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action in glioma
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Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, China
Glioma is the most common malignant tumor of the central nervous system

and resistance is easily developed to chemotherapy drugs during the treatment

process, resulting in high mortality and short survival in glioma patients. Novel

therapeutic approaches are urgently needed to improve the therapeutic

efficacy of chemotherapeutic drugs and to improve the prognosis of patients

with glioma. Ferroptosis is a novel regulatory cell death mechanism that plays a

key role in cancer, neurodegenerative diseases, and other diseases. Studies

have found that ferroptosis-related regulators are closely related to the survival

of patients with glioma, and induction of ferroptosis can improve glioma

resistance to chemotherapy drugs. Therefore, induction of tumor cell

ferroptosis may be an effective therapeutic strategy for glioma. This review

summarizes the relevant mechanisms of ferroptosis, systematically

summarizes the key role of ferroptosis in the treatment of glioma and

outlines the relationship between ferroptosis-related ncRNAs and the

progression of glioma.
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Introduction

Malignant tumors of the central nervous system are one of the most common types of

cancer in humans and the incidence in the population is increasing year by year (1).

Glioma is the most common primary malignant tumor of the adult central nervous

system (2), accounting for 80% of all tumors (1). According to the latest WHO

classification criteria (3), the pathological types of gliomas are divided into low-grade

gliomas (LGG, grades 1–2) and high-grade gliomas (HGG, grades 3–4). WHO grade 4

glioblastoma (GBM) has the worst prognosis (4), with a median overall survival (OS) of

only 12–17 months (5). At present, the treatment of glioma involves surgery,

supplemented by radiotherapy, or a combination of radiotherapy and chemotherapy.

LGG uses adjuvant chemotherapy with procarbazine, lomustine, and vincristine (6), and
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the survival time is significantly prolonged (7). Although high-

grade gliomas are usually treated with temozolomide (TMZ)

after surgery, the STUPP radiotherapy and chemotherapy

regimen has prolonged the survival of patients to some extent

(8), but the prognosis of some patients is still poor (9). This may

be due to the limitations of glioma surgery methods, which do

not allow complete separation of lesions from normal brain

tissue, and insufficient tumor vascularization due to the

existence of the blood-brain barrier and rapid proliferation of

tumor cells (10). It is difficult to reach the tumor through blood

circulation and achieve sufficient concentration to achieve

localized function. Furthermore, HGG cells, especially GBM

cells, exhibit extreme invasiveness (11) and heterogeneity (12).

Therefore, treatment with a single chemotherapeutic agent can

make glioma cells resistant (13), further complicating their

heterogeneity and leading to glioma recurrence (14).

Ferroptosis is a novel iron-dependent regulatory cell death

(RCD) method proposed by Dixon et al. (15). A large number of

studies have shown that the role of ferroptosis in tumor therapy

is particularly important (16–20). By inducing ferroptosis, tumor

cell growth, migration, and invasion can be inhibited, achieving

the purpose of tumor therapy (17). Drug resistance of tumor

cells during chemotherapy can be reversed by inducing

ferroptosis (18). After induction of ferroptosis, it can spread

among surrounding cells, increasing the antitumor effect of

chemotherapeutic drugs (19) and the sensitivity of tumor cells

to chemoradiotherapy drugs (20). These findings provide new

insight into the treatment of drug-resistant tumors. Recent

studies have found that noncoding RNAs (ncRNAs) also play

a key role in the ferroptosis of tumor cells (21, 22). ncRNAs such

as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular

RNAs (circRNAs) are widely involved in iron metabolism, ROS

metabolism, and ferroptosis-related amino acid metabolism in

tumor cells (22). Glioma cells have extensive heterogeneity and

are prone to drug resistance to chemotherapeutic drugs,

resulting in an unsatisfactory patient prognosis (23). A study

has found that the ferroptosis inducer erastin can enhance the

sensitivity of GBM cells to TMZ (24). Therefore, this new

strategy to induce ferroptosis in tumor cells may have great

potential in the treatment of glioma. Current research focuses on

how to reduce drug resistance in glioma chemotherapy and

deepens the mechanism of classical ferroptosis-inducing

pathways such as GPX4 in glioma. Ferroptosis-related ncRNAs

and nanoparticle therapy targeting ferroptosis in gliomas have

received increasing attention. This review summarizes the

mechanism of ferroptosis in tumors and the research progress

of ferroptosis in the treatment of glioma, as well as the key role of

ferroptosis-related ncRNAs, and ultimately the potential clinical

value of ferroptosis in personalized treatment regimens

for glioma.
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Mechanisms of ferroptosis in tumors

