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Abstract

Normal protein-protein interactions (normPPIs) occur with high fidelity to regulate

almost every physiological process. In cancer, this highly organised and precisely reg-

ulated network is disrupted, hijacked or reprogrammed resulting in oncogenic

protein-protein interactions (oncoPPIs). OncoPPIs, which can result from genomic

alterations, are a hallmark of many types of cancers. Recent technological advances

in the field of mass spectrometry (MS)-based interactomics, structural biology and

drug discovery have prompted scientists to identify and characterise oncoPPIs. Dis-

ruption of oncoPPI interfaces has become a major focus of drug discovery programs

and has resulted in the use of PPI-specific drugs clinically. However, due to several

technical hurdles, studies to build a reference oncoPPI map for various cancer types

have not been undertaken. Therefore, there is an urgent need for experimental

workflows to overcome the existing challenges in studying oncoPPIs in various

cancers and to build comprehensive reference maps. Here, we discuss the important

hurdles for characterising oncoPPIs and propose a three-phase multidisciplinary

workflow to identify and characterise oncoPPIs. Systematic identification of cancer-

type-specific oncogenic interactions will spur new opportunities for PPI-focused drug

discovery projects and precision medicine.
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1 | INTRODUCTION

Multimodal combinations of radiotherapy, surgery, biologicals and

chemotherapy have become the mainstay of cancer therapeutics.1,2

These modalities often lack selectivity which can lead to adverse

effects such as chemotherapy-induced cardiotoxicity.3,4 Quality of

life in surviving patients is thereby compromised. In contrast,

targeted molecular therapies offer a great potential to combat

various cancer types with minimal harm to normal cells or organs.5-7

The main purpose of molecular therapy in oncology is to target
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specific biological pathways activated by oncoproteins in tumour cells.

Oncoproteins are involved in various signalling pathways and mediate

a large number of oncogenic protein-protein interactions (oncoPPIs).8-11

OncoPPI interfaces offer great potential for rational drug development

and targeted cancer therapy.8,9,12-19

Recent technological advances in the fields of drug discovery and

structural biology have accelerated the characterisation of oncogenic

protein interfaces and rational drug design.20,21 In recent years, sev-

eral oncoPPI modulators have been tested in the clinical setting, with

some now approved for clinical use.17,22,23 However, most PPI-based

drug discovery projects have focused on a relatively limited number

of oncoPPIs detected in focused small-scale studies. Therefore, identi-

fication of more cancer-specific oncoPPIs in a proteome-wide manner

will increase the potential for drug target discovery, improving options

for targeted therapies.

Cancer is a highly complex disease featuring complex geno-

types and gene dysregulation, which can result in the formation of

complex oncogenic interaction networks.19,24-26 Better under-

standing of the composition of protein interaction networks of

each cancer will greatly enhance our molecular understanding of

cancer biology and provide us with the ability to improve patient

outcomes through precision and personalised medicine.11,27

Efforts to map oncoPPI networks have already been initiated, for

example, lung cancer-specific oncoPPI networks (~400 PPIs) have

been generated on a small-scale for a few well-known cancer

genes.11

Several publicly available databases such as BioGrid,28 BioPlex,29

IntAct,30 MINT31 and HIPPIES32 regularly update human protein

interaction networks by curating PPIs from both focused low-

throughput experimental studies and large high-throughput mass

spectrometry (MS) and yeast two-hybrid (Y2H) datasets. Databases

such as PINA33 integrate cancer-focused transcriptomics and proteo-

mics information with PPI datasets to draw a cancer-specific protein

interaction network. However, these maps do not distinguish normal

PPIs (normPPIs) from oncoPPIs because nearly all affinity purification

MS (AP-MS)-generated PPI datasets have been constructed using

transformed cell lines, which contain abnormal karyotypes and thus

an abnormal interactome profile. Hence, a focus on generating com-

prehensive maps of the oncoPPI networks for human cancers is

crucial.

The protein interaction networks of oncoproteins which are

referred to as “oncoPPIs” first appeared in the literature in 1997.34

Since then, these terms have been used in many publications mostly

for well-known oncoproteins (eg, KRAS) and tumour suppressors (eg,

P53), which are categorised as cancer genes in many cancers.35

Recent large-scale genome-wide analysis of 33 different cancer types

involving 10 000 tumour samples reported that 55% (ie, 142 out of

258) of cancer genes and their mutations are associated with a single

cancer.35 This strongly suggests that oncoPPI networks could be

unique for many cancer types as their cancer driver genes and geno-

mic alterations vary. Here, we define oncoPPIs as any direct PPIs that

arise from genomic alterations in tumour cells. Identification and char-

acterisation of oncoPPIs for each cancer can guide targeted molecular

therapies and precision medicine. In the following sections, we discuss

the genomic alterations and approaches to build reference oncoPPI

maps for various cancers.

