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NO, NO, and NOy decreased (on average)
32% to 50% at roadsides on lockdown.
03 concentrations increased by (on
average) 20% on lockdown.
Change-points indicate lockdown
not a major source of change for UK
particulates.

While locked down NO, NO, and NOy
gradually increase as vehicles return

Y
to roads. 2015 - 2019 Locking  Locked Down
Pre-Lockdown Trend Down
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Article history: UK government implemented national lockdown in response to COVID-19 on the 23-26 March 2020. As else-
Received 17 August 2020 where in Europe and Internationally, associated restrictions initially limited individual mobility and workplace
Received in revised form 11 September 2020 activity to essential services and travel, and significant air quality benefits were widely anticipated. Here,
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Available online 16 September 2020 break-point/segment methods are applied to air pollutant time-series from the first half of 2020 to provide an

independent estimate of the timings of discrete changes in NO, NO,, NOy, O3, PM;o and PM, s time-series from
Automatic Urban Rural Network (AURN) monitoring stations across the UK. NO, NO, and NOy all exhibit abrupt
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decreases at the time the UK locked down of (on average) 7.6 to 17 ug-m™> (or 32 to 50%) at Urban Traffic sta-

Keywords: tions and 4 to 5.7 pg-m ™ (or 26 to 46%) at Urban Background stations. However, after the initial abrupt reduc-

COVID-19 tion, gradual increases were then observed through lockdown. This suggests that the return of vehicles to the

Lockdown road during early lockdown has already offset much of the air quality improvement seen when locking down

NO, (provisional estimate 50 to 70% by 01 July). While locking down O5 increased (7 to 7.4 ug-m—> or 14 to 17% at

gox Urban stations) broadly in line with NO, reductions, but later changes suggest significant non-lockdown contri-
3

butions to O3 during the months that followed. Increases of similar magnitudes were observed for both PM;q (5.9
to 6.3 ug-m—>) and PM, 5 (3.9 to 5.0 ug-m—>) at both Rural and Urban stations alike, but the distribution of
changes suggests the lockdown was not an obvious direct source of changes in levels of either of these species
during this period, and that more complex contributions, e.g. from resuspension and secondary aerosol, may
be more likely major drivers for these changes.
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1. Introduction
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numbers of cases and deaths increased quickly over the following days,
weeks and months (data.gov.uk, 2020). During February and early
March, UK Government issued warnings and advice designed to
reduce infection rates amongst the UK population, and Govern-
ment, emergency services and businesses all began ringfencing re-
sources, suspending non-essential services and restructuring in
preparation for unprecedented disruption (see e.g. UK DHSC,
2020; NHS England, 2020; Nicola et al., 2020). However, it was
not until 23-26 March when both cases and death rates peaked at
about 5000 and 900 per day, respectively, (data.gov.uk, 2020)
that UK Government announced an official lockdown (GOV.UK,
2020a) and brought into force mandatory restrictions on the ma-
jority of UK non-essential UK travel (PH England, 2020). These
months and those that followed have obviously been challenging,
few if any of us remain unaffected, and the demands placed on
frontline medical practitioners have been unprecedented and
their response heroic, but with death and cases numbers in decline
and restrictions being lifted (GOV.UK, 2020b), we begin a transi-
tion out of lockdown.

We naturally look forward to better circumstances, but also have to
ask ourselves if we can, should or want to return to exactly the lives we
had before or if, building on the experiences of recent times, we would
rather aim for a ‘new normal’ (see e.g. Budd and Ison, 2020; Zeegen
et al., 2020). For example, although few would ever describe COVID-
19 as anything but a tragedy, many in the air quality research commu-
nity have highlighted the associated travel and work restrictions and
their impact on vehicle use and manufacturing work, emissions and
air quality an experience which, however fleeting they may one day
seem, we should actively seek to learn from in our on-going efforts to
reduce pollution (Monks, 2020; Muhammad et al., 2020; Winfree and
Zietsman, 2020). The very earliest comments on lockdown and air qual-
ity were understandably crude estimates limited by data availability.
But subsequent modelling (see e.g. Menut et al., 2020), satellite obser-
vation (Bauwens et al., 2020; Muhammad et al., 2020) and monitoring
data (see e.g. Bao and Zhang, 2020; Cadotte, 2020; Collivignarelli et al,
2020; Tobias et al., 2020) studies from areas that were earlier affected
and/or earlier to implement lockdowns all reported substantial associ-
ated reductions in pollutant levels, many of the order of 25-55% and
15-30% for NO, and PM;,, respectively.

