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Metabolic disorders including type 2 diabetes, obesity and hyperten-
sion have growing prevalence globally every year. Genome-wide
association studies have successfully identified many genetic markers
associated to these diseases, but few studied their interaction effects.
In this study, twenty candidate SNPs from sixteen genes are selected,
and a lasso-multiple regression approach is implemented to consider
the SNP–SNP interactions among them in an Asian population. It is
found out that the main effects of the markers are weak but the
interactions among the candidates showed a significant association to
diseases. SNPs from genes CDKN2BAS and KCNJ11 are significantly
associated to risk for developing diabetes, and SNPs from FTO and
APOA5 might interact to play an important role for the onset of
hypertension.
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Introduction

Diabetes mellitus has reached the scale of a global epidemic with 347 million affected people in 2012.
During the past year, its prevalence has been over 8.5% worldwide and 9.4% in Hong Kong (Li et al., 2012). It
produces various complications that may cause damage to the eyes, nerves, kidneys and heart, causing a
significant public health care burden. Diabetes is ametabolic disorder that is due to defects in insulin secretion
and action. Its etiology has a complex nature, and involves multiple genetic markers and environmental
factors. Previous genome-wide association studies on diabetes, obesity and hypertension have identified
many geneticmarkers that have significant associations (Ng et al., 2008; Scheffold et al., 2011; Vaxillaire et al.,
2008). However, most studies reported only a marginal effect of the SNPs, and very few reported interaction
effects (Neuman et al., 2010), either among genes or between genes and environmental factors. Some studies
concerned interactions, but nothing significant was discovered (Wu et al., 2008). It is likely that the lack of
reports about the interaction effects is due tomethodology rather than dataset. Furthermore, using traditional
statistical methods alone such as linear regressionmay not identify the importantmarkers even if the sample
size is very large. Noise variable correlates with the true signal may reduce the power of detecting real
features. In this study, twenty candidatemarkers thatwere previously reported to bemarginally associated to
metabolic diseases were selected, and a lasso-multiple regression (LMR) method was used to evaluate
interactions among them in Chinese subjects. It was found out that although some markers have only a
moderate marginal effect, the SNP–SNP interactions showed a significant influence.

Material and method

Sample subjects

The subjects were recruited through random telephone dialing based on the residential telephone
directory. Written informed consents for DNA testing were obtained, and the study was approved by the
Clinical Research Ethics Committee of the Chinese University of Hong Kong. In total 115 subjects were
recruited. All of them were female, of Chinese Han ethnicity and aged between 50 and 64 years. Body mass
index, fasting blood glucose, systolic blood pressure, diastolic blood pressure, hypertension history, total
cholesterol, triglycerides, high and low density lipoprotein, and type 2 diabetes history were collected.
Genomic DNA was extracted by ROCHE Kit, and amplification was done by polymerase chain reaction. The
DNA templates with high quality were sent to the McGill University & GenomeQuebec Innovation Centre for
sequencing on Sequenom Platform. Obesity was defined as having a body-mass-index (BMI) of N25 kg/m2,
adjusted for Asians (Barba et al., 2004; Chiu et al., 2011; Force, 2000). Hypertension was defined as having a
systolic blood pressure of N140 mm Hg and/or a diastolic blood pressure of N90 mm Hg. Diabetes was
defined as having fasting blood glucose of at least 7.0 mg/dl and/or pharmacologic treatment. The sample
characteristics for cases and controls of the three phenotypes were summarized in Table 1.

Candidate gene selection

Twenty SNPs from 16 genes were selected as the candidate markers. These include eight genes
predisposing type 2 diabetes (CDKN2A/B, CDKAL1, HHEX, IGF2BP2, KCNJ11, PPARG, TCF7L2, and WFS1),
four genes predisposing obesity (FTO, APOA5, INSIG2, and MC4R), ATGR1 for non-alcoholic fatty liver
disease (NAFLD), two genes predisposing hypertension (SLC2A9, STK39), and CDKN2BAS for heart attack.
The complete references were in Table 2.