2 | GENOMIC ALTERATIONS RESULT IN
COMPLEX oncoPPI NETWORKS

The genomic landscapes of many tumours from diverse cancers

have been described. Coding and noncoding mutations, as well as

structural variants such as copy number variations, rearrangements,

insertions, inversions and translocations have each been defined

and characterised.35-39 How pathogenic genomic alterations lead to

complex oncogenic traits has remained one of the major challenges

in cancer biology. Part of the answer lies in defining how these

alterations are linked to oncogenic protein networks, thus enabling a

network level understanding of the effects of genomic alterations on

cellular functions.40-43

The majority of oncoPPIs arise from genomic alterations that

directly affect protein interactions via different molecular mechanisms,

including edgetic perturbation and/or node removal42 (Figure 1A). In

edgetic perturbation, mutations can change the folding free energy of

interacting partners or perturb covalent interactions43,44 and involves

change of function. In node removal, genomic alterations lead to the

aggregation or misfolding of the target protein, thereby causing the

loss of its entire interaction network.9 Nodal removal involves loss of

function. Genomic alteration in regulatory regions can also indirectly

affect protein interactions by dysregulating the expression or

mislocalisation of target proteins.

2.1 | Genomic alterations can directly affect PPI
networks

Analysis of pan-cancer genome studies show that noncoding muta-

tions are less frequent than coding mutations. About 91% of tumours

carry at least one driver mutation, with an average of 2.6 coding

mutations per tumour.36,37 The number of large-scale studies

reporting the effects of coding mutations on disease-specific PPI

networks has increased rapidly.40,41 A recent comprehensive investi-

gation of over 10 000 tumour exomes demonstrated that disease-

associated germline variants as well as somatic missense mutations

are significantly enriched in PPI interfaces compared to germline

variants found in healthy individuals.40 Further characterisation of

some of the variants confirmed that disease-associated variants dis-

rupt PPIs and regulate tumour growth.40 In a large-scale study using

the binary Y2H system, PPIs were assessed for ~2500 pathogenic

missense mutations.41 Approximately, 70% of the missense mutations

had no effect on protein stability and folding, however half of these

mutations resulted in edgetic perturbation. In a comprehensive

assessment of somatic missense mutations within 304 cancer-specific

PPI interfaces for which structural data was available, 16 interfaces

(~5%) were disrupted.45
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Missense or truncation mutations affecting protein interactions

can rewire biological processes in cancer as well as developmental dis-

orders.41,46 This has been observed in melanoma where two missense

mutations in cyclin-dependent kinase 4 (CDK4), R24H and R24C,

have been shown to confer resistance to cyclin-dependent kinase

inhibitor 2A (CDKN2A) inhibitors.47 In a pairwise interaction study, it

was shown that CDK4 R24C and R24H, but not other putative

disease-causing mutations (N41S and S52N), disrupted CDK4 binding

to CDKN2C.48 Notably, perturbation of the CDK4-CDKN2C complex

leads to drug resistance phenotypes in melanoma patients.

In a recent report in hereditary pancreatic cancer, it was shown

that a truncated RAB-like protein 3 (RABL3) mutant markedly

increased its binding affinity to RAP1 GTPase-GDP dissociation stim-

ulator 1 (RAP1GDS1) protein, a chaperon involved in prenylation of

RAS GTPases. Consequently, the RAS signalling pathway was

disrupted leading to enhanced cell proliferation and tumour growth.49

In another study, it was shown that a missense mutation, R183W, in

serine/threonine-protein phosphatase 2A regulatory subunit 1A

(PPP2R1A) disrupted its binding to the canonical subunits of the

PP2A complex B module, including B55 and B56 proteins, and abro-

gated growth suppressive effects.50 However, mutant PPP2R1A also

exhibited increased binding to striatin subunit family members, dem-

onstrating that a missense mutation can confer both loss- and gain-

of-function phenotypes.50,51

2.2 | Genomic alterations modulate PPI networks
via gene dysregulation

Many cancers from diverse tissues exhibit dysregulated gene expres-

sion despite no significant genomic alterations in the protein coding

region of the differentially expressed genes. Single nucleotide variants
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(partial normPPI loss)
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(entire normPPI loss)

CTCF
Target genes

MUC1 EGFR

oncoPPI
formed

Normal Cancer
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Oncogene Tumour supressor