Ferroptosis is fundamentally different from apoptosis,

pyroptosis, autophagy, and other cell death methods, and

shares no similarities in terms of morphology, biochemistry, or

genetics (25). Ferroptosis is characterized by the availability of

redox-active iron (26) the loss of lipid peroxide repair capacity

by the phospholipid hydroperoxidase GPX4 (27), and oxidation

of polyunsaturated fatty acid (PUFA)-containing phospholipids

(28). Ferroptosis is triggered in tumor cells by cysteine (Cys)

depletion or by inhibition of glutathione peroxidase 4 (GPX4)

(29). Subcellular structural changes are manifested by the

reduction or disappearance of mitochondrial cristae in tumor

cells and the destruction of the inner and outer mitochondrial

membranes (30). Below we provide an overview of its

mechanism around important features of ferroptosis in

tumor cells.
Disruption of iron homeostasis

Iron is the basis of tumor cell proliferation, metabolism,

invasion, and disruption of the intracellular environment and

cytoplasmic iron homeostasis is a key regulator that induces

ferroptosis (31). Tumor cells are more proliferative than normal

cells and have a greater need for iron (32). The excess free iron

produced by the Fenton reaction (33) or iron-containing

lipoxygenase (34) oxidizes PUFA on the cell membrane to

increase the formation of lipid ROS. Hydroxyl free radicals are

the most active substances in ROS, which can trigger the

production of PUFAs in membrane lipids. peroxidation,

leading to ferroptosis in cells (35). Therefore, an increase in

Fe2+ content in cells increases the sensitivity of cells to

ferroptosis, and iron chelators such as deferoxamine can

inhibit ferroptosis by chelating Fe2+ in cells to interfere with

the production of oxidized lipids (27). Transferrin (Tf) usually

binds to the transferrin receptor (TfR1) to transport iron from

the intracellular environment into cells in the form of iron-

transferrin complexes, a process that is important in ovarian

cancer (36), sarcoma (37), and other tumors were significantly

up-regulated. TfR1-mediated downregulation of the iron-

transferrin complex reduces cellular iron uptake, thus

inhibiting ferroptosis (38). Furthermore, heat shock protein

HSPB1 and phosphorylated HSPB1 also reduce iron uptake in

cells from the internal environment (39), reducing the sensitivity

of cells to ferroptosis. Endogenous iron is released into the

cytoplasm by lysosomes under the influence of acidic conditions,

and this process depends on the phagocytosis of ferritin by

nuclear receptor coactivator 4 (NCOA4) (40). Knockdown of
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NCOA4 inhibits ferritin degradation, reduces cytoplasmic iron,

and up-regulates ferritin heavy chain (FTH1) expression, thus

inhibiting erastin-induced ferroptosis (41). Furthermore, the

pentaspanin membrane glycoprotein prominin-2 promotes the

formation of exosomes and transports cytoplasmic iron out of

the cell (42). CDGSH iron-sulfur cluster domain 1 (CISD1) (43)

and the iron-sulfur cluster biosynthesis enzyme (NFS1) (44)

reduce cell susceptibility to ferroptosis by uptake of

cytoplasmic iron.
Lipid peroxidation

Human cell membranes are rich in PUFA-acylated

glycerophospholipids and have a wide variability (45) and the

scavenging of peroxidized PUFAs can inhibit ferroptosis (46).

PUFAs are very sensitive to free radical or enzyme-mediated

oxidation (47), and peroxidized PUFAs bind to the

glycerophospholipids of the cell membrane and participate in

tumor cell ferroptosis and cause cell membrane destruction (48).

