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Abstract
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) pat-

terns into action. Different mental activities modulate spontaneous EEG rhythms in various

ways. Non-stationarity and inherent variability of EEG signals, however, make reliable rec-

ognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for

the first time achieve - on average - binary classification performance of about 75%. Perfor-

mance in users with central nervous system (CNS) tissue damage is typically lower. User

training generally enhances reliability of EEG pattern generation and thus also robustness

of pattern recognition. In this study, we investigated the impact of mental tasks on binary

classification performance in BCI users with central nervous system (CNS) tissue damage

such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kines-

thetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the

"gold standard" and mainly used to modulate EEG patterns. Based on our recent results in

able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. men-

tal subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI)

tasks significantly increases classification performance of induced EEG patterns in the se-

lected end-user group. Within-day (How stable is the classification within a day?) and be-

tween-day (How well does a model trained on day one perform on unseen data of day two?)

analysis of variability of mental task pair classification in nine individuals confirmed the hy-

pothesis. We found that the use of the classical MI task pair hand vs. feed leads to signifi-

cantly lower classification accuracy - in average up to 15% less - in most users with stroke

or SCI. User-specific selection of task pairs was again essential to enhance performance.

We expect that the gained evidence will significantly contribute to make imagery-based BCI

technology become accessible to a larger population of users including individuals with spe-

cial needs due to CNS damage.
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Introduction
Some mental activities induce changes in spontaneous electroencephalogram (EEG) rhythms
in a very specific and predictive way. This means that an individual can generate distinct EEG
patterns at will and independently from sensory stimulation. Brain-computer interfaces (BCIs)
detect such EEG patterns and translate them into action. See [1–6] for a review on
BCI technology.

The majority of modern imagery-based BCIs utilize motor imagery (MI) to encode mes-
sages (e.g. [4, 7–16]). MI, that is the kinesthetic imagination of movement, induces transient
changes in sensorimotor EEG rhythms. More precisely, MI results in amplitude suppression
(event-related desynchronization, ERD) or enhancement (event-related synchronization, ERS)
in specific oscillatory components over defined brain areas [17]. The literature rarely provides
very specific details on the MI tasks individual users perform. Common MI tasks are the kines-
thetic imagination of movements of the left or right hand (e.g. wrist extension and flexion or
squeezing movements) or both feet (e.g. dorsiflexion or foot pedal pressing tasks). We typically
ask users whether they have preferred movements or whether they are familiar with specific
movements from daily activities (e.g. sport-related activities or playing a musical instrument).
Once movements are identified, subjects are usually asked to repetitively perform the mental
motor task at a comfortable speed for a given period of time with the aim to induce sustained
ERD and/or ERS patterns. Note that users are asked to keep their attention on the MI task and
avoid imagining very fast or very slow movements. The issue is to prevent users from imagin-
ing automated motion sequences or successions of individual isolated movements. In both
cases, (sub)cortical neural networks are activated in different ways, which may result in discon-
tinuous ERD and/or ERS patterns (for example, mu rhythm ERD is followed by beta ERS (re-
bound) after end of individual movement). This is in line with the finding that sensory motor
rhythm BCI performance correlates with prefrontal activation [18].