Here, we present break-point/segment analysis on air quality data
from the UK Department for Environment, Food and Rural Affairs
(Defra) Automatic Urban and Rural Network (AURN) (https://uk-air.
defra.gov.uk/) using methods and software developed as part of an
on-going Defra/Ipsos MORI/University of Leeds research project
(2018-2022) to evaluate and track the impact of air quality plans.
Early findings from this work were submitted to Defra's Call for Evi-
dence on ‘Estimation of changes in air pollution emissions, concentra-
tions and exposure during the COVID-19 outbreak in the UK’ (UK
Defra, 2020) but here we extend the analysis to comment on air quality
trends as lockdown restrictions on movement lessened through to the
end of June 2020. One of the unique features of this approach is that
the break-point step does not assume event dates, but instead uses
changes in linear regression properties in a data-series over time to
identify likely points-of-changes, so provides a more independent mea-
sure of events and their timescales than a classical ‘before and after’
analysis. Acknowledging the complexities of air quality data, we also
apply deseasonalisation and deweathering procedures to the pollutant
time-series prior to analysis to reduce the influence of other sources of
air quality variance, and methods based on Theil-Sen regression to char-
acterize pre-existing air pollutant trends going into lockdown, because
the lockdown should not be considered an event that occurred in isola-
tion. This combination of methods demonstrates that there were both
on-going changes in air quality happening ahead of lockdown and
upon which lockdown-related change is superimposed and, for some
airborne species, some major changes over the timescales of lockdown
that are not obviously lockdown-related.
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2. Materials and methods

All analyses reported here were carried out using R (R Core Team,
2020) and R software packages. All of these are freely available from
CRAN (https://cran.r-project.org/) or GitHub (https://github.com/) ar-
chives, except ‘AQEval’ which, although currently pre-release, should
be available shortly.

1-Hour resolution 01 January 2015 to 30 June 2020 air pollutant (NO,
NO,, NOy, O3, PM; and PM, 5) time-series from monitoring stations clas-
sified as ‘Urban Traffic’, ‘Urban Background’ and ‘Rural Background’ were
downloaded from the Defra AURN online archives using openair (Carslaw
and Ropkins, 2012) function importAURN. Although the archive includes
data from over 300 monitoring stations, not all stations monitor all spe-
cies and not all were operating throughout the analysis period. As a result,
UK AURN coverage for this study ranged from up to 153 stations for NO,
NO, and NOy to 75 for Os. (See Fig. S1 and Table S1 in Supporting informa-
tion.) [NB: We say ‘up to’ here because not all analyses (Theil-sen, break-
point and break-segment) could be conducted on all data from all sta-
tions.] AURN data is routinely ratified within 6 months of collection, so
while pre-2020 data discussed here has been ratified, results reported
for 2020 are in the process of being ratified, and any associated observa-
tions should be regarded as early observations based on unratified data.
As part of the pre-processing of the 2020 data, some data sets were iden-
tified which contained atypically high NOy values over periods when nei-
ther NO or NO, were reported, see e.g. Fig. S2 in Supporting information.
These ‘high NO4 but no NO or NO,’ regions were assumed to be pre-
ratification artefacts (e.g. an instrument, calibration or logging issue)
and excluded prior to analysis.

For each AURN monitoring station, a nearby meteorological station
in the National Oceanic and Atmospheric Administration (NOAA) Inte-
grated Surface Database (ISD (https://www.ncdc.noaa.gov/isd) was
identified that had >90% data capture for 1-hour resolution wind
speed, wind direction and air temperature data for the same period,
and this data was downloaded and paired with the pollutant time-
series measurements using worldmet (Carslaw, 2019) and dplyr
(Wickham et al., 2020) methods, respectively. The AQEval function
isolateContribution was then used to deseasonalise and deweather
(dSW) air pollutant time-series in these merged AURN/worldmet
datasets. Here, a relatively crude dSW was applied and variance associ-
ated with hour-of-day, day-of-year, wind-speed and direction and air
temperature by Generalized Additive Model (GAM; Wood, 2019)
subtracted from the ambient pollutant time-series to reduce the influ-
ence of meteorological and seasonal contributions.

