khorana score in predicting VTE in cancer patients. We
compared the performance of models trained on different

feature sets selected by domain experts, statistical
methods, and ML techniques. We identified features that
were common across these selected feature sets to better
understand which features are meaningful in this context.

Our trained classifiers achieved encouraging results on
numerous feature subsets. We found that a 500‐tree RF
model trained using only the features used in the Khorana
score achieved a statistically significant 14.6% improvement
in AUROC over the standard point‐based Khorana score on
our held‐out test set with an AUROC of 0.769± 0.007.
Meanwhile, we achieved a peak AUROC of 0.779± 0.006 on
a held‐out data set when training the 500‐tree RF model on
our entire feature pool. This surpassed the performance of
the Khorana score on the same data set by 16.1%. We were
additionally able to reduce the number of required features
to 15 total (a 48% reduction) without a statistically significant
impact on model performance by using a wrapper method
to iteratively accumulate features. We also used two model‐
agnostic feature selection methods—a statistical filtering
method and a clinical expert method—which both achieved
AUROCs of 0.771± 0.007 (mean± SD) and 0.757± 0.004

FIGURE 2 Performance comparison on held‐out test set between Khorana score and random forest (RF) model with all features. ROC,
receiver operating characteristic. AUC, area under the curve, are shown in mean ± SD.
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(mean± SD) respectively on our held‐out data set. All of
these results showed statistically significant improvements
in performance over that of the Khorana score.

The results in Table 5 depict the overlap between the
features selected by our three described feature selection
methods. Only cancer site and cancer stage were common
across all three feature sets. Cancer site is already a common
risk factor considered in current VTE risk stratification
systems [19–22]. Based on our experimental results, cancer
stage merits inclusion in future VTE prediction systems
using an ML approach. Meanwhile, all of the features
deemed clinically relevant were also found to be statistically
significant in the filtered feature set. Unlike the other two
feature sets, the wrapper‐selected feature set did not include
hemoglobin. However, it did identify three related metrics—
MCH, MCHC, and MCV—as essential metrics for VTE
prediction. While these metrics are not identical to
hemoglobin, they are likely interrelated. Furthermore, since
the wrapper method optimizes the feature space based on
empirical performance of different feature combinations, an
excluded feature is not by necessity unimportant. Instead, an

excluded feature may be redundant when compared with
the optimal set of features, making its inclusion unnecessary
for improving prediction performance.

In comparison to the features used in the Khorana
score, all but BMI are included in the filtered and
clinically relevant feature sets. Furthermore, the
cancer site, which is the most heavily weighted risk
factor in the Khorana score, was selected in all three
feature sets. Interestingly, BMI, which is included in
the Khorana score, Vienna CATS, and PROTECHT,
was not identified as useful in any of our acquired
feature sets [19–21]. Aside from BMI, however, the
results of this study suggest that the predictors used in
the Khorana score have a relatively high predictive
power when used in a machine‐learning context. The
results also suggest that the stage of the cancer is
useful in predicting VTE and should be considered in
future machine‐learning applications. Because staging
information is not always readily available in medical
notes, future studies could look to reliably extract this
information from free medical text using NLP

FIGURE 3 Receiver operating characteristic (ROC) performance by feature set on held‐out data. AUC, area under the curve, are shown
in mean ± SD. RF, random forest.
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methods. Since cancer staging can vary over time as
new information comes in and is incorporated in the
staging determination, this problem is particularly
challenging with past efforts achieving only limited
success [42, 43]. One approach that may improve this
performance without sacrificing too much predictive
power in VTE risk assessment could involve reducing
the cancer stage to a binary variable that simply
indicates the presence or absence of metastasis [44].

While the results of this study are promising, it is
important to note that the data set uses a small sample
size, especially for certain subgroups, (i.e., only a few
pharmacological groups were used in the patient
population). Also, the study did not include cancer
patients who had radiation therapy. There is increasing
evidence implicating radiotherapy in CAT in cancer
patients, however accessing data from the radiation
therapy information system was not possible for this
study. This study dealt with the patient population at
only one location, so before we generalize these results
across the general population, the findings in this

study should be validated in other patient populations.
Furthermore, this study takes a time‐agnostic approach
to identify useful predictors for VTE in cancer patients.
Therefore, this approach highlights VTE predictors that
may be useful in a machine‐learning context but does not
yet reflect an implementable clinical scenario.
With this being the case, the aim of this study was to
effectively identify these useful predictors to provide the
groundwork for exploration of this problem in specific
clinical scenarios (i.e., at different stages of prediagnosis
presentation, establishing diagnosis, and postdiagnosis
treatment phases of a patient's cancer management).