Lasso-multiple regression (LMR) method for selecting variables

Lasso-multiple regression method is composed of two steps: Step 1: The lasso (Tibshirani, 1996) is
used to select a subset of variables including all pair-wise interaction terms. Lasso is a linear regression
model with one additional penalization term on the coefficients. The result of the penalization is that some
coefficients can be shrunk to absolute zero, achieving a feature selection effect. It puts a coefficient to zero
if the corresponding variable does not affect the dependent variable, and vice versa, thus produces a small
subset of markers in which numbers can be handled by traditional methods (Fan and Li, 2001; Zou, 2006).



Table 1
Clinical characteristics of cases and controls for T2DM, obesity and hypertension.
The clinical characteristics (rows) are tabled for the three metabolic disorders by case and control groups. The features that have significant differences by two sample t-test in case and control
groups are highlighted by colored cells.

T2D Obesity Hypertension

Case Control Case Control Case Control

n 9 105 34 77 27 89

Age (years ± SD) 55 ± 2.7 56.2 ± 3.3 55.8 ± 3.2 56.1 ± 3.3 56.9 ± 3.2 55.9 ± 3.3

BMI (kg/m
2
 ± SD) 23.8 ± 4 23.2 ± 3.4 27.7 ± 2.8 21.9 ± 1.8 25.9 ± 4.6 22.6 ± 2.9

Weight (kg ± SD) 60 ± 9.6 55.2 ± 8.5 65.8 ± 8.6 52.5 ± 4.9 63.0 ± 12.1 53.8 ± 6.9

FBG (mg/dl ± SD) 172.6 ± 60 100.7 ± 18 113.0 ± 28.8 102.9 ± 29.7 116.6 ± 30.0 103.3 ± 29.9

TC (mg/dl ± SD) 214.3 ± 27 216.2 ± 42.1 231.6 ± 41.9 211.9 ± 40.7 224.7 ± 39.7 214.3 ± 42.1

TG (mg/dl ± SD) 136.6 ± 47.5 110.6 ± 66.5 134.5 ± 69.9 106.3 ± 62.6 152.3 ± 81.4 101.1 ± 54.8

HDL cholesterol (mg/dl ± SD) 60.5 ± 13.6 70.2 ± 16.9 64.3 ± 14.6 70.9 ± 17.5 62.5 ± 14.0 71.5 ± 17.1

LDL cholesterol (mg/dl ± SD) 131.6 ± 18.7 123.1 ± 36.4 143.1 ± 38.6 118.4 ± 31.8 134.3 ± 37.7 121.5 ± 35.2

SBP (mm Hg ± SD) 144.6 ± 20.9 127.8 ± 21.4 138.2 ± 23.9 125.6 ± 19.5 150.1 ± 16.8 123.0 ± 19.0

DBP (mm Hg ± SD) 79.2 ± 9.6 77.4 ± 9.7 82.3 ± 9.0 75.8 ± 9.4 84.8 ± 8.2 75.5 ± 9.0

Abbreviations: T2DM: type 2 diabetes mellitus, BMI: body mass index, FBG: fast blood glucose, TC: total cholesterol, TG: total triglyceride, HDL: high density lipoprotein, LDL: low density
lipoprotein, SBP: systolic blood pressure, DBP: diastolic blood pressure.
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Table 2
The list of candidate SNPs/genes.
This table lists the 20 candidate SNPs used in search for pair-wise interactions. The Gene name column gives the gene in which the
SNP is located; the Disease column gives which disorder the SNP is previously identified to have associations, and the literature
source is given in the Reference column. The MAF column contains the minor allele frequency of the SNP calculated by the samples of
this study; the OR (T2DM, obesity, hypertension) columns give the odds ratio calculated using current samples by a two-way
contingency table, which provides a direct evaluation on the SNP relevant disease risk.