Operating mental imagery-based BCIs is a skill that has to be trained [3, 19, 20]. Users need
to learn to generate EEG patterns reliably (feedback or reinforcement learning) for the machine
to be able to translate them correctly (machine learning). Conventional training methods, how-
ever, often do not lead to the desired success (“BCI inefficiency”) [12, 21–23]. Discrimination
between two distinct MI tasks is< 70% in about 40% of users [12]. There is common agree-
ment that accuracy below 70% does not allow useful BCI operation [24]. Non-stationarity and
inherent variability of EEG is one major issue for pattern classification: EEG signals typically
change over time and EEG patterns are user-specific. Data-based time-invariant models are
commonly used to characterize time-variant EEG [4, 25–27]. Various methods including time-
invariant subspace decomposition, online co-adaptation and transfer learning are currently
being examined to enhance classification performance [15, 28–31]. First results of these novel
approaches are encouraging. Parallel to studying machine learning aspects of BCI to enhance
performance, we have been investigating EEG pattern generation. We showed that kinesthetic
imagery induces patterns that are more distinct and result in higher classification perfor-
mances, when compared to the use of visual imagery of movements [32]. Furthermore, we
found that the use of hand vs. feet MI leads to higher classification performances compared to
the use of left hand vs. right hand MI tasks [33, 34]. Encouraged by the result that mental task
choice impacts on pattern recognition performance, we recently started exploring possible al-
ternatives to MI. Besides the use of MI, the literature reports on the use of e.g. mental mathe-
matics, spatial navigation or object manipulation for operating a BCI (e.g. [7, 35–37]). Since
the already mentioned mental tasks activate spatially distinct cortical areas, we hypothesized
that an appropriate pair-wise combination of mental tasks inherently leads to highly discrimi-
nable EEG patterns [38]. Firstly, in off-line simulations [38–40] and recently, in online studies
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[37, 41], we were able to confirm our hypothesis. Key to enhance performance was the combi-
nation of “brain-teaser”, i.e., tasks that require problem specific mental work (e.g. mental sub-
traction or word association), and “dynamic imagery” tasks (e.g. MI or spatial navigation) [38],
as well as subject-specific selection of task combination [37].

The mental task pair studies presented above were conducted in able bodied users in lab en-
vironments. Our primary goal in the context of BCI, however, is to develop novel augmentative
communication applications and motor function restoration for individuals with functional
disability (e.g. [11, 31, 42–45]). Functional disability means any long-term limitation in activity
resulting from central nervous system (CNS) tissue damage. Highest priority is to provide
them with a switch function, i.e., a reliable binary control signal. The goal of this study is to
provide baseline evidence that appropriate pair-wise combination of mental tasks leads to en-
hanced EEG pattern discrimination in users with functional disability. The performance in this
end-user group is typically lower than the performances able-bodied users achieve (< 70%, e.g.
[46]).

Results
To establish a baseline, we recorded multi-channel EEG while participants performed five dis-
tinct mental tasks on two different days. Mental tasks included word association (WORD),
mental subtraction (SUB), spatial navigation (NAV), MI of the right hand (HAND), and MI of
both feet (FEET). User details and the number of trials with artifacts that were excluded from
the analysis are summarized in Table 1. Within-day and between-day variability of pair-wise
single-trial mental task classification was investigated by offline simulation (10-times 10-fold
cross validation). Within-day variability was assessed by ranking the discriminability of mental
task pairs for each day separately. Peak true positive rate (TPR) and true negative rate (TNR)

Table 1. Participant details. The ID, gender (Gndr), age in years, months (Mth) since occurrence and the type of event are shown for each individual. The
number of trials with artifacts excluded from the analysis are listed for day 1/day 2 for each mental task. The last column lists EEG channels with artifacts that
were excluded from analysis.

Participant details Artifacts

ID Gndr Age Mth Event WORD SUB NAV HAND FEET Total Channels excluded

A M 42 6 Locked-in syndrome due to brainstem stroke 6/8 12/4 5/6 7/3 6/5 37/
28

AFz, F7, F6, T3, P7

C F 31 5 Locked-in syndrome due to brainstem stroke 4/9 3/4 3/10 1/7 2/11 14/
43

AFz, F7, F6, T4, PO3, O1

D F 33 2 Spinal cord injury C5, ASIA C 1/2 6/3 3/4 1/3 1/3 13/
19

AFz, F7, F6, PO4

E F 40 255 Spinal cord injury C5, ASIA A 8/1 6/6 7/9 19/8 16/12 57/
38

AFz, F7, F6, T3, T4, P7, P8,
PO4

F F 57 5 Massive hemorrhagic stroke in left
hemisphere

3/2 0/3 2/5 0/3 1/4 7/19 F7, F6, T3

G F 43 27 Spinal cord injury C5, ASIA C 2/6 5/3 5/4 5/5 3/5 21/
25

F7, F6, C4, P6

H F 20 6 Hemorrhagic stroke parietotemporal, right
central no cranium

2/3 8/1 6/2 4/2 2/0 23/
10

AFz, F7, F6, T3, P7

J M 36 53 Spinal cord injury C5, ASIA A 7/4 4/5 6/8 11/9 9/6 38/
34

AFz, F7, F4, F6, FC3, FC4,
T4, P7, P8

L M 38 15 Spinal cord injury C4, ASIA A 4/9 5/4 4/6 4/7 7/4 25/
32

AFz, F7, T3, T4

doi:10.1371/journal.pone.0123727.t001
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values in the range of 43–94% were calculated for individual subjects (Fig 1(a)). The temporal
dynamics of TPR and TNR detections are shown in Fig 1(b). To favor a balanced classification
performance, imagery pairs are ranked based on the geometric mean accuracy