01 January 2015 to 31 December 2019 dSW time-series (or part
thereof if incomplete but sufficient for analysis) were then analysed
using Theil-Sen regression (Theil, 1950; Sen, 1968) as implemented by
the openair TheilSen function to characterize general air quality trends
prior to lockdown. The method is applied at 1-month resolution and
provides a non-parametric measurement of trends on ‘a median of
slopes of pairs of points with different x-values’ estimate of slope, and
bootstrap estimate of uncertainty (https://davidcarslaw.github.io/
openair/reference/TheilSen.html).

01 January to 30 June 2020 dSW time-series (or part thereof if
incomplete but sufficient for analysis) were then analysed using
quantBreakPoints and quantBreakSegments functions in AQEval.
These applied ‘strucchange’ break-point detection methods of Zeileis
and colleagues (Zeileis et al., 2002, 2003): applying a rolling-window ap-
proach to compare the linear regression properties across a time-series
and assigning points of likely change based on the hypothesis that a
change exists wherever the surrounding data is significantly better ex-
plained by two discrete models rather than one general model. Then
using these identified break-points and their confidence intervals as the
starting points to iteratively fit and build change-segment descriptions
of the time-series using the segmented methods of Muggeo (2003,
2008, 2017). We propose that this combination of break-points and seg-
ments, here referred to as break-segments, provides a more realistic
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characterization of air quality time-series change than either break-point
or segmented approaches in isolation (Ropkins et al., in preparation).
Here, break-point testing was applied to 2020 time-series at 4-hour reso-
lution using a time-window of 10% of the supplied time-series, nominally
about 18 days but depending on data-capture/availability, and restricted
segment iteration to prevent fitted segments ‘wandering’ away from
break-points.

2020 Automatic Traffic Count (ATC) data was also provided by Leeds
City Council for a site on Headingley Lane (A660) for the purposes of
comparison with air quality data from the nearby AURN Headingley
Roadside monitoring station. There was insufficient ATC data for dSW,
so the ATC data were analysed at 1-day resolution to minimize variance
associated with daily traffic flow patterns.

3. Results

Using NO, data from the Leeds Headingley Roadside AURN station as
an example, Fig. 1 demonstrates the effects of the different steps of this
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analysis. Fig. 1 Top Left and Right compares the full (01 January 2015 to
30 June 2020) NO, time-series before and after dSW. Here, the most ap-
parent effect is the removal of cyclic yearly trends associated with sea-
sonality and meteorological parameters that have broadly yearly cyclic
trends, e.g. air temperature. However, there is also a general reduction
in the scatter of the data and an enhancement of other features, e.g.
the general decrease 2015 to 2020 and the concentration drop in
2020. Fig. 1 Middle and Bottom compare the Theil-Sen analysis of 01
January 2015 to 31 December 2019 data and the break-point testing
of 01 January to 30 June 2020, without (Left) and with (Right) dSW, re-
spectively. Here, (as in most cases with pronounced trends) dSW does
not modify the slope prediction significantly, —3.3 with dSW versus
—3.26 without dSW, but it does significantly improve the 95% confi-
dence intervals, —3.78 to —2.83 with- dSW versus —4.5 to —1.78 with-
out dSW. In locations where concentrations are lower and/or trends are
less obvious, differences can be more pronounced, but in general Theil-
Sen predictions with dSW tended to be within the confidence intervals
estimated for the associated without dSW case (see also Fig. S3 in
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Fig. 1. Effect of deseasonalisation and deweathering (dSW) on NO, data from the AURN Headingley Roadside air quality monitoring station: Top the full time-series before (Left) and after
(Right) dSW; Middle Theil-sen analysis of the January 2015 to 31 December 2019 time-series without (Left) and with (Right) prior dSW; and, Bottom break-point detection of the 01
January to 30 June 2019 time-series without (Left) and with (Right) prior dSW. (Data in grey; predicted trends in blue; and, break-points in red; solid lines are predictions and dashed

lines are associated 95% confidence intervals.)
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Fig. 2. Break-point (Left) and Break-segment (Right) models of deseasonalised and deweathered (dSW) 01 January to 30 June 2019 NO, data from the AURN Headingley Roadside air
quality monitoring station. (Data in grey; predicted trends in blue; and, break-points in red; solid lines are predictions and dashed lines are associated 95% confidence intervals.)