No SNP name Gene name Disease MAF OR OR OR Reference

T2DM Obesity Hypertension

1 rs2383208 CDKN2A/B T2D 0.40 4.1 4.0 2.6 Saxena, Voight et al. (2007)
2 rs13266634 CDKAL1 T2D 0.45 1.2 2.1 1.8 Chimienti, Devergnas et al. (2004)
3 rs4712523 CDKAL1 T2D 0.38 2.1 0.8 2.0 Steinthorsdottir, Thorleifsson et al. (2007)
4 rs1111875 HHEX T2D 0.35 2.9 1.1 1.2 van Vliet-Ostaptchouk, Onland-Moret

et al. (2008)
5 rs4402960 IGF2BP2 T2D 0.21 1.0 1.4 1.9 Nielson, Czech et al. (1999)
6 rs5219 KCNJ11 T2D 0.38 1.9 0.8 0.8 Vaxillaire et al. (2008)
7 rs1801282 PPARG T2D 0.07 1.0 5.1 0.5 Altshuler, Hirschhorn et al. (2000)
8 rs7903146 TCF7L2 T2D 0.04 2.7 2.4 3.1 Grant, Thorleifsson et al. (2006)
9 rs10012946 WFS1 T2D 0.08 3.0 2.8 3.6 Sandhu, Weedon et al. (2007)
10 rs3751812 FTO Obesity 0.15 1.1 1.9 4.4 Frayling, Timpson et al. (2007); Hennig,

Fulford et al. (2009)
11 rs662799 APOA5 Obesity 0.32 2.0 1.9 2.6 Corella, Lai et al. (2007)
12 rs766605 INSIG2 Obesity 0.03 1.8 1.7 2.4 Dina, Meyre et al. (2007)
13 rs10871777 MC4R Obesity 0.12 0.6 2.4 1.1 Loos, Lindgren et al. (2008)
14 rs12970134 MC4R Obesity 0.14 0.5 6.1 1.1 Chambers, Elliott et al. (2008)
15 rs3772622 ATGR1 NAFLD 0.46 0.3 1.4 0.8 Yoneda, Hotta et al. (2009)
16 rs1014290 SLC2A9 Hypertension 0.37 3.1 3.1 3.3 Vitart, Rudan et al. (2008)
17 rs6449213 SLC2A9 Hypertension 0.02 1.4 5.2 7.3 Vitart, Rudan et al. (2008)
18 rs737267 SLC2A9 Hypertension 0.01 0.0 5.1 7.0 Vitart, Rudan et al. (2008)
19 rs3754777 STK39 Hypertension 0.24 1.7 1.7 0.7 Wang, O'Connell et al. (2009)
20 rs2383207 CDKN2BAS Heart attack 0.40 1.0 0.9 1.7 Scheffold et al. (2011)

MAF is minor allele frequency.
OR is odds ratio.
NAFLD is non-alcoholic fatty liver disease.
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The lasso is implemented by R package glmnet (Friedman et al., 2010). Step 2: Multiple linear regression is
then performed on the lasso-selected variables to obtain variable significance. Stepwise model selection
by AIC is applied to achieve an optimal combination of variables using R package stepAIC.

Sample size calculation and adjusting for multiple testing issue

The sample size is estimated by the standard formula for case and control study:
ncases ¼
r þ 1
r

� �σ 2 Zβ þ Zα=2

� �2

difference2

r is the ratio of number of controls to cases,which is 2.7 in this study;σ2 is the variance of the response,
where
which is 0.20. Assume that power is 80%, and type I error is 5%; the difference in the denominator is taken to
be one standard error. The number of cases needed is 24, and the number of controls needed is 64. Thus the
sample size of this study satisfies the specified power and type I error. Multiple testing is adjusted by
Bonferroni correction, and an adjusted p-value less than 0.05 is considered to be statistically significant.

