
PERSPECTIVE
published: 30 July 2015

doi: 10.3389/fpsyg.2015.01072

Edited by:
Konstantinos Moutoussis,

National and Kapodistrian University
of Athens, Greece

Reviewed by:
Lars Muckli,

University of Glasgow, UK
Markus Lappe,

Universität Münster, Germany

*Correspondence:
Dale Purves,

Duke Institute for Brain Sciences,
Duke University, PO Box 90999,
Room B256, LSRC Building, 450

Research Drive, Durham, NC 27708,
USA

purves@neuro.duke.edu

Specialty section:
This article was submitted to

Perception Science,
a section of the journal
Frontiers in Psychology

Received: 04 February 2015
Accepted: 13 July 2015
Published: 30 July 2015

Citation:
Purves D, Morgenstern Y and Wojtach
WT (2015) Will understanding vision
require a wholly empirical paradigm?

Front. Psychol. 6:1072.
doi: 10.3389/fpsyg.2015.01072

Will understanding vision require
a wholly empirical paradigm?
Dale Purves 1,2,3*, Yaniv Morgenstern 2 and William T. Wojtach 1,2

1 Duke Institute for Brain Sciences, Duke University, Durham, NC, USA, 2 Neuroscience and Behavioral Disorders Program,
Duke-NUS Graduate Medical School Singapore, Singapore, Singapore, 3 Department of Neurobiology, Duke University,
Durham, NC, USA

Based on electrophysiological and anatomical studies, a prevalent conception is that the
visual system recovers features of the world from retinal images to generate perceptions
and guide behavior. This paradigm, however, is unable to explain why visual perceptions
differ from physical measurements, or how behavior could routinely succeed on this
basis. An alternative is that vision does not recover features of the world, but assigns
perceptual qualities empirically by associating frequently occurring stimulus patterns with
useful responses on the basis of survival and reproductive success. The purpose of the
present article is to briefly describe this strategy of vision and the evidence for it.

Keywords: feature detection, vision, evolution, reflex, images, empirical theory

Introduction

The goal of neuroscience is to understand the operation of animal nervous systems, the human
brain in particular, and in many ways this program has been remarkably successful. In one respect,
however, the endeavor has been frustrated: how we perceive and successfully engage the world
remains unknown. Perhaps the best example is vision. Although it is widely assumed that visual
perception depends on the detection and filtering of stimulus features to correctly represent the
environment, this conception is problematic. The reason is that the elements of any given image
conflate its generative physical sources; thus the energy in retinal stimuli cannot specify the physical
properties of objects and conditions in the world (Purves and Lotto, 2003, 2011; Purves et al., 2014).
As a result, how the physiology and anatomy of the visual system enables us to succeed in the
environment is deeply puzzling.

Visual Stimuli and Perception

To appreciate this quandary, consider the objective length of a line—e.g., the edge of a ruler—and
the perception it elicits. While the cause of the retinal stimulus is the ruler and its physical length,
distance, and orientation in space relative to the observer, the stimulus itself depends on the ability
to form an image. An eye or similar image-forming device, however, only conveys the consequences
of projective geometry, not the actual length of the ruler or its other properties. Much the same
reasoning applies to luminance, the most basic feature of visual stimuli. Although the intensity of
light arises primarily from the combined effect of surface reflectance and illumination, as with the
projection of geometric features, these and other factors giving rise to luminance values at the retina
are conflated in images. As a result, luminance is nomore informative about the properties of surfaces
and their illumination than the projection of the ruler is about its actual length.

The inevitable loss of objective properties in retinal stimuli implies that perceptions cannot be
generated simply by mapping image features back onto the world. Useful perceptions and their
behavioral consequences must therefore arise in some other way.
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FIGURE 1 | Standard (A) and wholly empirical (B) concepts of the
relationship between the physical world, sensory stimuli, perceptions,
and other behaviors. See text for explanation.

An Empirical Alternative

The alternative we have advocated is that trial and error responses
assign perceptual values such as length or lightness according
to associations that have been rewarded over evolutionary or
individual time, without ever recovering or statistically estimating
the properties of objects and conditions in the visual environment
(Figure 1; Purves et al., 2014). Because this framework depends
entirely on feedback from trial and error experience, we refer to it
as “wholly empirical.”