Excess GSH accumulation due to down-regulation of GPX4 is a

molecular mechanism leading to lipid peroxidation (49). GPX4

can reduce lipid hydroperoxides to lipid alcohols to avoid lipid

peroxidation (50). Rapamycin complex 1 (mTORC1)

upregulates GPX4 expression and inhibits membrane lipid

peroxidation (51). The ferroptosis activator RSL3 can induce

ferroptosis in tumor cells by silencing or inhibiting GPX4

expression (26). System Xc- inhibition is another molecular

mechanism leading to lipid peroxidation (49). System Xc- is a

glutamate (Glu)/cystine antiporter composed of the solute

carrier family 3 member 2 (SLC3A2) and the solute carrier

family 7 member 11 (SLC7A11). The ferroptosis activator

erastin inhibits system Xc- blocking the entry of cystine into

cells, and the lack of intracellular Cys leads to a decrease in GSH

and a decrease in GPX4 activity (52). The tumor suppressor

protein BRCA1-associated protein 1 (BAP1) inhibits SLC7A11

expression in a deubiquitinating-dependent manner and induces

lipid peroxidation to promote ferroptosis (53). Membrane-

associated progesterone receptor component 1 (PGRMC1)

inhibits SLC7A11 through autophagic degradation of lipids

and induces ferroptosis in paclitaxel-resistant tumor cells (54).

NADPH oxidase (NOX) and the tumor suppressor gene p53

(especially the acetylation-deficient mutant p53-3KR) also

inhibit SLC7A11 (55). A recent study found that the

homology of m6A reader YT521-B containing 2 (YTHDC2)

can induce ferroptosis in lung adenocarcinoma cells by

inhibiting SLC7A11 (56). Moreover, YTHDC2 suppressed

SLC3A2 by inhibiting Homeobox A13 (HOXA13) indirectly

(57) and was also found to affect system Xc- function in lung

adenocarcinoma cells.
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Accumulation of reactive oxygen species

Reactive oxygen species (ROS) are closely related to the

proliferation and death of tumor cells. A certain amount of ROS

can promote tumor signal transduction and promote tumor cell

proliferation, growth, and adaptation to hypoxia. However,

excessive ROS accumulation promotes antitumor signaling,

triggers oxidative stress, and induces cell death (58). The

content of ROS in tumor cells is higher than in normal cells,

and the neuronal redox sensing channel TRPA1 can improve the

defense ability of tumor cells against ROS (59). The continuous

accumulation of ROS in tumor cells eventually leads to the

disappearance of mitochondrial ridges and the destruction of

mitochondrial membranes, leading to ferroptosis (60). GPX4

(61), vitamin E (a-tocopherol), and coenzyme Q 10 (CoQ 10)

can reduce membrane lipid ROS (62). The Fenton reaction,

NADPH-dependent lipid peroxidation, GSH depletion, and

decreased GPX4 activity can all promote ROS accumulation in

tumor cells (63), which induces ferroptosis in tumor cells.

These studies revealed the complex regulatory mechanism of

ferroptosis in tumor cells, which can promote or inhibit

ferroptosis by regulating key regulators of ferroptosis. We list

the key regulators related to ferroptosis in glioma and their

regulatory mechanisms and further explore the application of

ferroptosis in the treatment of glioma.
Mechanisms of ferroptosis in glioma

Glioma cells undergo marked metabolic reprogramming

(such as the Warburg effect) and GBM cell membrane lipid

species are highly cell-type specific, with lipid metabolism

involved in the occurrence and progression of GBM (64). The

reprogramming of lipid metabolism is affected by the efficiency

of acetyl-CoA (65) and isocitrate dehydrogenase (IDH) (66). In

particular, the IDH mutation is particularly important for the

prognosis of glioma. The IDH mutation inhibits the function of

the wild-type IDH product a-ketoglutarate by abnormally

producing 2-hydroxyglutarate (2-HG), thus affecting the lipid

metabolism of glioma cells (67). Ivanov et al. (68) fed glioma-

transplanted rats with a prolonged diet including iron-

containing water and found that it promoted the growth of

gliomas in rats and improved the effects of radiotherapy, which

disappeared after the injection of deferoxamine. Another study

(69) suggested that iron and iron metabolism could affect the

prognosis of patients with glioma, and the study also found that

key regulators of ferroptosis were also important in neuronal

function. Alim (70) found that selenium could inhibit GPX4-

dependent ferroptosis in neuronal cells. GPX4 depletion leads to
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neurodegeneration in vivo and in vitro (71). Below, we focus on