Oncogene

normPPI loss
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(C) (D)
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F IGURE 1 Genomic alterations, gene dysregulation and protein mislocalisation in cancer give rise to oncoPPIs. (A) Schematic illustration of
edgetic perturbation and node removal in cancer and their impact on normal protein interaction networks. Missense mutations are depicted as
coloured stars. Specific interactions can be interrupted (dotted line, blue star) or enhanced (thick line, brown star) or created (green star) by a
missense mutation, whereas complete loss of the node protein (dotted circle) leads to the loss of the entire interaction network. (B) Gene
dysregulation is another source of oncogenic network formation. In normal cells (upper panel), Gene 1 (ie, oncogene) is inactive whereas Gene
2 (ie, tumour suppressor) is active and normPPIs occur. In cancer (lower panel), Gene 1 is activated and initiates oncoPPIs whilst Gene 2 is
silenced and normPPIs are lost. (C) Genome organising proteins such as CTCF regulate genome folding globally in a highly organised manner.
In cancer, CTCF binding sites or CTCF itself can be mutated leading to loss of CTCF occupancy. This causes disorganisation of genome
architecture and dysregulation of neighbouring genes. Dysregulated genes can potentially define new interaction networks. (D) In cancer,
mislocalisation of proteins can also initiate new interaction networks. For example, MUC1 and EGFR are normally expressed separately at the
cell surface. However, in cancer, MUC1 forms oncogenic PPIs with EGFR, regulating its nuclear localisation and hence transcriptional
regulation of target genes
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within cis-regulatory regions of cancer genes have been shown to

greatly modulate gene expression in a range of cancers.52,53 These

mutations can lead to transcriptional activation or repression of the tar-

get genes. For example, the promoter region of telomerase reverse

transcriptase (TERT) is frequently mutated in a range of cancers54-56

and linked to increased tumour growth and metastasis (Figure 1B).

Genomic alterations can also occur in trans-regulatory elements, distant

from cis-regulatory elements of the given cancer genes. For instance,

mutations or structural variations in DNA motifs bound by genome-

organising proteins, such as CCCTC-binding factor (CTCF) and cohesin,

or transcription factors, indirectly lead to the dysregulation of many

genes in various cancers57-59 (Figure 1C). Mutations that occur within

topologically associating domain (TAD) boundaries or in enhancer and

insulator regions can result in coordinated dysregulation of a cluster of

neighbouring genes located within the same TAD.57-60 Mutations in

CTCF itself, and other genome organising proteins such as the cohesin

subunit STAG2, can have a similar impact.61,62

In gastrointestinal cancer, a CTCF-binding motif on chromosome

6 is disrupted by mutations at TAD boundaries flanking centromere

protein Q (CENPQ) and methylmalonyl-CoA mutase (MUT) genes57

(Figure 1C). In acute myeloid leukaemia, the oncogenic MDS1 and

EVI1 Complex Locus (MECOM) protein is activated due to a genomic

inversion event that occurs in neighbouring TADs which disrupts

CTCF-mediated genome organisation.63 Such aberrant activation of

proteins can potentiate illicit oncoPPIs and redefine the oncogenic

potential of cancer cells.64 As another example, the aberrant expres-

sion of CTCF-like (CTCFL), a paralogue of CTCF,65 in treatment-

resistant neuroblastoma alters genome folding and leads to the forma-

tion of superenhancers that consequently activate proneural proteins

and promote a resistance phenotype.66 Another example is the

bromodomain (BRD)-containing protein family members, which are

readers of lysine acetylation, that are highly elevated in many cancers.

BRD4 overexpression leads to the formation of an oncogenic complex

with positive transcription elongation factor (p-TEFb) leading to acti-

vation of RNA Polymerase II (RNAPII) at late mitosis.67

Together, these examples highlight the impact that acquired

mutations and structural variations can have on oncoPPI networks.

These can directly rewire new oncoPPI networks or indirectly lead to

the dysregulation of many genes which then form aberrant protein

interaction networks to promote tumour growth and metastasis.

Therefore, defining oncoPPIs for each cancer not only sheds light on

molecular mechanisms of malignant phenotypes, but also paves the

way to design more effective treatments.

2.3 | Mislocalisation of oncoproteins can initiate
new classes of oncoPPI networks