In general terms, how such rewarded associations are
implemented by evolution is well known: random changes in
the organization and function of ancestral visual systems would
persist—or not—according to how well the evolving system
served the survival and reproductive success of the agents
that harbored the variants. Any configuration of peripheral
detectors and neural circuitry that associated sensory stimuli
with biologically useful responses would tend to increase among
the members of the population, whereas less useful associations
would not. In this way the biological feedback loop in Figure 1B
would progressively order the basic visual qualities we perceive
(apparent length, lightness, etc.) according to their impact on
biological (reproductive) success, rather than with the generative
properties in the world (actual physical lengths, the reflectance
and illumination values underlying luminance, etc.). The same
general argument applies to lifetime learning, with the proviso
that only variations in the inherited anatomical and physiological
mechanisms underlying neural plasticity can be passed on, not
circuit or other modifications made during life.

The gradual emergence of the eye provides an example. At
the outset of visual evolution, photoreceptor patches transduced
radiant energy without forming images (Figure 2A). Over time,
however, photoreceptor patches underwent involution to form a
cup that could indicate the direction of incoming light. Further

evolution then gave rise to a smaller aperture that could form low-
resolution images, and eventually to lenses capable of generating
high-resolution images (Land and Nilsson, 2012).

Given that reality cannot be recovered from images, however,
a different strategy would need to evolve if vision were to guide
behavior (Figure 2B). One way to accomplish this would be to
gradually align the frequency of occurrence of stimulus input
patterns with perceptual output according to behavioral feedback
rather than with the properties of physical reality (Purves and
Lotto, 2011; Purves et al., 2014). By doing so, the associations of
input with output tends toward equivalence: every time a given
pattern occurs as input, the output will more closely track the
input frequency, driven by growing utility of the association.
Although input-output equivalence is never fully reached in any
trial and error process, after sufficient evolution (and lifetime
learning), a function that describes the frequency of occurrence
of input patterns should approximate the function that describes
the perceptual output. Thus once evolution has reached the stage
of human vision, the input-output functions are sufficiently close
so that the frequency of occurrence of stimulus input patterns
predicts the results of psychophysical experiments (Purves and
Lotto, 2011; Purves et al., 2014).

Evidence

The evidence that visual perceptions are indeed a consequence
of evolved associations between recurring input patterns and
responses made on the basis of empirical reward is that the
frequency of occurrence of stimulus patterns predicts perceptual
experience (Purves and Lotto, 2011; Purves et al., 2014). Consider,
for example, the perception of the ruler mentioned earlier.
Perceptions of line length—or spatial intervals generally—has
long been puzzling in that a projected line of the same measured
length (e.g., the edge of the ruler) appears to have different lengths
depending on its orientation (Figure 3A; Howe and Purves, 2002,
2005).

In a wholly empirical framework, the perceived length should
accord with the frequency of occurrence of the lengths of
projected lines in different orientations arising from the three-
dimensional (3-D) geometry of the world (Figure 3B). Since
physical orientation and length are conflated in two-dimensional
(2-D) images, information about the actual geometry that gives
rise to the image is not available to the visual system. By using
the frequency of occurrence of image patterns that comprise
projected length and orientation, however, this problem can
be circumvented: once perception has evolved to associate
the frequency of occurrence of input patterns with perceptual
output, a link exists between stimulus and behavior that does
not entail representing reality as such. If this explanation is
correct, then the function based on the frequency of occurrence
of projected lines in different orientations arising from the
world (Figure 3B) should approximate the perceptual function
acquired by psychophysical testing (Figure 3C), as it does. The
correspondence between the functions in Figures 3B and 3C
thus supports a strategy of vision in which the perception of
length is determined by biological utility, as diagrammed in
Figure 1B.
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FIGURE 2 | How the frequency of occurrence of stimulus patterns
comes to predict perceptions. (A) Evolution of biological photodetectors
from patches to image forming eyes. (B) Evolution of associations, indicating
why the frequency of occurrence of rewarded stimuli eventually predicts
perceptions. Early in visual evolution, different behaviorally important input

patterns would be associated with responses more or less randomly. As
evolution progressed, however, visual inputs would have been gradually linked
to perceptual and other outputs based on survival and reproductive success. As
a result, the frequency of occurrence of stimulus patterns is automatically tied to
the frequency of occurrence of useful percepts.