the key regulators of ferroptosis and elaborate on the

mechanisms of ferroptosis in glioma (Figure 1).
GPX4

GPX4 is a selenoprotein that belongs to the glutathione

peroxidase family (GPX1-8) and is a key regulator in ferroptosis

(72). Normally active GPX4 can reduce lipid peroxide (LPO) to

alcohol or reduce intracellular H2O2 to water to avoid or reduce

cell membrane lipid peroxidation. Reduced or inactivated GPX4

activity leads to an excessive accumulation of ROS on membrane

lipids that leads to ferroptosis (73). Fragile X-related protein-1

RNA binding protein (FXR1) in glioma cells can bind to GPX4

mRNA and up-regulate GPX4 expression (74). Nrf2 can also

inhibit ferroptosis by up-regulating GPX4 expression in glioma

cells (75). Conversely, activation of the p38 and ERK pathways in

GBM decreased the levels of GPX4 protein (76). Helena Kram

et al. (77) performed immunohistochemistry on sample pairs of

primary and relapse GBM of 24 patients who had received

standard adjuvant treatment with radiochemotherapy. They

found that the expression of GPX4 decreased significantly

during tumor relapse. this study shows that recurrent tumors

have a higher vulnerability to ferroptosis.
System Xc-

System Xc- consists of two parts, SLC7A11 and SLC3A2, and

its main function is to transport extracellular cystine into cells
Frontiers in Oncology 04
and reverse glutamate (Glu) transport. A study has found that

SLC7A11 is up regulated in a variety of tumor cells, promotes

glutathione (GSH) synthesis to inhibit damage from oxidative

stress to tumor cells, and is negatively correlated with the median

OS of patients (78). System Xc- also plays a significant role in

ferroptosis in gliomas. The proper functioning of System Xc-

function is critical for neuronal signaling (79). Activating

transcription factor 4 (ATF4) can increase neovascularization

within gliomas and shape neovascularization in a SLC7A11-

dependent manner (80). The expression of p53 is deregulated in

GBM, and studies have found that the expression of p53 and

SLC7A11 is negatively correlated in glioma cells (81) and that

p53 inhibits the expression of the SLC7A11 gene (82).

Furthermore, p62 binds to p53 and inhibits p53 ubiquitination

in GBM. The canonical p62-mediated Nrf2 activation pathway

plays an important role in the regulation of ferroptosis in wild-

type GBM p53 and inhibits ferroptosis by upregulating the

expression of SLC7A11.

In GBM p53 mutants, the strong interaction of p62 with

mutant p53/Nrf2 enhances the inhibitory effect of mutant p53

on Nrf2, thus reversing the classical p62-mediated Nrf2

activation pathway (83). However, one study found that the

tumor stem cell marker CD44 inhibited ferroptosis in tumor

cells in a manner dependent on the deubiquitinase OTUB1, and

overexpression of CD44 improved the stability of the SLC7A11

protein by promoting the interaction between SLC7A11 and

OTUB1 (84). High expression of OTUB1 was also found in

clinical samples of glioma and was positively correlated with

SLC7A11 expression (85). Furthermore, the NF-kB pathway

activator protein of the NF-B pathway promotes the splicing and

maturation of SLC7A11 mRNA by binding to m6A, thus
FIGURE 1

Molecular pattern diagram of ferroptosis in glioma. GPX4, Glutathione Peroxidase 4; SLC7A11, Solute carrier family 7 membrane 11; SLC3A2,
Solute carrier family 3 membrane 2; GSH, Glutathione; GSSG, Glutathione disulphide; ACSL4, Acyl-CoA synthetase long-chain family member 4;
ROS, Reactive oxygen species; DMT1, Divalent metal transporter 1; LPCAT3, Lysophosphatidylcholine acyltransferase 3; STEAP3, Six-
transmembrane epithelial antigen of the prostate 3; TFR1, Transferrin receptor 1; TF, Transferrin; ALOX15, Arachidonate 15-lipoxygenase.
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upregulating the expression of SLC7A11 and inhibiting