Spatial compartmentalisation of proteins and organelle-specific inter-

actions enable cells to conduct numerous biological processes in par-

allel. However, the subcellular relocalisation of the proteins as a rapid

cellular response to internal or environmental stimuli can elicit new

protein interaction networks. An exemplar is the receptor tyrosine-

protein kinase HER2, an oncogene associated with progression of

aggressive types of breast cancer. HER2 is expressed on the cell sur-

face where it can function as a receptor or can localise to the nucleus

upon stimulation to modulate transcription of target genes.68,69

Another example is alpha-enolase (ENO1), a potential prognostic

marker which is elevated in various types of cancers and is linked to

tumourigenesis.70 ENO1 can exhibit distinct functions in different cel-

lular locations: (a) as a gene transcriptional repressor in the nucleus,

where it exhibits enzymatic function in the cytosol regulating the pho-

sphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling

pathway; and (b) as a plasminogen receptor in the plasma mem-

brane.71,72 Similarly, mucin-1 (MUC1), a well-characterised

oncoprotein extensively expressed on the surface of cancer cells, is

also expressed in the nucleus, cytosol and mitochondria, and has been

shown to interact with different protein partners in a location-

dependent manner.73-75 When MUC1 is localised to the nucleus in

breast cancer cells it interacts with epidermal growth factor receptor

(EGFR), facilitating chromatin binding and thereby rewiring oncogenic

pathways76 (Figure 1D). Therefore, specific biochemical and experi-

mental strategies need to be designed to investigate multilocalising

protein interactome networks as they can interact with a range of

protein classes as they shuttle between different compartments.

3 | EXISTING CHALLENGES FOR
ONCOGENIC PROTEIN INTERACTION
STUDIES

Genomics,36,37 transcriptomics45 and proteomics77,78 initiatives

coupled with bioinformatics and biostatistics have extracted vast col-

lections of biological data from comparatively small amount of patient

material obtained at biopsy. In contrast, system-wide interactome

studies using MS-based approaches (eg, cross-linking MS [XL-MS])

require a large amount of input materials (eg, microgram to

milligramme protein sample in a native or seminative condition), which

is nearly impossible to extract from limited patient samples.79,80 In

addition, AP-MS and proximity labelling MS (PL-MS) require gene

transfer and genetic manipulation, which is not feasible in patient

samples.81-83 Therefore, a major bottleneck to systematic investiga-

tion of normPPIs vs oncoPPIs is having access to appropriate quanti-

ties of diverse input materials from patients. Besides the technical

challenges, the lack of coordinated efforts between cancer biologists

and other disciplines such as proteomics has been a hurdle. Together,

these obstacles have slowed systematic investigations of normPPI

and oncoPPI networks.

4 | ESTABLISHING WORKFLOWS FOR
IDENTIFICATION OF ONCOGENIC
NETWORKS

We propose a three-phase strategy to systematically characterise

oncoPPIs in human cancers (Figure 2).
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4.1 | Phase I: Establishment of patient-derived
normal and cancer organoids

Over the past decades, numerous methods have been used to trans-

form a range of patient cancer samples into immortalised cell lines for

studies.84 Tumour-derived cell lines are regularly used in pharmaco-

genomics and cancer biology to investigate biological pathways

underlying tumour initiation and development.85,86 Integrated analysis

of proteogenomics data generated from hundreds of model cell lines

have greatly enhanced our understanding of the molecular

Establish cell lines and organoids

AA. Assess panels of cancer driver genes (eg, RAS
family) in normal vs cancer cell lines

B. Assess panels of coding mutations
predicted to be at interaction interfaces

A. Proteome-wide comparison of PPI landscapes in
normal vs cancer cell lines

B. Proteome-wide comparison of PPIs in normal and
cancer cell lines before and after chemoresistance

- Generate lists of novel oncoPPIs (gained or lost) in cancer vs
normal cell lines/organoids

- Generate lists of novel tissue speci c normPPIs in normal
cells/ organoids

- Validation of physical interactions of oncoPPIs using
biochemical and biophysical approaches (Co-IP, X-Ray, NMR,
and Cryo-EM)

- Rational drug design

- High-throughput screen

- Investigate the e cacy of identi ed lead compounds on
organoids derived from the same patients or same cancer

Patient samples

Phase I

Phase II

Phase III

Focused strategy (AP-MS & PL-MS) Proteome-wide strategy (XL-MS)

Normal cell lines

Organoids from both tumour
and normal samples

oncoPPIs in
pancreatic cancer

oncoPPIs in liver cancer

Novel pancreatic-speci c
normPPIs

Novel liver-speci c
normPPIs

Re ne cancer-speci c direct oncoPPIs

Drug discovery

Submit novel interactions
to repositories (eg, BioGRID,
MINT, IntAct, etc)

Disrupt oncoPPIs
Drug functional assay on

organoids derived from the
same patients

Small molecule

Cancer cell lines

Liver

Re ne high-con dence shared normPPIs

Submit novel oncoPPIs
to repositories (eg, PINA,
oncoPPI portal.)