GMAC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPR � TNRp
. With a median GMAC over participantsmd� 77% on both days the

class combination SUB vs. FEET achieved the highest single-trial classification performance.
For seven out of the nine participants' peak GMAC> 70% (range 70–83%) were found on both
days. Performances for mental task pairs WORD vs. HAND, SUB vs. HAND, and WORD vs.
FEET weremd� 70% andmd� 77% on day one and two, respectively. The mental task com-
bination HAND vs. FEET performed worst in average on both days (md� 64%). For this pair
md> 70% was calculated only for 4 out of 9 subjects (day 1: subject E, 71%; F: 74%; day 2: F,
76%; G, 84%; C, 71%;). There was a statistical significant difference in performance depending
on the mental task pairs involved (Friedman Test, X2(9) = 25.95, p = 0.0021). Post-hoc analysis
with Wilcoxon signed rank tests was conducted with a Bonferroni correction applied, resulting
in a significance level set at p = 0.05/45 = 0.0011 (pair-wise comparison of performance of 10
mental task pairs results in 45 combinations). Median GMAC over participants and days (MD)
are listed in Fig 1(a). We found that both SUB vs. FEET (Z = −3.375, p = 0.0007) andWORD
vs. HAND (Z = −3.288, p = 0.0010) performed significantly better than HAND vs. FEET, as
well as that WORD vs. FEET performed better than NAV vs. FEET (Z = −3.332, p = 0.0009).

Between-day variability was assessed by training BCI models for each participant with data
from day one and by applying the model on day two. To mitigate the problem of EEG non-sta-
tionarity between days, the classifier bias was adapted from the first few trials of day two [47].
Fig 2(a) summarizes peak TPR and TNR. Corresponding curves are summarized in Fig 2(b).
Withmd = 82% and seven out of nine subjects performing better than GMAC> 70% the men-
tal task combination WORD vs. HAND achieved the highest overall performance. Worst per-
formance was calculated for HAND vs. FEET (md = 68%). Only for one participant the
performance threshold ofmd> 70% was exceeded. Achieved performances vary among users.

Discussion
Both within-day analysis and between-day simulation confirm our hypothesis: Individual se-
lection of mental task pairs significantly boosts binary classification accuracy of induced EEG
patterns in end-users with functional disability.

Motor imagery tasks
The literature shows that the use of HAND vs. FEET mental tasks pairs leads to binary
accuracy< 70% in about 40% of able-bodied first-time BCI users [12]. Initial classification per-
formance in users with functional disability is typically lower and improves with training (e.g.
[13, 42]). The results of this study support such an initial performance distribution. There can
be several reasons why the use of MI leads to performance slump in users with functional dis-
ability. One explanation could be that central nervous system (CNS) tissue damage results in
changes in structural connectivity that lead to unspecific activity and hence to very similar
EEG patterns. A different explanation could be the enjoyment of performing MI. After each ex-
periment, participants were asked about the ease and enjoyment of performing the different
mental tasks. The analyses of self-reports showed that participants enjoyed motor tasks less
than non-motor tasks [48]. The use of MI of affected body parts may cause some adverse ef-
fects on imagery (for example, frustration due of the inability to move). A recent study in able-
bodied individuals suggests that the sensation of body ownership makes MI become “easier”
[49]. Moreover, sensation of body ownership has a positive impact on BCI performance [50].
This, however, also raises the question on whether or not body ownership is fundamental for
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Fig 1. Within-day variability results. (a) Cross-validated within-day TPRs and TNRs. Peak TPR and TNR values, respectively, for the segment St = [t−1 t]
with the highest geometric mean accuracyGMAC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPR � TNRp
during the imagery time period (t = [3.0, 3.5, . . ., 9.5]s after trial on-set) are presented. For