ferroptosis in GBM cells (86).
Other regulators

MDM2 and MDMX are negative regulators of p53, and

inhibition of MDM2 or MDMX increases ferroptosis

suppressing protein 1 (FSP1) expression in glioma cells. The

MDM2-MDMX complex regulates lipid peroxidation and

promotes ferroptosis in glioma cells by altering the activity of

PPARa (87). Knockdown of COPZ1 in GBM cells leads to

increased expression of nuclear receptor coactivator 4 (NCOA4),

and inhibition of FTH1 leads to ferritin degradation, resulting in

excessive accumulation of intracellular Fe2+, leading to

ferroptosis (88). Inhibition of the expression of the matrix

remodeling-related protein MXRA8 can also up-regulate

NCOA4 and down-regulate FTH1 expression, and MXRA8 is

positively correlated with the macrophage marker CSF1R. One

study co-cultured glioma cell with M2 macrophages and found

that MXRA8 knockdown in glioma cells attenuated the

infiltration of M2 macrophages, while the addition of Fer-1

restored the infiltration of M2 macrophages (89). The deletion of

NCOA4 can inhibit the reduction in the level of the FTH1

protein caused by cystine deprivation, and cystine deprivation

simultaneously induces the accumulation of light chain 3 (LC3)-

II protein associated with microtubules, enhances ferritin

phagocytosis, and then promotes ferroptosis in GBM cells

(90). The study (91) has also found that phosphorylation of

heat shock protein 27 (HSP27) in GBM cells can resist erastin-

induced ferroptosis, while down-regulation of HSP27 promotes

erastin-induced ferroptosis and can function as a negative

regulator of ferroptosis.

The above studies confirmed the feasibility of treating glioma

with classical ferroptosis regulators and mechanisms such as GPX4,

SLC7A11, and FSP1. Below, we focus on the key regulators of

ferroptosis in the above-mentioned gliomas and describe current

ferroptosis-related glioma treatment strategies.
Ferroptosis in glioma treatment

Regulation of GPX4

Studies have found that ibuprofen can induce ferroptosis in

glioma cells by down-regulating GPX4 expression in Nrf2-

regulated cells (75). GPX4 is a key regulator for dual

artemisinin (DHA)-induced ferroptosis in GBM cells (92).

DHA induces endoplasmic reticulum (ER) stress in glioma
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cells, leading to upregulation of ATF4 and protein kinase R-

like ER kinase (PERK). ATF4 induces the overexpression of heat

shock protein family A (Hsp70) member 5 (HSPA5) and

increases GPX4 expression and activity. GPX4 neutralized

DHA induces lipid peroxidation, thus protecting glioma cells

from ferroptosis (93). Curcumin analogs induce androgen

receptor (AR) ubiquitination to inhibit GPX4 activity, thus

promoting ferroptosis and reducing resistance to TMZ in

GBM cells (94). Studies have found that FXR1 expression is

increased in TMZ-resistant glioma cells, and targeted inhibition

of FXR1-GPX4 can reduce the drug resistance of TMZ-resistant

glioma cells (74). Dihydrotanshinone I (DHI) increases ACSL4

expression in glioma cells and down-regulates GPX4 to inhibit

glioma cell proliferation (95). The anti-malaria drug artesunate

(ART) induces ferroptosis in GBM cells by regulating the p38

MAPK and ERK signaling pathways and reducing the level of

GPX4 protein (76). Although gastrodin reduces the level of

malondialdehyde (MDA) in rat glioma cells, which in turn

increases GPX4 activity and inhibited ferroptosis in rat glioma

cells (96), plumbagin induces GPX4 degradation in glioma cells

via the lysosomal pathway and leads to GPX4-dependent cell

death (97).

RSL3, a small molecule compound that can target GPX4,

induces glycolytic dysfunction and autophagy-dependent

ferroptosis in glioma cells (98). While down regulating GPX4,

RSL3 also activates the nuclear factor kappa-B (NF-kB) pathway
to induce ferroptosis in GBM cells. However, the study found

that knockdown of GPX4 alone did not effectively induce

ferroptosis in glioma cells. NF-kB pathway activation

combined with GPX4 silencing induces ferroptosis and

inhibits glioma growth and recurrence (99). Ferroptosis

activators can inhibit GPX4 expression and synergize with

radiotherapy, inducing ferroptosis in glioma cells without

increasing DNA damage (100). Local chemotherapy is also a

new direction in the treatment of glioma, increasing local

chemotherapy drugs while minimizing the impact on normal

cells, to inhibit tumor growth and recurrence. The study has

reported on the use of gene therapy-based iron oxide

nanoparticles (IONP) to deliver GPX4 small interfering RNA

(siRNA) and cisplatin (Pt). Nanoparticles activate NADPH

oxidase (NOX) to increase H2O2 levels while releasing si-

GPX4 to inhibit GPX4 expression, causing excessive ROS

accumulation and triggering ferroptosis in glioma cells (101).