Pancreas

F IGURE 2 A cancer-focused human PPI workflow. A flowchart of the recommended procedures for systematic analysis of normPPIs and
oncoPPIs. In Phase I, patient-derived tumour and normal tissue samples are used to generate cancer and normal cell lines as well as organoids; liver and
pancreas have been depicted as examples. In Phase II, two different approaches can be chosen. First, a targeted approach where well-characterised
oncoproteins are used to capture interactions in both patient-derived cancer and normal cells and organoids using AP-MS and PL-MS approaches.
Second, an alternative approach can be undertaken on a proteome-wide scale using XL-MS, which can provide a picture of vicinal proteins within 30 Å.
Phase II will define normPPIs and oncoPPIs in a stepwise manner. The novel normPPIs identified herein are reported to interactome repositories but
oncoPPIs are further processed to characterise physical interactions. Physically interacting oncoproteins are subjected to structural analysis for rational
drug design. In Phase III, a range of drug discovery approaches are employed to find small molecules that inhibit oncogenic interactions. Functional
characterisation of drugs can be done in a personalised manner on the organoids from the same patient
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mechanisms underlying cancer development.85 Data generated from

cell lines complement the large scale cancer genomics data generated

from patient samples.87 Cell lines offer several advantages including

ease of maintenance and proliferation in cell culture with low cost and

are amenable to high-throughput screening (HTS) of anticancer thera-

peutics. Therefore, establishing cell lines from patient samples would

provide an important first step in mapping and identifying potential

oncoPPI networks (Figure 2).

In addition, patient-derived organoids, which are three-

dimensional structures with the capacity to self-organise into

“miniorgans” resembling the tissue of origin, have been established in

various cancers88 (Table 1). Importantly, organoids maintain key cellu-

lar hierarchy and function,111 and can genetically and phenotypically

recapitulate the host cancer, with which therapeutic responses can

potentially be predicted.112 Their use as a cancer model for studying

protein interactions as well as for screening oncoPPI inhibitors has so

far been underutilised but show great potential for precision/

personalised medicine. Small-scale studies using patient-derived colo-

rectal cancer organoids has identified different proteomic signatures

in all patients studied, highlighting the importance of PPI characterisa-

tion for personalised therapy.113 In another study, autophagy impair-

ment and disrupted pathways in Paneth cells was studied using

mouse tumour organoids using computational PPI networks.114

Mouse tumour organoids have also been used for functional valida-

tion of PPI inhibitors, Poloppin and Poloppin-II, which inhibit Polo-like

kinase interactions.115 Although patient-derived organoids are techni-

cally challenging and costly, the ability to gain a more clinically rele-

vant understanding of a patient's tumour outweighs these challenges

in the search for effective targeted therapies.

4.2 | Phase II: Choosing an appropriate mass
spectrometry approach for oncoPPI discovery

After establishment of patient-derived organoids, two different MS-

based proteomics strategies can be utilised to study normPPI and

oncoPPI networks: a focused or proteome-wide approach (Figure 2).

4.2.1 | Focused approach

A set of master oncogenes or tumour suppressors are selected for fur-

ther characterisation in paired patient-derived normal and cancer cells

or organoids (Figure 2). Depending on the protein of interest's func-

tion and localisation either AP-MS or proximity labelling (PL)-MS can

be chosen.

4.2.1.1 j AP-MS is the method of choice to discover high affinity

interactions

AP-MS is widely used to purify and characterise interactors of a pro-

tein of interest from a complex cell lysate mixture.45,81,83 In AP-MS,

either an immunoprecipitation-grade antibody is immobilised onto a

solid-phase support and then is mixed with cell lysates to capture the

target protein and its interactors, or the bait protein is either endoge-

nously or ectopically tagged with epitopes (eg, FLAG, HA and myc)

and used to capture interactions.116,117 AP-MS using an epitope-

tagged approach offers an excellent opportunity to undertake deep

and region-specific interactome studies for most proteins. The most

comprehensive human interactome, BioPlex 3.0, has been constructed

using this approach.29 In this project, ~15 000 genes were dual-tagged

with FLAG and HA epitopes and stably overexpressed in HEK293

cells. Affinity-purified complexes were subjected to MS and network

analysis. However, such interactome maps will not distinguish

normPPIs from oncoPPIs. To do this, the protein of interest should be

compared in both cancer and matched normal cell lines or organoids.

For example, RAS gene family members HRAS, KRAS and NRAS carry

missense mutations or display dysregulated expression patterns in

various cancers and convey aberrant interaction networks.118,119

Therefore, affinity purification and interactome studies of RAS family

members or their mutants from both cancer and paired normal cells in

pancreatic cancer or other cancers can extract more informative inter-

action networks and oncogenic pathways (Figure 2). Likewise, a differ-

ent interaction profile might be observed for a panel of well-known

TABLE 1 Human organoid biobanks with the number of tumour
and normal organoids

Tumour site Tumour Normal Reference

Colorectal 22 19 89

32 18 90

52 41 91

Rectum 65 51 92

Pancreas 8 (2) 93

114 (11)

(19a)

94

39 (10a) 95

52 (5) 96

Stomach 37 7 97

20 4 98

46 17 99

7 4 100

10 8 101

43 34 102

Prostate 7 2a 103

Breast 56 18 104

95 5 105

Oesophagus 15 12 106

10 1 107

Oral mucosa 25 9 108

Endometrium 14 66

2a
109

Kidney 54 47 110

aNormal-like, noncancer organoids that have a normal phenotype but

grown from a cancer sample; brackets indicate that organoids were

established but could not be propagated long-term.
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oncoproteins and tumour suppressors. Together, this approach will

not only facilitate the comprehensive definition of the oncogenic map

of cancer driver proteins in a tissue-specific manner but will also

enable identification of novel tissue-specific normPPIs that have not

been reported before. The novel PPIs can be reported in interaction

repositories such as BioGRID.