Results

Linkage disequilibrium

The pairwise linkage disequilibrium was calculated. Among the 190 combinations of 20 SNPs, only two
pairs had an LD coefficient of correlation (r) greater than 0.3, and six pairs with 0.2 b |r| b 0.3. Most of the
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SNP pairs were in linkage equilibrium and this ensured the randomness of the data. The high LD SNP pairs
are not among the significant markers we identified. Thus the result is not confounded by LD.
Hardy–Weinberg equilibrium (HWE) test

HWE tests on 20 SNPs were performed and permutation was done 1000 times to obtain p-values. All
SNPs were in Hardy–Weinberg equilibrium except rs6449213 and rs737267. However, they were not in
the final markers selected, and did not affect the conclusion.
Interactions for type 2 diabetes mellitus

Lasso selected six variables including one main effect and five interactions, which were passed to
multiple linear regressions (Supplemental Table S1). After adjusting for multiple comparisons, the pair
(rs2383207, rs5219) remained to be significant with p-value 0.029 (Table 3). The power of this significant
variable is 69.5% and the type I error is 20% based on the current sample size, using the method suggested
by Hsieh et al. (1998). The SNP rs2383207 was from gene CDKN2BAS on chromosome 9p21.3, which was
reported to be associated with myocardial infarction in American Caucasians (Center for Health
Protection, Hong Kong, 2012), Europeans (Scheffold et al., 2011), and Koreans (Shen et al., 2008).
rs5219 representing KCNJ11 was previously reported to be associated with type 2 diabetes (Vaxillaire et
al., 2008). Their marginal p-values were 0.027 and 0.11, respectively, before adjusting for multiple
comparisons. Both SNPs had only a moderate main effect but their interaction was significantly associated
with T2DM. The lasso selected markers explained 33.47% (R-square) of the variation in the T2D
phenotype. This finding reflected the complex nature of diabetes and showed the importance of including
interaction effects in genetic analysis.
Interactions for obesity

For this phenotype, LMR selected 16 markers including main effects, SNP–SNP interactions and SNP–
age interactions (Supplemental Table S2). rs4402960 was found to be marginally significant with an
adjusted p-value of 0.045 (Table 3). rs1014290 and rs4402960 from genes SLC2A9 and IGF2BP2 were
found to be significantly associated to obesity with adjusted p-value 0.003, rs3751812 and rs662799
from FTO and APOA5 were significant with an adjusted p-value of 0.007 (Table 3). For the given sample
size and type I error 30%, the power of rs1014290 and rs4402960 is 64.5% for rs3751812 and rs662799 is
70%, respectively. SLC2A9 and IGF2BP2 were previously reported to be related to hypertension and type 2
diabetes (Haupt et al., 2009; Vasan et al., 2001); here they were found to be also associated with the
classification of obesity.
Table 3
Significant SNPs found for metabolic disorders.
This table summarizes the SNP sets that are identified in this study to have a significant interaction effect on metabolic disorders. The
first column is the associated disorder. The second column gives the SNP sets. The “Genes” column shows in which genes the SNPs
are located. The fourth column gives the disorder the genes are previously reported to have associations. The fifth column gives the
SNP set's odds ratio. The last column shows the p-values of the SNPs after adjusting by multiple testing.

Metabolic disorder SNP sets Genes Previous identified
associated disorders

Odds ratio of
identified sets

Adjusted
p-value

T2D (rs2383207, rs5219) (CDKN2BAS, KCNJ11) (Heart attack, T2D) 8.5 0.029
Obesity rs4402960 IGF2BP2 T2D 2.4 0.045

(rs1014290, rs4402960) (SLC2A9, IGF2BP2) (Hypertension, T2D) 6.4 0.003
(rs3751812, rs662799) (FTO, APOA5) (Obesity, obesity) 11.7 0.007

Hypertension (rs12970134, rs4402960) (MC4R, IGF2BP2) (Obesity, T2D) 3.0 0.002

SNP: Single nucleotide polymorphism; T2D: type 2 diabetes.
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Interactions for hypertension

LMR selected 21 markers, which could explain 36% (adjusted R-squared statistic) of the variation in
hypertension. Logistic regression gave a prediction error rate of 13.9% on hypertension, with 93.26%
specificity (true negative/negative) and 61.5% sensitivity (true positive/positive). Thirteen markers had a
p-value of b0.05 before adjusting for multiple testing, in which four pairs were SNP–age interactions. This
indicated that age played an important role in hypertension onset risk (Vasan et al., 2001). After adjusting
for multiple comparisons, one SNP pair rs12970134 and rs4402960 from genes MC4R and IGF2BP2
remained to be significant with an adjusted p-value of 0.002 (Table 3). With the existing sample size, this
interaction set has type I error 20% and power 71%. rs3751812, a SNP from FTO, paired with age was
associated to hypertension with an adjusted p-value of 0.083 (Supplemental Table S3).