In one study, paclitaxel-loaded iron oxide nanoparticles

(IONP@PTX) enhanced the expression of autophagy-related

proteins Beclin1 and LC3II, inhibited the expression of p62

protein, and GPX4, and induced ferroptosis in GBM cells (102).

Tumor immunity-related studies have found that certain tumor

lesions that occur during early tumor progression (i.e., ischemia)

recruit neutrophils to sites of tissue damage. However,

neutrophils can induce ferroptosis in GBM cells by regulating
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GPX4, creating a positive feedback loop that exacerbates the

development of internal GBM necrosis (103).
Regulation of SLC7A11

Studies have found that ibuprofen affects GPX4

expression in glioma cells by downregulating Nrf2 and at

the same time inhibits the activity of SLC7A11 (75).

Activation of the Nrf2-Keap1 pathway up-regulates

SLC7A11 to release a large amount of Glu out of glioma

cells, thereby affecting the tumor microenvironment, which

may be related to the decreased survival rate of patients with

glioma with high expression of SLC7A11 (104). Like

ibuprofen, in addition to downregulating GPX4, plumbagin

can significantly down-regulate SLC7A11 mRNA and protein

levels in glioma cells and induce ferroptosis in glioma cells

(97). As a first-line drug for chemotherapy with GBM in

clinical practice, TMZ can affect GPX4 and reduces the

activity of SLC7A11. Studies have found that gliomas with

high expression of SLC7A11 are more sensitive to erastin-

TMZ combination therapy and have better therapeutic effects

(105). ATF4 is a key regulator in cellular metabolism and

maintenance of oxidative homeostasis, and upregulation of

SLC7A11 expression by ATF4 improves the resistance of

gliomas to chemotherapeutic drugs such as TMZ (106).

However, the latest study found that down-regulation of

ATF4 in GBM cells inhibited CHAC1 expression and

blocked sevoflurane (Sev)-induced ferroptosis (107).

Activating transcription factor 3 (ATF3) in glioma can

promote ferroptosis of glioma cells by upregulating NOX4

and SOD1 to produce H2O2 and promote the strychnine-

induced accumulation of H2O2, and by downregulating

SLC7A11 to prevent degradat ion of H2O2 (108) .

Pseudolaric acid B (PAB) increases the intracellular iron

content in the glioma by upregulating the transferrin

receptor, activating NOX4, and producing excess H2O2 and

LPO. PAB blocks cystine supply through the p53-mediated

SLC7A11 pathway, depleting intracellular GSH and further

exacerbating H2O2 and LPO accumulation (109). RSL3 is a

GPX4 inhibitor, and recent studies have found that RSL3 can

down-regulate SLC7A11 expression by activating the NF-kB
pathway (99).
Regulation of other key regulators
of ferroptosis

Differences in transferrin receptor (TfR) in normal human

astrocytes (NHA) and GBM cell lines may be the key to DHA
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selective killing of tumor cells to induce ferroptosis (92). A team

designed cRGD/Pt + DOX@GFNPs (RPDGs) nanoparticles to

promote the simultaneous occurrence of apoptosis and

ferroptosis by disrupting redox homeostasis in mouse GBM-

resistant cells. Using the Fenton reaction of gallic acid (GA)/Fe2+

to catalyze nanoparticles in the intracellular environment, Pt

(IV) depletes intracellular GSH and increases the accumulation

of reactive oxygen species (ROS), thus inducing ferroptosis in

GBM-resistant cells (110). Fe3O4-siPD-L1@M-BV2 increased Fe2

+ accumulation in mouse GBM-resistant cells and significantly

decreases the expression of programmed death-ligand 1 (PD-

L1). Fe3O4-siPD-L1@M-BV2 also increases the ratio of effector T

cells to regulatory T cells in drug-resistant GBM (111).