Supporting information). Although change-points were highly visible in
some ambient time-series, and dSW was not strictly required for data
from some AURN stations where NO, levels were highest, e.g. London
Marylebone, the benefits of dSW were apparent at lower levels, includ-
ing some cases where changes appear relatively obvious on visual
inspection. With the Headingley NO, dataset presented here, for exam-
ple, three potential break-points are reported when the methods are ap-
plied to the without dSW data, but not one in late March when arguably
the most distinct change happens. Furthermore, the observed pattern,
several roughly regularly spaced break-points, appears to be character-
istic of cases when the method ‘trips’ on a reoccurring frequency pattern
(e.g., a weekly or monthly cycle). Consistent with this interpretation,
break-point detection of the dSW data identifies a main break-point in
late March (where visual inspection would most likely place the main
change in the ambient time-series) and a second smaller, and less
confidentially located (indicated by much wider confidence intervals)
break-point in May.

Fig. 2 shows the outcome of remodelling these break-points as
break-segments. Here, the earlier larger and more confidently located
break-point seen in late March produces a segment with a steep slope
and short duration, while the later smaller and less confidently located
break-point in May produces a much shallower and broader segment.
Closer inspection of the break-segment assignments and data (Fig. 2
Right) suggest that the methods may have assigned the end of main
break-segment slightly early, resulting in an under-estimate of the mag-
nitude of the late March change. Arguably, fit parameters could have
been ‘fine-tuned’ to provide a closer alignment but rather than intro-
duce a subjective element, we choose to present the analysis ‘as is’
with the caveat that we may underestimate changes slightly as part of
this preliminary analysis.

Fig. 3 presents break-point and break-segment models generated for
traffic volume data from a nearby ATC for the same time period as Fig. 2.

Here, the main feature of both break-point and break-segment models
is again a sharp drop in late March. While this is undoubtedly the
main response to the UK lockdown, both analyses identify several
other change-events indicating that even the changes in traffic volumes
on lockdown were not strictly isolated events. Firstly, here (and in many
other traffic data time-series) there is an increase in traffic volumes in
early January, most likely associated with the return to work after the
winter holidays. Although associated traffic volume changes were
smaller than those seen going into lockdown, they were of the order
of 5-10% of those seen 20-26 March, so not insignificant. Next, the lock-
down event itself was not a switch - one day cars on the road, the next
none. Here, in Headingly for example, the ‘response’ started early, with
a less pronounced decrease in traffic over the weeks before the official
lockdown, perhaps reflecting government advice on non-essential jour-
neys and public uncertainty about traveling more generally at the time.
Similarly, traffic flows never actually stopped but tailed away reaching a
low of about 300 vehicles hour~! (and ca. 30% of that in the month
before lockdown) but then started increasing at end of March/start of
April, and continued increasing through May and June, as vehicles
returned to the roads.

While we defer to those better placed to comment on national
trends in traffic data, the limited traffic data we have seen also indicates
that while the main changes in traffic volumes clearly align with the of-
ficial lockdown, the rate at which vehicle demand fell both prior to lock-
down and while locking down, the proportion of vehicle which came off
the road, and rate at which vehicles returned to road during the latter
part of the lockdown, all most inevitably varied by location.

Break-point/segment trends determined for all UK AURN stations
studied 01 January to 30 June 2020 are summarized for NO, NO,, NO,,
03, PM;g and PM, 5 in the Fig. 4 density plots.

Here, the higher densities, shown as red and orange regions, indicate
times when similar changes are seen at multiple sites across the UK.
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Fig. 3. Break-point (Left) and Break-segment (Right) models of 01 January to 30 June 2019 traffic volume data from a Leeds City Council ATC at a location near to the Headingley AURN
station NO, data was taken from for Figs. 1 and 2. (Data in grey; predicted trends in blue; and, break-points in red; solid lines are predictions and dashed lines are associated 95% confidence

intervals.)
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Fig. 4. Density plots of NO, NO,, NOy, O3, PM; o and PM, 5 break-point/segment events detected 01 January to 30 June 2020 at UK AURN monitoring stations. Here, the horizontal red dashed
line indicates the ‘no change’ boundary for detected events, above increases and below decreases; and the two vertical red dashed lines indicate 10 March 2020 and 11 April 2020, the dates
assigned to start and end of the period referred to as locking down in this study.