Discussion

The candidate genes had a weak main effect but strong interaction effects

Different from the reports concerning Western populations, the main effects of the candidate genes
in this Asian cohort were much weaker; however, strong interaction effects were found among the SNPs.
In French Caucasians, rs5219 (KCNJ11) was reported to have a strong association with T2DM (p-value =
0.009) (Vaxillaire et al., 2008). Here its main effect was not significant, but combined with rs2383207
(CDKN2BAS) it showed strong interaction effects (p-value = 0.029, odds ratio = 8.5). rs3751812 (FTO)
and rs662799 (APOA5) both had strong main effects in Caucasian population (Schmitz et al., 2010; Shen et
al., 2008), but in this study they exhibited negligible main effect but strong interaction effect on obesity
(p-value = 0.007, odds ratio = 11.7). For hypertension, none of the candidate hypertension SNPs was
found to be significant marginally, but the joint effect of rs12970134 (MC4R) and rs4402960 (IGF2BP2)
showed strong risk for hypertension with a p-value of 0.002 and an odds ratio of 3.0.

Validation of identified significant pairs by generalized multifactor dimension reduction (GMDR)

We use the popular interaction method GMDR to cross-check the identified pairs (Lou et al., 2007). For the
T2D phenotype, the final reported pair (rs2383207, rs5219) is ranked the 3rd best model by GMDR. For the
obesity phenotype, the top reportedmarker by LMR is also identified by GMDR as the top onemarker with the
highest accuracy. For the hypertension phenotype, the final reported two pairs (rs12970134, rs4402960 and
rs3751812, rs13266634) are also the top first and second pairs by GMDR, respectively. Thus the validation
shows that the identified interaction sets have high consistency, while the proposed LMR eliminates most
markers in the first step and may have smaller noise in the second step of significance evaluation.

Biological implications of the interactive pairs

Glucose-stimulated insulin secretion from the pancreatic β cell is dependent upon the ability of the
KATP channel to alter the voltage polarization of the cell membrane (Ashcroft and Rorsman, 1990), and
mutations in KCNJ11 have been reported to cause pediatric diabetes (Ioannou et al., 2011). CDKN2B–
CDKN2A is the strongest genetic susceptibility locus for cardiovascular diseases, and it is also linked to
several cancers, intracranial aneurysm, type 2 diabetes, periodontitis, Alzheimer's disease, endometriosis,
frailty in the elderly, and glaucoma. In this study, two SNP pairs were found to be associated with
metabolic syndrome. One such SNP pair (CDKN2BAS, KCNJ11) interaction was found to be significant in
type 2 diabetes. CDKN2BAS (previously known as CDKN2B antisense RNA) is an RNA gene (a non-protein
coding gene). Multiple alternatively spliced transcript variants have been generated from this gene, and all
of them are long non-coding RNAs. It has been proposed that the recruitment of DNA methyltransferase
DNMT3b by DNA:RNA triplexes may be a common and generally used pathway in epigenetic regulation, as
indicated by research data from this gene (Schmitz et al., 2010). Thus the CDKN2BAS and KCNJ11
interaction may be explained by the recruitment of DNA methyltransferase DNMT3b by the non-coding
RNA encoded by CDKN2BAS acting on KCNJ11. Although the target gene of the non-coding RNA encoded
by CDKN2BAS is not known at present, andwhether it might act in concert with KCNJ11 is not entirely clear, it