Amentoflavone (AF) can not only induce autophagy in glioma

cells by regulating the AMPK/mTOR pathway but is also

associated with ferroptosis in gliomas. Knockdown of

autophagy-related protein 7 (ATG7) was found to increase

ferritin heavy chain 1 (FTH1) expression and inhibits AF-

induced ferroptosis. It demonstrates that AF triggered

ferroptosis in an autophagy-dependent manner, thereby

suppressing glioma growth and recurrence (112). Another

study found that siramesin combined with lapatinib mediates

ferroptosis in glioma cells through iron release in lysosomes and

protease degradation of HO-1 (113). Doranidazole and

misonidazole can induce ferroptosis by blocking metabolic

alterations in mitochondrial complex I and II of hypoxic

glioma stem cells (GSC) that trigger responses to oxidative

stress (114).

The above studies demonstrate the mechanism by which

different drugs treat glioma by modulating key regulators of

ferroptosis (Table 1). In addition, ferroptosis-related ncRNAs

also have a certain influence on the treatment of glioma. Next,

we will elaborate on ferroptosis-related ncRNAs.
Ferroptosis-related ncRNAs in
glioma treatment

Ferroptosis and ncRNAs are closely related to tumors

(115). Among ncRNAs, miRNAs, lncRNAs, and circRNAs are

all involved in the potential regulatory mechanisms of tumor

ferroptosis (116). ncRNAs can regulate the protein levels of

ferroptosis-related genes (117), influence the expression of

mRNA of ferroptosis-related genes (118), lead to modification

of m6A (117), and control epigenetic activity (119). ncRNAs

induce ferroptosis by regulating cellular iron metabolism,

ROS metabolism, and lipid metabolism. Recent studies have

found that ncRNAs also play a key role in glioma ferroptosis

(Figure 2). GPX7 is a member of the glutathione peroxidase
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family (GPX), and miR-29b can inhibit GPX7 expression,

thus improving the sensitivity of glioma cells to erastin-

induced ferroptosis (120). miR-670-3p inhibited GBM cell

ferroptosis by downregulating ACSL4 expression, while the
Frontiers in Oncology 07
miR-670-3p inhibitor increased the antitumor effect of TMZ

(121). miR-18a inhibited ferroptosis related to p53-SLC7A11

in GBM cells by down-regulating the expression of ALOXE3

(122). The lncRNA TMEM161B-AS1 increases FANCD2 and
FIGURE 2

Regulation of ferroptosis by ncRNAs in glioma. GPX4, Glutathione Peroxidase 4; SLC7A11, Solute carrier family 7 membrane 11; SLC3A2, Solute
carrier family 3 membrane 2; GPX7, Glutathione Peroxidase 7; ACSL4, Acyl-CoA synthetase long-chain family member 4; ALOXE3, Arachidonate
lipoxygenase 3; PDGFRA, Platelet-derived growth factor receptor; FANCD2, FA Complementation Group D2; CD44, Cluster of differentiation 44;
NFE2L2, Nuclear factor erythroid 2-like 2; ITGB8, Integrin subunit beta 8.
TABLE 1 Summary of ferroptosis-associated agents.

Ferroptosis-associated
agents

Mechanism Function Study

Ibuprofen down-regulates GPX4 expression and inhibits the activity of SLC7A11 Induces
ferroptosis

(75)

Dual artemisinin up-regulates ATF4 induces the overexpression of HSPA5 and increases GPX4 expression and activity Inhibits
ferroptosis

(93)

Curcumin analog induces AR ubiquitination to inhibit GPX4 activity Induces
ferroptosis

(94)

Dihydrotanshinone I increases ACSL4 expression and down-regulates GPX4 Induces
ferroptosis

(95)

Artesunate down-regulates GPX4 Induces
ferroptosis

(76)

Plumbagin induces GPX4 degradation via the lysosomal pathway and down-regulates SLC7A11 mRNA and protein
expression

Induces
ferroptosis

(97)

RSL3 inhibits GPX4 and down-regulates SLC7A11 expression by activating the NF-kB pathway Induces
ferroptosis

(99)

IONP activates NOX to increase H2O2 levels while releasing si-GPX4 to inhibit GPX4 expression Induces
ferroptosis

(101)

IONP@PTX up-regulates the expression of autophagy-related proteins Beclin1 and LC3II, and inhibits the expression
of p62 and GPX4

Induces
ferroptosis

(102)

Temozolomide down-regulates GPX4 and reduces the activity of SLC7A11 Induces
ferroptosis

(105)

Amentoflavone induces autophagy by regulating the AMPK/mTOR pathway, and down-regulates FTH1 expression Induces
ferroptosis