Another simple example of predicting perception on this basis
is how luminance gives rise to the experience of lightness and
darkness. Since luminance measures the number of photons
falling on the retina, common sense suggests that measurements
of light intensity and perceived lightness should be proportional.
Thus if two surfaces return the same amount of light to the
eye they should be perceived as equally light. In psychophysical
experiments, however, this expectation routinely fails (Stevens,
1975; Purves and Lotto, 2003, 2011; Gilchrist, 2006). In the
example here the central squares in Figure 4 look differently
light even though their luminance is the same. The empirical
explanation for this effect is much the same as the explanation
of perceived length: since the light returned to the eye conflates
properties of reflectance and illumination, these physical values
are not available to the visual system. To circumvent this situation,
vision can use the frequency of occurrence of simple patterns like
these in natural scenes to rank relative lightness values according
to their behavioral utility, with a function describing this input
approximating a function describing the perceptual output. Thus
the frequency of occurrence of the relevant stimulus patterns can

predict the lightness that we actually see (Yang and Purves, 2004;
Morgenstern et al., 2014a,b).

Explaining the Discrepancy Between
Objective Measures and Subjective
Percepts

Relying on empirical associations to underwrite vision, however,
means that perceptions are not correlated with the actual length
of lines, light intensities or any other physical property, as
psychophysical testing amply demonstrates. A projected line can
appear longer or shorter depending on its orientation, a physical
surface returning the same number of the photons to the eye can
appear lighter or darker depending on the scene presented to the
observer, and so on for all the other basic qualities that describe
visual perception (for a review, see Purves and Lotto, 2011).
Thus a consequence of this strategy is that visual perceptions will
always differ from measurements of sources or images made with
physical instruments such as rulers or photometers.
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FIGURE 3 | Perceived length based on the frequency of stimulus
occurrence. (A) Lines of the same length presented in different
orientations. Depending on the orientation, the line appears longer or
shorter, the maximum perceived length occurring when the line stimulus is
oriented approximately 30° from vertical, at which point it appears 10–15%
longer than the minimum perceived length elicited by a horizontal line. (B)
The input function of the frequency of occurrence of differently oriented 2-D

line stimuli in (A) determined by laser range scanning natural 3-D
environments. (C) The output function of perceived line length determined
by psychophysical testing. Note the similarity of the functions in (B) and
(C), with minima arising from horizontal line projections, maxima arising
from line projections oriented about 20–30° from vertical, and a dip in the
functions when the projected line is vertical. (From Howe and Purves,
2005).

FIGURE 4 | Perceived lightness and darkness based on the frequency
of stimulus occurrence. When two targets (small squares) returning the
same quantity of light to the eye are each surrounded by backgrounds (large
squares) returning different quantities of light, the targets appear differently
light despite having the same luminance. The frequency of occurrence of
targets and contexts predicts the lightness in this example and more complex
patterns as well (see Yang and Purves, 2004).

Falsification of a Wholly Empirical Theory
of Vision

The upshot of vision on a wholly empirical basis is that the
psychophysical functions that describe the visual qualities we see
can be explained pragmatically, as a way for vision to operate given

the inability to recover the actual physical parameters of the world
from stimuli. This conception of vision would be falsified if the
frequency of occurrence of image patterns failed to predict any
of the basic qualities we see, including geometrical characteristics
such as lengths and angles, lightness and darkness, color, distance
and motion. So far, this framework has stood up to this gamut of
tests (see Purves and Lotto, 2011; Purves et al., 2014).