390 M.H. Wang et al. / Meta Gene 2 (2014) 384–391
has been reported that the non-coding RNA coded by ANRIL (an alias of CDKN2BAS) is associated with type 2
diabetes. ANRIL is also involved in the recruitment of both polycomb complexes, PRC1 (Yap et al., 2010) and
PRC2 (Schmitz et al., 2010), which are histone methyltransferase complexes. Deregulation of ANRIL by
risk-associated single-nucleotide polymorphisms is thought to change the expression level of a closely linked
gene p15INK4B and/or other target genes (which might be on a different chromosomal location such as
KCNJ11), thereby leading to the development of type II diabetes or coronary heart disease in humans (Schmitz
et al., 2010). Although no direct action of ANRIL non-coding RNA for the regulation of KCNJ11 has been
reported, transcriptome profiling and select chromatin modifications have revealed that the removal of
polycomb group (PcG)-mediated repression on stage-specific genes is a key mechanism for the induction of
developmental regulators during pancreatic endocrine differentiation (Xie et al., 2013). The same study also
revealed that KCNJ11 is one of the in-vivo-differentiated functional endocrine (FE) signature genes that are
activated and associated with distinct patterns of chromatin modifications. Alternatively, the putative
explanation underlying the association between ANRIL and miscellaneous unrelated diseases has been
hypothesized due to the role of ANRIL in the replicative function of the stem cell with advancing age (Sharpless
and Depinho, 2007); hence diabetes could be due to the interactive and the additive effect of the slower
replicative function of the pancreatic cells and the lower activity of the KCNJ11.

The finding of two SNPs' (FTO, APOA5) interaction was observed in the obese subjects in our study. Fat
mass and obesity-associated protein is a homolog in the AlkB family proteins, and it is the first mRNA
demethylase that has been identified, and, also, it has been hypothesized that a nucleic acid methylation
status is linked to increased fat mass (Gerken et al., 2007). The finding of a risk allele of FTO having an
effect on food intake or satiety has been independently replicated in five subsequent studies (Cecil et al.,
2008; Haupt et al., 2009; Timpson et al., 2008; Wardle et al., 2008; Wardle et al., 2009). FTO has efficient
oxidative demethylation activity targeting the abundant N6-methyladenosine (m6A) residues in RNA in
vitro, and N6-methyladenosine (m6A) is the most prevalent internal modification in messenger RNA (Jia et
al., 2012). Over 12,000 m6A sites have been characterized in the transcripts of more than 7000 human
genes (Dominissini et al., 2012). From a search in identified m6A peaks in the HepG2 cell line and the
normal human brain, no significant peakscore for m6A peaks in the APOA5 gene could be found; however,
there is a high peakscore (5.08) for the m6A peak in the USF1 gene near the 3′UTR. The USF1 gene has been
found to have a possible interaction with the APOA5 gene on the risk for the metabolic syndrome
(Singmann et al., 2009). USF1 is a ubiquitous transcription factor governing the expression of numerous
genes of lipid and glucose metabolism and insulin stimuli have been shown to reduce the association of
the USF1 transcription factor to APOA5 E-box (Singmann et al., 2009). Thus the gene–gene interaction we
observe between FTO and APOA5 might be mediated through USF1 as a transcription factor of APOA5.

In summary, this study examined the risk of 20 candidate genes in Chinese subjects using a Lasso multiple
regressionmethod.We found out that the candidate SNPs had aweakmain effect but strong interaction effects
on type 2 diabetes mellitus, obesity and hypertension. Furthermore, the two interaction pairs we observed as
being associated with metabolic syndrome could be explained by known gene regulators. For CDKN2BAS and
KCNJ11 interaction in diabetes subjects, long non-coding RNA regulation of KCNJ11 via polycomb group (PcG)
regulation might be involved; whereas for the FTO and APOA5 interaction, the demethylation activity of FTO
affecting APOA5 via its transcription factor USF1 could be involved. Metabolic disorders have important
etiology in environmental factors, and this study is limited by that only age–gene interactions are considered;
more interplay of environment and genetic variables would be included in future study.
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