better interpretation of the results, the rows and columns are sorted according to the medianGMAC over class-pairs and day (1 and 2), and median over
participants (user ID: A-L), respectively. Table entries are subdivided into three different levels of performances and color-coded. The last three columns list
medianGMAC values for each class-pair. The first column shows the medianGMAC over subjects and days (MD). Column two and three list the median
GMAC (md) and the number of subjects (n) withGMAC > 70% for each day. (b) Mean TPR and TNR curves, averaged over all subjects, for each day and
mental task pair individually. The visual cue providing the information on the mental task to be performed was presented at t = 3s (vertical line).

doi:10.1371/journal.pone.0123727.g001
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good MI-BCI performance? Individuals with motor disability may neglect or have lost the sen-
sation of body ownership/agency over affected muscles. As a consequence, motor imagery of
affected body parts may not be best strategy for gaining reliable BCI control without extensive
training. Addressing this question is important future work and will help gaining a better un-
derstanding of the underlying neural processes. The result that MI tasks pairs induce EEG pat-
terns that are suboptimal in terms of pattern classification does not mean that MI should no
longer be used. Results of this study and from the literature show that MI leads to
accuracy> 70% in some BCI users with functional disability. Moreover, for applications such
as BCI-based stroke motor function rehabilitation the use of MI is most appropriate and rea-
sonable [51–53].

Fig 2. Between-day variability results. (a) Simulated peak TPR and TNR values (color coded), respectively, for the segment St with the highestGMAC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPR � TNRp
during the imagery period (t = [3.0, 3.5, . . ., 9.0]s). The column on the right list the medianGMAC (md) and the number of subjects (n) with

GMAC > 70%. (b) Mean TPR and TNR curves for day two, averaged over all participants, for each mental task pair individually.

doi:10.1371/journal.pone.0123727.g002
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“Brain-teasers” vs. “dynamic imagery”mental tasks
The increase in binary classification performance that results from using a combination of
“brain-teaser” and “dynamic imagery” tasks as well as an individual selection of tasks is in line
with previous offline and online studies with able-bodied users [37, 38, 40]. In general no clear
differences in the computed performances between individuals with SCI and stroke were ob-
served. We conclude that selecting user-specific mental task pairs enables a large number of in-
dividuals to benefit from BCI technology.

Between-day model transfer
The between-day variability analysis clearly shows different dynamics of the distinct mental
tasks. Specifically for the best performing tasks WORD and SUB, which peak about 2 seconds
earlier when compared to HAND and FEET, respectively (Fig 2(b)). This is a result of the se-
lected model transfer procedure. We trained our BCI model with features extracted from 1-s
EEG segments on day one. Incorporating more information on temporal dynamics will further
enhance the prediction performance and reduce misclassification. However, at the cost of time-
ly feedback presentation. We typically try to minimize feedback delays to support reinforce-
ment learning in users. One open question in the context of temporal dynamics is whether
“more frequent but less accurate” (update rate> 10Hz) or “less frequent but more accurate”
(� 1 Hz) feedback is more beneficial for BCI skill acquisition.

Note that for the between-day variability analysis we were interested in examining the maxi-
mum performance that can be achieved when transferring the BCI model between sessions.
Several classifiers were computed for each mental task pair. The results reported summarize
the maximum performance achieved by an individual classifier on unseen data of day two. The
common approach for BCI is to select parameters on day one that achieve maximum classifica-
tion performance and apply them to day two. Evaluation of the simulation results when apply-
ing the maximum performance criterion for parameter selection, however, led to
accuracies� 80% only in 4 out of the nine participants on day two. We emphasize this drop in
performance issue because our between-day model transfer simulation results suggests that the
common maximum classification performance strategy is not optimal. Finding more appropri-
ate selection criteria for parameter optimization is of utmost importance and needs closer ad-
dressing in the future.