(112)

Siramesin and lapatinib Via iron release in lysosomes and protease degradation of HO-1 Induces
ferroptosis

(113)
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CD44 expression by adsorbing hsa-miR-27a-3p, inhibits

apoptosis and ferroptosis, but reduces the resistance to

TMZ in GBM cells (123). LINC01564 has the opposite

effect, inhibiting ferroptosis by upregulating NFE2L2

expression and enhancing glioma cell resistance to TMZ

(124). Circular RNA CDK14 upregulates the expression of

the PDGFRA oncogene in GBM cells by adsorbing miR-3938

and reducing the sensitivity of GBM to erastin-induced

ferroptosis (125). The circRNAs TTBK2 and ITGB8 are

highly expressed in glioma tissues and cells, and TTBK2 can

inhibit ferroptosis in glioma cells by up-regulating ITGB8 by

adsorbing miR-761 (126). Table 2 summarizes the findings

from recent studies as these results suggest that ncRNAs play

a key role in ferroptosis in gliomas and may become new

therapeutic targets for gliomas.
Conclusions and future prospects

The heterogeneity of glioma cells alters the sensitivity of gliomas

to different chemotherapeutic drugs. The use of a certain

chemotherapeutic drug alone in the treatment process cannot

achieve the expected desired effect, and new treatment methods

are needed to supplement it. The induction of ferroptosis in tumor

cells has attracted increasing attention as a new strategy for the
Frontiers in Oncology 08
treatment of glioma. Previous studies have preliminarily explored the

mechanism of ferroptosis in glioma and found that improved iron

metabolism and resistance to lipid peroxidation are prevalent in

glioma cells. However, recurrent GBM showed high sensitivity to

ferroptosis. These studies demonstrate ferroptosis as a new option

for glioma treatment in the face of tumor resistance and recurrence.

Protein molecules such as GPX4 and System Xc- and ferroptosis-

related ncRNAs have become important targets for glioma therapy.

Current studies have demonstrated the value and potential of

treating glioma through the canonical pathway and factors of

ferroptosis. However, GPX4 is an essential gene in mammals, and

whether drugs that inhibit GPX4 to treat tumors will bring

unbearable side effects to glioma patients remains to be further

studied. Therefore, it is particularly important to explore non-

canonical pathways of ferroptosis in the treatment of glioma, such

as the treatment of glioma through the HO-1 pathway. In addition,

the current study does not involve the treatment of recurrent glioma,

and ferroptosis-related ncRNA research and molecular therapy are

also in their infancy. Therefore, it is particularly important to study

ferroptosis-related mechanisms in greater detail in glioma and to

explore ferroptosis-related ncRNAs, nanoparticles, and exosomes.

Currently, the clinical trials investigating ferroptosis applied to the

treatment of glioma are still incomplete. Inducing ferroptosis to

destroy tumor cells and reducing damage to normal cells of the

central nervous system is the key to promoting the clinical
TABLE 2 The regulatory role of ferroptosis-related ncRNAs in glioma progression.

NcRNA Cell
Lines

Mechanism Function Study

miR-29b U87
T98G
LN229
A172

Target GPX7 Induces ferroptosis and enhances glioma cell sensitivity to
erastin-induced ferroptosis

(120)

miR-670-3p U87MG
A172

Target ACSL4 Inhibits ferroptosis (121)

miR-18a U87MG
U251

Target ALOXE3 Inhibits ferroptosis and promote migration (122)

lncRNA
TMEM161B-AS1

U87MG
U251

Sponge with mir-27a-3p and upregulate the expression of
FANCD2 and CD44

Inhibits ferroptosis (123)

LINC01564 LN229/
TMZ
U251/
TMZ

Upregulate the expression of NFE2L2 Inhibits ferroptosis and promote TMZ resistance (124)

circ CDK14 HBE
SF126
U251
U87

Sponge with mir-3938 and upregulate the expression of
PDGFRA

Inhibits ferroptosis (125)

circ TTBK2 LN229
U251
NHA

Sponge with mir-761 and upregulate the expression of
ITGB8

Inhibits ferroptosis (126)
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translation of research findings. In conclusion, as a complement to

current therapeutic approaches, ferroptosis has immense potential in

the treatment and prognosis of glioma.
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