The methods used in this study could be generalizable to
other clinical conditions, particularly ambulatory settings,
where there is moderate to strong increased risk for
developing VTE, such as, congestive heart or respiratory
failure, hormone replacement and oral contraceptive ther-
apy, antiphospholipid antibody and other thrombophilia
syndromes [45]. Even though multiple studies have
demonstrated that thromboprophylaxis using anticoagulant
treatments such as LMWH can reduce the likelihood of VTE

FIGURE 4 Precision‐recall curve (PRC) performance by feature set on held‐out data. AUC, area under the curve; are shown in
mean ± SD. RF, random forest.
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events, due to the need for training the patients and
caregivers to administer (parenteral) the LMWH, regular lab
monitoring and dose adjustment, as well as the potential for
bleeding complications, all of which add to the cost and
quality of care, such prophylaxis may not always be feasible
and risk‐free. There is thus a need for effective VTE risk
stratification and decision support systems to ensure that
prophylaxis is administered only to high‐risk patients.

The project goal was to select the necessary and
sufficient features from our available feature pool that
would maximize the predictive power of various statistical
ML models. It can be a hard decision to initiate prophylaxis
against VTE, especially in ambulatory cancer patients
where anti‐thrombosis prophylaxis can be expensive and
cumbersome. Evidence‐based decision support is crucial
for minimizing risk in this decision process and improving
patient outcomes.

At the POC where the decisions are made, ideally,
prediction tools and scoring systems should automatically
retrieve the required features and inform the clinicians to
help make decisions. For ease of use and interpretability, the
list of features should be small, but should provide
meaningful enough information to supplement the current
evidence and clinicians' evaluations. We found cancer
staging information to be particularly meaningful as a
predictor of VTE as it was selected in all of our feature
selection processes. The Khorana score does not include the
cancer staging information as often it can be hard to retrieve
accurate staging information from clinical notes. Accurate
staging information is often established by cancer registrars
retrospectively, which may take up to 6 months. Our study
emphasizes the importance of cancer staging information as
a predictor of VTE in cancer patients and highlights the need
for its timely evaluation. Simplifying the cancer stage
variable into a binary value indicating whether the cancer
is metastatic (stage 4) or non‐metastatic could improve the
accessibility and real‐time accuracy of staging but would
require further studies and additional validation.

5 | CONCLUSION

Machine learning offers a promising avenue for improving
the performance of current VTE prediction scores in cancer
patients. A combination of a time‐agnostic approach and
three unique feature selection methods demonstrates that
at least four of the features that are used to calculate the
Khorana score can also provide high predictive power to a
machine learning classifier. We also observe that cancer
stage information is generally more useful than BMI as a
predictor in our ML classifiers. Consultation with clinicians
reveal a potential reason—BMI can vary as patients lose
significant weight due to cancer itself, chemotherapy, and

associated anorexia or other adverse effects. Furthermore,
with significant improvements in the generated ROC
curve, it is clear that a machine learning classifier can
make complex deductions that may allow it to outperform
currently used VTE risk scores. The results in this study
offer a foundation from which future machine‐learning
approaches to VTE prediction in cancer patients can be
built. Future studies should consider the identified relevant
variables in the context of a temporal analysis in which
machine learning may be used to dynamically assess at all
levels how cancer management progress, including medi-
cal intervention, over time can alter a patient's risk of
developing VTE.
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TABLE A1 Full list of selected features by feature selection method.

Feature selection method Features

Clinical expert method Site, stage, hemoglobin, platelet count, white blood cell count

Filter method Site, grade, stage, histopathological type, gender, age, race list, antineoplastic‐aromatase inhibitors,
albumin, hematocrit, hemoglobin, creatinine serum, red blood cell count, calcium, white blood cell
count, platelet count, MCHC, MCH, protein, MCV

Wrapper method Site, stage, histopathological type, albumin, creatinine serum, red blood cell count, MCHC, MCH,
protein, MCV, antineoplastic‐aromatase inhibitors, immunosuppressives, antineoplastic‐
antiandrogenic agents, antineoplastic‐alkylating agents, antineoplastic‐antimetabolites

APPENDIX A
See Table A1.
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APPENDIX B
The following tables show the comprehensive results
of performing the DeLong test for statistical signifi-
cance between ROC curves of the various models
we trained during the study. Each table is a grid of
DeLong p values. For this study, we used p < 0.05 as
our cutoff for statistical significance. The first four
tables are most pertinent to the results discussed in

the main text while the following tables contain a
more comprehensive coverage of pairwise prediction
comparisons.