Conclusion
To conclude, in this study we systematically examined the impact of mental task choice on the
performance of mental imagery-based BCIs in individuals with CNS tissue damage. The results
of the study support that the choice of mental task significantly impacts on the classification
performance in first-time imagery-based BCI users with functional disability. And, although
motor imagery is the “gold standard”, the classification between hand vs. feet performs well
only in a minority of users without training. The use of “brain-teaser” and “dynamic imagery”
mental task combinations leads to significant performance increase in the majority of end-
users with functional disability. Furthermore, the performance level that end-users with func-
tional disability achieve is comparable to the performance that able-bodied users achieve.

Methods

Participants
Nine individuals with severe motor disabilities (seven female, age range 20–57 with a median
age of 38, SD = 10) consented to participate in this study. The study, including the
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measurement protocol and the consent procedure were approved by the local ethics board,
“Comitè d’Ètica Assistencial de l’Institut Guttman”. All participants gave informed, oral con-
sent. In addition, written consent was obtained for every participant. The signed consent forms
are stored with the participants’ clinical files. In many cases, written consent had to be provided
by the participants’ legal representatives as many participants were not able to write due to tet-
raplegia. Details of the participants are summarized in Table 1. Participants attended a rehabili-
tation program at the Guttmann Institute in Barcelona, Spain, were naïve to the task and did
not receive BCI training before participating in this study.

Recordings
EEG was recorded from 30 electrode channels placed on the scalp according to the internation-
al 10–20 system. Electrode positions included channels AFz, F7, F3, Fz, F4, F8, FC3, FCz, FC4,
T3, C3, Cz, C4, T4, CP3, CPz, CP4, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO3, PO4, O1, and O2.
Reference and ground were placed at the left and right mastoid, respectively. Additionally, elec-
trooculographic (EOG) activity was recorded from two electrodes placed on the outer canthus
of the left eye and above the nasion. The g.tec GAMMAsys system with g.LADYbird active
electrodes and two g.USBamp biosignal amplifiers (Guger Technolgies, Graz, Austria) was
used for recording the biosignals. Biosignals were band pass filtered 0.5–100 Hz (notch filter at
50 Hz) and sampled at a rate of 256 Hz.

Experimental paradigm
The experiment was conducted on two different days with at least 5 days in between within a
two-week period. Details on the cue-guided experimental paradigm are summarized in Fig 3.
The screening session for a single subject consisted of 8 runs resulting in 40 trials of each class
for each day. One single experimental run consisted of 25 cues, with 5 of each mental task.
Cues were presented in random order. Participants were asked to continuously perform the
specified mental imagery task for 7 seconds. Mental tasks included:

• Word association (WORD): Generation of as many words possible beginning with the pre-
sented letter in Spanish language (e.g. B = bank, bold, buy, etc). Letters were presented in
pseudo-randomized order.

• Mental subtraction (SUB): Calculation of successive elementary subtractions from the pre-
sented problem. More precisely, the task was to subtract a random 1-digit number from a
randomly selected number between 15–30 (e.g. 27-6 = 21, 21-6 = 15, etc).

• Spatial navigation (NAV): Imagination of navigating through a familiar house (flat) thereby
focusing on orientation.

• Motor imagery of the right hand (HAND): Kinesthetic imagination of repetitively squeezing
a hand-sized ball with the own right hand.

• Motor imagery of both feet (FEET): Kinesthetic imagination of repetitive self-paced move-
ments of both feet without any actual movement.

Participants were seated about 0.7 m in front of a 17 inch computer monitor. Before each
experiment began, participants received instructions on the task to be performed (both in writ-
ing as slideshow and verbally) and were asked to relax, avoid movements and reduce blinking
during the experiment. To get acquainted with the experimental paradigm, subjects were asked
to perform one exercise run consisting of two trials per class before the recording of imagery
trials started. After the experiment participants were asked about the quality of their imagery,
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and the ease and enjoyment of mental tasks (5-point rating scale). Results on the question-
naires are presented elsewhere [48].

Data Analysis. Recorded EEG signals were visually scored by an expert and trials contami-
nated with muscle or eye movement activity within the imagery period were excluded from fur-
ther analysis. Furthermore, noisy channels or channels severely contaminated with artifacts
were excluded. Different channels were affected on either of the two days. To keep the informa-
tion for single-trial classification identical on both days, affected channels were removed from
both days. However, due to this procedure the number of EEG channels and the number of tri-
als included in the analysis was different for each subject. Please see Table 1 for a detailed list of
channels/trials that were removed/excluded.