MS-based high-throughput techniques cannot confidently identify

direct interactions in a complex cellular milieu because there is always

the possibility that interactions may be bridged by auxiliary proteins or

by RNA and DNA molecules.120 Multisubunit protein complexes are

typified by the protein of interest directly interacting with one or two

proteins within the same complex and indirectly with other subunits of

the complex.121 Therefore, highly enriched proteins need to be further

validated for direct interaction using pairwise comparison experiments

such as coimmunoprecipitation or biophysical methods. Such biophysi-

cal methods include nuclear magnetic resonance (NMR), X-Ray crystal-

lography, size exclusion chromatography—multiangle laser light

scattering (SEC-MALLS), dynamic light scattering (DLS) and Förster res-

onance energy transfer (FRET). Direct interaction interfaces which can

be validated can then be used for rational drug design (Figure 2).

4.2.1.2 jPL-MS is the method of choice to discover transient and

organelle-specific interactions

Engineered peroxidase and biotin ligase enzymes are now routinely

applied to proximity labelling of protein interactions.122,123 These include

proximity-dependent biotin-identification (BioID)124 and ascorbate per-

oxidase (APEX)-based methods125 or derivatives of these. These

approaches were initially developed to overcome the limitations of AP-

MS approaches, in which mild lysis conditions may limit protein solubility

and therefore accessibility.123,124 Furthermore, weak and transient inter-

actions, especially interactions involved in cell signalling, may remain

undetected.123,126 Therefore PL-MS is very useful to identify highly

dynamic interactions that occur in various biological processes such as

the cell cycle, transcription and translation initiation, elongation and ter-

mination. BioID, the most widely used approach over the past decade

utilises engineered BirA enzymes that are covalently linked to a protein

of interest to catalyse the conversion of biotin and ATP into highly reac-

tive biotinoyl-50-AMP molecules which bind lysine residues on neigh-

bouring proteins. Proteins within a 10 nm radius are labelled depending

on the type of fused BirA enzyme and duration.127 Most recently, a

BioID-based approach was used to define the interaction map for 4000

proteins within various intracellular compartments82 highlighting BioID

as a powerful tool for profiling PPIs in different organelles and compart-

ments of live cells.

In mammalian cells, most signal transduction pathways are

characterised by weak PPIs that typically occur between globular pep-

tide binding domains (PBDs) of proteins with short, disordered pep-

tide stretches. Over 1800 PBDs have been reported, which indicate

their diversity and importance in mediating transient interac-

tions.128,129 Dissecting diversity, low binding affinities and the sensi-

tivity of binding properties to minor sequence variation represent

major challenges.128 In cancer, somatic mutations can commonly

occur in PBD-containing proteins and many of these proteins are drug

targets.128 BioID could be an ideal method to study the transient

interactome of oncoproteins containing PBDs in different cancers.

A BioID-based screen for the “undruggable” SOX2 oncoprotein in

patient-derived squamous cell carcinoma tissue identified SOX2 inter-

action with EP300 as a therapeutic vulnerability. Indeed, EP300 was

shown to be a mediator of SOX2 activity and EP300 bromodomain

inhibitors suppressed growth in several lung cancer cell lines.130 Simi-

larly, interrogation of the oncogenic KRASG12V interactome using BioID

coupled to a CRISPR-Cas9 loss-of-function screen revealed pho-

sphatidylinositol phosphate kinase PIP5K1A as the most negatively

enriched target. PIP5K1A depletion reduced KRAS-dependent prolifera-

tion and signalling in several pancreatic cancer cell lines, thus providing

a potential drug target for the treatment of KRAS-mutant cancers.118

Taken together, growing evidence supports a continual role for proxim-

ity labelling technology in the development of precision medicine.

4.2.2 | Proteome-wide approach

This alternative approach can be performed within cells using XL-MS,131

whereby the lysine residues of physically-associating proteins or vicinal

proteins (<30 Å) are cross-linked using homobifunctional chemicals.132

Cross-linked proteomes are subjected to proteolytic digestion, size exclu-

sion fractionation, and MS analysis to identify the cross-linked peptides.