Perceptions as Reflexes

Since electrophysiological evidence about the properties of
neurons in the primary visual pathway and their anatomical
organization in experimental animals began to emerge in the
1950s, perception has usually been conceived as the outcome of a
hierarchical series of computations that entails low-level filtering
and edge detection, mid-level perceptual organization (contour
and shape processing), and higher-level object recognition (Marr,
1982; Riesenhuber and Poggio, 1999; Serre et al., 2007; DiCarlo
et al., 2012). In the alternative framework presented here, visual
perceptions are taken to be no different in kind from “simple
reflexes” that evolved as rapid, automatic responses to frequently
occurring stimulus patterns. In keeping with this reasoning, the
human visual system generates perceptions of complex scenes
in approximately the time required for retinal information to
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reach the visual cortex (∼80 ms) (Coppola and Purves, 1996).
Together with the evidence described earlier, this observation
implies that the circuitry governing perceptual and other visually-
mediated responses is not dedicated to detecting, filtering, and
analyzing retinal images to compute representations of the world,
but to responding on the same automatic basis as any other
reflex circuitry, whether in the brain or any other organ system.
Concerns about the temporal plausibility of hierarchical and/or
computational approaches are resolved once visual “processing”
is understood as the result of activating reflex circuitry already
in place, whose consequences have proven their utility over
evolutionary time.

Although conceiving of visual perceptions as reflexes seems
counterintuitive, there is no reason to suppose that perceptual
or other behavioral responses made on an empirical basis differ
from spinal or other reflexes, other than by the number of
interposed neurons and synaptic connections of the input-output
circuitry.

Other Perspectives

Several other theoretical concepts of vision have also sought to
move beyond the traditional idea of vision as feature detection,
and we and others have reviewed these elsewhere (Gibson, 1966,
1979; Geisler, 2011; Jones and Love, 2011; Stansbury et al., 2013;
Purves et al., 2014; de Wit et al., 2015). In brief, these include:
(1) the use of multiple cues or viewpoints to disambiguate image
uncertainty (Gibson, 1966, 1979; Freeman, 1994; de Wit et al.,
2015); (2) Bayesian decision theory as away to determine probable
world-states (Brainard, 2009; Geisler, 2011; Allred and Brainard,
2013; Körding, 2014); and (3) efficient coding to reduce image
redundancy (Srinivasan et al., 1982; Olshausen and Field, 1996;
Schwartz and Simoncelli, 2001; Simoncelli and Olshausen, 2001).
Each of these approaches has been valuable and is to some extent
correct. Multiple cues and viewpoints are certainly useful in
ultimately understanding what we are looking at; the use of Bayes’
theorem has provided a logical foundation of what Helmholtz
referred to as unconscious inferences applied to imperfect sense
data; and efficient coding has provided important insights into
the receptive field structure of visual circuitry (Field, 1987; Dan
et al., 1996; Olshausen and Field, 1996, 2000). But none of
these approaches can explain the qualities that we actually see in
response to simple stimuli like those in Figures 3 and 4, which we

take to be the main challenge in seeking to rationalize biological
vision.

Summary

Visual perception is characterized by the basic qualities of
lightness, brightness, color, size, distance, orientation, speed and
direction of motion ordered over some range. These perceived
qualities and their order within these ranges, however, do not
align with reality. Understanding why requires a framework that:
(1) recognizes that the major challenge for biological vision
is evolving a strategy that works despite the inability of the
visual system to recover physical properties; (2) shows how this
challenge can be met by responses determined entirely by trial
and error; (3) explains why the resulting perceptions work even
though they are at odds with real-world measurements; and (4)
demonstrates how and why trial and error responses eventually
align perceptions with the frequency of occurrence of stimuli on
the basis of rewarded associations. Although different from other
interpretations of vision, this alternative framework is so far the
only theory that can explain the variety of visual qualities we
perceive in a principled way.

This understanding of vision and the evidence that supports
it is also consistent with the receptive field properties of early
level visual neurons (Hubel and Wiesel, 2005), and the goal of
efficient neural coding (Graham and Field, 2007). Moreover,
when evolution using these principles is simulated using neural
networks, the circuitry that emerges is similar to the circuitry
found in the early level visual systems of experimental animals
(Ng et al., 2013; Morgenstern et al., 2014a,b). Looking forward,
if vision indeed operates in this way, it is likely that other neural
functions integrated with vision also operate on the basis of
empirical associations.
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