The procedure applied in [40] for comparing within- and between-day variability in able
bodied individuals was utilized. All possible mental task pair combinations were analyzed sepa-
rately. The well established method of common spatial patterns (CSP) was used to design class
specific spatial filters in the 8–30 Hz frequency band, and Fisher's linear discriminant analysis
(LDA) classifier was used to classify the log-transformed normalized variance from 4 projec-
tions (m = 2) [54]. The CSP method projects multi-channel EEG data segments from two clas-
ses into a low-dimensional spatial subspace in such a way that the variances of the time series
are optimal for discrimination ([55], for a tutorial see [56]). Designing CSP filters involves two
steps. The first step is to whiten the EEG, i.e., to transform the distribution of the EEG into a
spherical Gaussian distribution with covariance matrix S = σ2 � I, where I denotes the identity
matrix. The second step is to align the variances σ2 projected along the principal axes with the
coordinate axes (rotation). Only the most discriminative projections Zi, i = 1, . . ., 2m, obtained

Fig 3. Experimental paradigm. The duration of single imagery trials (Ti) was 10 s. At t = 0 s, a cross was presented in the middle of the screen. Participants
were asked to relax and fixate the cross to avoid eye movements. At t = 3 s, a beep was sounded to get the participant’s attention. The cue indicating the
requested imagery task, one out of five graphical symbols, was presented from t = 3 s to t = 4.25 s. At t = 10 s, a second beep was sounded and the fixation-
cross disappeared, which indicated the end of the trial. A variable break (inter-trial-interval, ITI) lasting between 2.5 s and 3.5 s occurred before the start of the
next trial. Participants were asked to avoid movements during the imagery period, and to move and blink during the ITI. Experimental runs began and ended
with a blank screen (duration 4 s). Modified from [38].

doi:10.1371/journal.pone.0123727.g003

Individually Adapted Imagery Improves BCI Performance

PLOS ONE | DOI:10.1371/journal.pone.0123727 May 18, 2015 9 / 14



from the m-largest and m-smallest eigenvalues of the principal axes, are used for classification.
For each projection Zi the variance of the projection within the analyzed segment is computed
and normalized by division by the sum of the variances of the 2m projections. Features used
for classification are computed by taking the logarithm of the normalized values. Fisher’s LDA
classifier is a linear hyper-plane classifier. LDA projects high-dimensional data onto a line and
performs classification by thresholding in the projected one-dimensional space. The projection
maximizes the distance between the means of the two classes while minimizing the variance
within each class. See [57] for more details on LDA.

Within-day variability analysis. Each day was analyzed separately to rank the discrimina-
bility of the imagery pairs and to evaluate the within-day variability. To get an overview of tim-
ing and dynamics of the induced EEG patterns, trials were subdivided into thirteen 1-s data
segments with 0.5 s overlap (St = [t − 1 t], t = 3.0, 3.5, . . ., 9.5s). For each St and imagery pair,
CSPs and LDA were computed and evaluated using a 10-times 10-fold cross-validation statis-
tic. To favor a balanced classification performance, we ranked the imagery pairs based on the

geometric mean accuracy GMAC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPR � TNRp
and not on the arithmetic mean accuracy.

Between-day variability Analysis. BCI simulations were computed to assess the between-
day variability. For every 1-s time segment St = [t − 1 t]s, t = 3.0, 3.5, . . ., 9.0s, within the imag-
ery period of day one, CSP and LDA methods were trained and applied to day two. We typical-
ly use 1-s segments for classification because this segment length results in a reasonable
tradeoff between classification accuracy and system reaction time during on-line feedback con-
trol [58]. To account for non-stationarities in EEG due to possible differences in the electrode
montage and impedances between days and other noise sources, the first 4 trials of each class
from day two were used to update the bias of the LDA [47]. CSP filter and LDA weights were
not modified. Corresponding to on-line BCI signal processing, CSP filters were applied to 1-s
EEG segments and classified by the re-biased LDA classifier. For comparison reasons, only
EEG segments with a 0.5 s time-lag (1-s segment length) as used in the within-day variability
analysis above were calculated.
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