See Tables B1–B8.
Below are the results of performing the DeLong test

for statistical significance between ROC curves on every
pairwise combination of models for each feature set we
examined in the study.

TABLE B1 DeLong p values for models compared with Khorana score.

All (n= 29) Khorana (n= 5) Clinical (n= 5) Filtered (n= 20)

Logistic regression 0.00142 0.07314 0.101754 0.004921

SVM (RBF kernel) 0.150591 0.00036 0.001697 0.27491

SVM (linear kernel) 0.18518 3.2E‐05 0.004174 0.000772

Random forest (50 trees) 0.0 0.023375 0.017531 0.0

Random forest (100 trees) 0.0 0.020919 0.015383 2E‐06

Random forest (200 trees) 0.0 0.011794 0.006736 2E‐06

Random forest (500 trees) 0.0 0.014679 0.003016 0.0

Abbreviations: RBF, radial basis function; SVM, support vector machines.

TABLE B2 DeLong p values for models compared with same model trained on all features.

Khorana (n= 5) Clinical (n= 5) Filtered (n= 20)

Logistic regression 0.307395 0.234885 0.300637

SVM (RBF kernel) 0.00089 0.003027 0.130158

SVM (linear kernel) 0.000331 0.005092 0.08326

Random forest (50 trees) 0.00465 0.016925 0.466185

Random forest (100 trees) 0.005323 0.014444 0.387342

Random forest (200 trees) 0.006923 0.016309 0.321548

Random forest (500 trees) 0.009481 0.020839 0.431354

Abbreviations: RBF, radial basis function; SVM, support vector machines.

TABLE B3 DeLong p values for 500‐tree RF models on held‐out test data set.

All (n= 29) Khorana (n= 5) Clinical (n= 5) Filtered (n= 20) Wrapper (n= 15)

All (n= 29) 0.5 0.000465 0.0 0.00303 0.369048

Khorana (n= 5) 0.000465 0.5 1.0E‐06 0.301592 0.001222

Clinical (n= 5) 0.0 1.0E‐06 0.5 0.0 0.0

Filtered (n= 20) 0.00303 0.301592 0.0 0.5 0.006966

Wrapper (n= 15) 0.369048 0.001222 0.0 0.006966 0.5
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TABLE B4 DeLong p values for 500‐tree RF models versus Khorana score on held‐out test data set.

All (n= 29) Khorana (n= 5) Clinical (n= 5) Filtered (n= 20) Wrapper (n= 15)

Baseline: Khorana score 0.0 0.0 0.0 0.0 0.0

TABLE B5 DeLong p values for models trained on all features.

Logistic
regression

SVM
(RBF
kernel)

SVM
(linear
kernel)

Random
forest (50
trees)

Random
forest (100
trees)

Random
forest (200
trees)

Random
forest (500
trees)

Baseline:
Khorana
score

Logistic regression 0.5 0.116269 0.037197 0.010025 0.006254 0.002805 0.003274 0.001447

SVM (RBF kernel) 0.116269 0.5 0.367859 0.00054 0.000257 0.000104 0.000127 0.150591

SVM (linear kernel) 0.037197 0.367859 0.5 2.7E‐05 7E‐06 2E‐06 3E‐06 0.18518

Random forest (50 trees) 0.010025 0.00054 2.7E‐05 0.5 0.48744 0.367113 0.379221 0.0

Random forest (100 trees) 0.006254 0.000257 7E‐06 0.48744 0.5 0.372979 0.385744 0.0

Random forest (200 trees) 0.002805 0.000104 2E‐06 0.367113 0.372979 0.5 0.487627 0.0

Random forest (500 trees) 0.003274 0.000127 3E‐06 0.379221 0.385744 0.487627 0.5 0.0

Baseline: Khorana score 0.001447 0.150591 0.18518 0.0 0.0 0.0 0.0 0.5

Abbreviations: RBF, radial basis function; SVM, support vector machines.