In contrast to AP-MS and BioID, XL-MS can provide a global snapshot of

PPIs within cells in a native state.133 In addition, it provides orthogonal

information to structural maps generated by cryogenic electron micros-

copy (cryo-EM), revealing the conformations and dynamic topology of

the protein complexes.134 XL-MS is the only method that can capture

structural and conformational changes of proteins on a global scale in

response to stimuli.134 This approach offers opportunities to study and

distinguish the dynamic and protein interaction networks of cancer cells

compared to normal counterparts on a proteome-wide manner.

Tumours acquire a chemoresistance phenotype by acquiring new

protein interactions and conformations.135,136 The ability to define

interaction networks that drive chemoresistance will provide invalu-

able insights for developing new therapies and strategies for various

drug-resistant cancers. Chemotherapy remains the standard of care

treatment for many cancers. Despite significant advancements in can-

cer therapy, resistance to chemotherapy frequently occurs137 and is

responsible for poor patient outcomes and cancer relapse. XL-MS has

successfully been used to investigate proteome dynamics and interac-

tions in drug-sensitive and -resistant HeLa cells.138 This supports

using the XL-MS approach to study protein interaction networks in a

proteome scale in normal and paired cancer cell lines (Figure 2).

5 | PHASE II I : DRUG DISCOVERY

The development of new drug candidates is a very complex process

and requires cross-disciplinary research efforts. Until recently, devel-

opment of PPI-specific therapeutics was also a difficult assignment.

Unlike typical receptor-ligand interactions involving a distinct binding
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pocket, PPI interfaces are usually large, flat and featureless.139 Recent

technological advances in the field of cryo-EM,20,21 high-resolution

MS140 and an urgent need for effective drugs to treat life-threatening

diseases such as cancer have massively transformed PPI-focused drug

discovery projects. Accordingly, numerous PPI-specific drugs have

entered clinical trial with some already on the market17,22 (Table 2).

TABLE 2 List of PPI-specific drugs and their targets in clinical trials

Inhibitor name Disease area Developer Clinical trial phase ID

BCL-2/Bax

Venetoclax (ABT199) Chronic lymphocytic

leukaemia

AbbVie Approved in 2016 –

MDM2/p53

Idasanutlin (RO5503781) Acute myeloid leukaemia Hoffmann-La Roche Phase I/II (terminated) NCT03850535

KRT 232 (formerly, AMG 232) Chronic myeloid leukaemia Kartos Therapeutics, Inc Phase I/II (recruiting) NCT04835584

NVP-CGM097 Solid tumour with p53 wild

type status

Novartis Pharmaceuticals Phase I (completed) NCT01760525

Milademetan (DS-3032b) Advanced solid tumour,

lymphoma

Daiichi Sankyo, Inc Phase I (completed) NCT01877382

SAR405838 Neoplasm malignant Sanofi Phase I (completed) NCT01636479

JNJ-26854165 Neoplasms Johnson & Johnson

Pharmaceutical Research

& Development, L.L.C.

Phase I (completed) NCT00676910

ALRN-6924 Advanced solid tumours or

lymphomas

Aileron Therapeutics Phase I/II (completed) NCT02264613

LFA1/ICAM1

Lifitegrast (SAR 1118) Dry eye Lifelong Vision Foundation Phase IV (completed) NCT03451396

XIAP/Caspase 9

Debio 1143 (AT-406) Squamous cell carcinoma of

the head and neck

Debiopharm International SA Phase I/II (active, not

recruiting)

NCT02022098

LCL-161 Relapsed or refractory

multiple myeloma

Novartis Phase II (completed) NCT01955434

Birinapant (TL32711) Advanced or metastatic solid

tumours

TetraLogic Pharmaceuticals Phase I/II (completed) NCT01188499

ASTX-660 Advanced solid tumours and

lymphomas

Astex Pharmaceuticals, Inc Phase I/II (recruiting) NCT02503423

GDC-0917 Refractory solid tumours or

lymphoma

Genentech, Inc Phase I (completed) NCT01226277

HGS1029 (AEG40826-2HCl) Advanced solid tumours Human Genome Sciences,

Inc

Phase I (completed) NCT00708006

Bromodomain/Histone

Apabetalone (RVX-000222, RVX-208) Coronary artery disease Resverlogix Corp Phase III (completed) NCT02586155

Molibresib (GSK525762) NUT midline carcinoma GlaxoSmithKline Phase I (completed) NCT01587703

CPI-0610 Myelofibrosis Constellation

Pharmaceuticals

Phase I/II (recruiting) NCT02158858

RO6870810 (formerly, TEN-010) Acute myeloid leukaemia;

myelodysplastic

syndromes

Hoffmann-La Roche Phase I (completed) NCT02308761

OTX015 (MK-8628, Birabresib) Haematologic malignancies Oncoethix GmbH Phase I (completed) NCT01713582

Β-catenin/CBP

PRI-724 Liver cirrhosis Komagome Hospital Phase I/II (active, not

recruiting)

NCT03620474

PD-1/PD-L1

CA-170 Prostatic neoplasms Astellas Pharma, Inc Phase II (completed) NCT01288911

Note: This table is not a comprehensive list of the PPI inhibitors on the market or undergoing clinical trials.
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Biological molecules (including antibodies, peptides, aptamers and

proteins) and small molecules are the major drugs used in preclinical

and clinical studies.22 The specificity and potency of biological agents

such as monoclonal antibodies are superior for targeting PPIs. How-

ever, antibody-based drugs can induce the host immune response and

their usefulness is mostly limited to surface PPIs. In addition, antibody

manufacturing is very complicated because opportunities for pharma-

cokinetic modifications are limited.22 In contrast to antibodies, pep-

tides and small molecules are cheaper and quicker to produce and

generally do not induce a host immune response. Despite these fea-

tures, peptides suffer from poor solubility, short half-life and poor oral

bioavailability. However, peptide-based drugs are considered as a use-

ful starting point for rational design of mimetics or nonpeptide inhibi-

tors.141,142 Traditionally, small molecules have successfully been used

to target small interfaces and offer unique advantages such as oral

administration and cell permeability, but they have more potential to

exhibit side effects.143

5.1 | Strategies to identify lead compounds to
target PPI interfaces

Strategies to identify and validate lead compounds to target PPI inter-

faces have been reviewed extensively elsewhere.17,22,143 Hence, we

briefly discuss three major platforms here.

5.1.1 | High-throughput screening

Both industry and academia have successfully used HTS technology

for screening libraries of different chemical compounds for drug dis-

covery purposes.144 Lead compounds identified in HTS screens can

be further modified to enhance the specificity and affinity in binding

to their target. Compounds identified in HTS screens have been

shown to best target PPIs mediated through helix-groove interactions,

where a helical region of a protein binds to the groove of the second

protein (eg, p53-MDM2 complex145). Recent advancements in tech-

nology and screening have also identified binders for nonhelix-groove

interactions. For example, the XIAP-caspase-9 complex involved in

early-stage regulation of the apoptosis cascade is an extended

nonhelical-groove interaction and targeted by small molecules discov-

ered from HTS studies (Table 2).146,147

5.1.2 | In silico screening

Computational methods are increasingly used in drug discovery pro-

grams. Here, machine learning and computer-aided tools are

employed to screen chemical libraries for biological targets to find the

best hits from millions of compounds.148 One such approach is

pharmacophore-based virtual scanning where steric and electrochemi-

cal factors are mapped in 3D space to provide a simple means to vir-

tually screen compound libraries. Therefore, this approach is used as a

foundation to find a hit based on pharmacophoric elements. For PPIs,

the pharmacophore represents the molecular features of the protein

domains directly involved in the interaction.

5.1.3 | Fragment-based drug discovery

The fragment-based drug discovery (FBDD) method has successfully

been employed for intractable biological targets such as PPI inter-

faces.149,150 FBDD is a powerful approach to develop effective small

molecule compounds starting from weakly binding fragments. In this

method, fragment hits (100-300 Da) with low affinity for the target

protein are identified by screening libraries of synthetic or natural prod-

uct low molecular weight (<300 Da) compounds.18,151,152 Through

chemical modifications, the identified fragment hits are further devel-

oped into drug-like molecules with higher affinity.149,151,152 Recently,

dozens of FBDD-based drugs have entered clinical trials and two have

received Food and Drug Administration approval.153 Using FBDD, PPI

inhibitors for oncogenic interfaces such as XIAP-caspase 9,154 and

RAD51-BRCA2155 complexes have been developed (Table 2).

6 | CONCLUDING REMARKS

Cancer patients exhibit widespread tumour heterogeneity, which

drives an urgent need for precision and personalised treatments.

Genomic characterisation of human tumours has led to the generation

of vast amounts of high-resolution sequencing data. These data have

enabled identification of many cancer-driver genes that are involved

in the initiation and progression of tumour cells. However, it remains

a challenging task to determine how these genomic signatures can be

exploited to develop new therapies. Most cancer-driver genes or

oncogenes, discovered to date, are essential for cell growth and main-

tenance pathways in both healthy and disease states. Therefore,

exploiting them as new drug targets may result in adverse effects by

perturbing normal physiological pathways. Given that proteins exert

their function mostly through interaction with other proteins, it is

highly plausible that targeting cancer-specific oncoPPIs could be a

more advantageous approach which may result in a better clinical out-

come with minimal side effects. Thus, a focus on generating a compre-

hensive map of the oncoPPI networks for various human cancers will

stimulate targeted drug discovery efforts and will shed more insight

into protein networks governing tumour growth.
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