TABLE B6 DeLong p values for models trained on Khorana score features.

Logistic
regression

SVM
(RBF
kernel)

SVM
(linear
kernel)

Random
forest (50
trees)

Random
forest (100
trees)

Random
forest (200
trees)

Random
forest (500
trees)

Baseline:
Khorana
score

Logistic regression 0.5 0.000618 0.000882 0.459024 0.416674 0.330223 0.329241 0.073683

SVM (RBF kernel) 0.000618 0.5 0.266912 7.4E‐05 7.4E‐05 4.2E‐05 6.2E‐05 0.00036

SVM (linear kernel) 0.000882 0.266912 0.5 5.9E‐05 6.6E‐05 3.8E‐05 6.3E‐05 3.2E‐05

Random forest (50 trees) 0.459024 7.4E‐05 5.9E‐05 0.5 0.450544 0.350922 0.349703 0.023375

Random forest (100 trees) 0.416674 7.4E‐05 6.6E‐05 0.450544 0.5 0.399317 0.396751 0.020919

Random forest (200 trees) 0.330223 4.2E‐05 3.8E‐05 0.350922 0.399317 0.5 0.494963 0.011794

Random forest (500 trees) 0.329241 6.2E‐05 6.3E‐05 0.349703 0.396751 0.494963 0.5 0.014679

Baseline: Khorana score 0.073683 0.00036 3.2E‐05 0.023375 0.020919 0.011794 0.014679 0.5

Abbreviations: RBF, radial basis function; SVM, support vector machines.
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TABLE B8 DeLong p values for models trained on filter features.

Logistic
regression

SVM
(RBF
kernel)

SVM
(linear
kernel)

Random
forest (50
trees)

Random
forest (100
trees)

Random
forest (200
trees)

Random
forest (500
trees)

Baseline:
Khorana
score

Logistic regression 0.5 0.027277 0.451289 0.003532 0.007221 0.00583 0.001173 0.005015

SVM (RBF kernel) 0.027277 0.5 0.024625 4.4E‐05 0.00011 8.8E‐05 1.2E‐05 0.27491

SVM (linear kernel) 0.451289 0.024625 0.5 0.001453 0.003458 0.002766 0.000373 0.000772

Random forest (50 trees) 0.003532 4.4E‐05 0.001453 0.5 0.436936 0.477591 0.414938 0.0

Random forest (100 trees) 0.007221 0.00011 0.003458 0.436936 0.5 0.460575 0.354352 2E‐06

Random forest (200 trees) 0.00583 8.8E‐05 0.002766 0.477591 0.460575 0.5 0.395179 2E‐06

Random forest (500 trees) 0.001173 1.2E‐05 0.000373 0.414938 0.354352 0.395179 0.5 0.0

Baseline: Khorana score 0.005015 0.27491 0.000772 0.0 2E‐06 2E‐06 0.0 0.5

Abbreviations: RBF, radial basis function; SVM, support vector machines.

TABLE B7 DeLong p values for models trained on clinical expert features.

Logistic
regression

SVM
(RBF
kernel)

SVM
(linear
kernel)

Random
forest (50
trees)

Random
forest (100
trees)

Random
forest (200
trees)

Random
forest (500
trees)

Baseline:
Khorana
score

Logistic regression 0.5 0.002724 0.006279 0.288285 0.272988 0.197527 0.163826 0.102482

SVM (RBF kernel) 0.002724 0.5 0.302347 0.000265 0.00023 9.2E‐05 3.5E‐05 0.001697

SVM (linear kernel) 0.006279 0.302347 0.5 0.000648 0.000563 0.000226 8.7E‐05 0.004174

Random forest (50 trees) 0.288285 0.000265 0.000648 0.5 0.480818 0.380343 0.336385 0.017531

Random forest (100 trees) 0.272988 0.00023 0.000563 0.480818 0.5 0.398935 0.354845 0.015383

Random forest (200 trees) 0.197527 9.2E‐05 0.000226 0.380343 0.398935 0.5 0.456638 0.006736

Random forest (500 trees) 0.163826 3.5E‐05 8.7E‐05 0.336385 0.354845 0.456638 0.5 0.003016

Baseline: Khorana score 0.102482 0.001697 0.004174 0.017531 0.015383 0.006736 0.003016 0.5

Abbreviations: RBF, radial basis function; SVM, support vector machines.
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