Most density plots include high density regions towards the end of Rural Background AURN stations, consistent with a traffic-related
March, typically in the time period 10 March 2020 to 10 April 2020 in- source driving this change. It was also noted that atypical changes, e.g.
dicated by the red vertical dashed lines in Fig. 4. This is slightly wider increases while locking down, tended to be seen most commonly at
than the time-range for the lockdown-related changes in road vehicle Rural Background and Urban Background AURN stations, and at AURN

numbers reported for Headingley in Fig. 3, but, given both potential re- stations in South East and South West zones, although the reason for
gional differences in responses (most notably slightly later and/or less this latter observation is less clear at this stage.
rapid responses) and an estimated measurement time-accuracy of ca. Although similar trends are seen for NO at several AURN stations,

410 days for the break-point/segment methods when applied to lockdown related changes were less frequently identified when com-
6 month time-series of air quality data, we assign this as the time period pared to NO, (compare break-point/segment numbers in Figs. S6 and
when we would expect to see the full range of changes associated with S5), and the most commonly seen NO changes were in January (com-
start of the lockdown across the UK. Hereafter, we refer to this period pare NO, and NO in Fig. 4) at the time when vehicle numbers were
(10 March to 10 April 2020) as ‘locking down’ and the remainder of expecting to be increasing as the public return to work after the winter
the studied period (11 April to 30 June 2020) as ‘locked down’. [NB: holidays. This is consistent with a NO-dominated response to changing

One of the intensions going forward is to further characterize the lock- vehicle numbers in January when Os levels were lower and an NO,-
down, e.g. locked down before and after 13 May 2020 restriction easing, dominated response to changing vehicle numbers while locking down
once we have sufficient data.] in late March. As a result, perhaps counter-intuitively, lockdown-

NO, NO,, NOy, O3, PM;o and PM, 5 break-point/segment changes de- related changes appear more distinct for NO, by comparison to NOy
tected while locking down and when locked down are summarized for (~NO + NO,). However, for both NO and NO, there is clear evidence
Rural Background, Urban Background and Urban Traffic AURN stations of changes that break-point/segment methods independently associate
across the UK in Table 1 (and Fig. S4), along with average yearly changes with the different stages of lockdown (Table 1; at Urban Traffic AURN
for the period 01 January 2015 to 31 December 2019 determined using Stations, ca. —9.68 pg m~—> or —49.9% and ca. —17.1 uyg m~> or
Theil-Sen regression. Results for individual stations are also provided in —38.2% for NO and NOy, respectively, while locking down; and, ca.
the Supporting information as Figs. S5 to S10. 6.06 ug m—> or 50.1% and ca. 9.0 pg m > or 34.2% for NO and NO,, re-

Of the species studied, NO, exhibits arguably the break-point/ spectively, while locked down), and which, as with NO,, are more pro-
segment density plot distribution closest to that expected for a classical nounced at Urban Traffic AURN stations, as would be expected for a
before-and-after response to lockdown. In Fig. 4, the largest and most vehicle emissions driven air quality change.

commonly observed NO, changes are decreases seen while locking The behaviours of O3, PM;g and PM, 5 were, however, much less
down and then increases while locked down, aligning with the ex- readily attributed to an isolated response to either the lockdown specif-
pected changes in on-road vehicle numbers across the UK during ically or on-road vehicle numbers.

these time periods. The largest NO, decreases while locking down 03 levels typically increased at both Urban Traffic and Urban Back-

(Table 1; ca. —7.6 ug m—>, —32%) and NO, increases while locked ground AURN Stations while locking down. Although average NO/

down (Table 1; ca. 5 ug m™2, 33%) were observed at Urban Traffic NO,/NOy and O3 measurements are not strictly directly comparable be-
sites. Some of the largest NO, reductions when locking down were cause NO, NO, and NO, monitoring tends to be more common at Urban
observed at London Marylebone Road and Camden Kerbside (both Traffic stations and O3 monitoring more common at Rural Background
Greater London), Oxford Centre Roadside (South East), Glasgow stations, there is a reasonably reciprocal relationship between O3 and
Kerbside (Central Scotland) and Leeds Headingley Kerbside (Yorkshire NO, changes at most sites while locking down. Compare, for example,
and Humberside), of the order of —20 to —33 pg m > (Fig. S6). By com- ~ —4.3 pg m~° versus 1.8 ug m—>, 7.0 ug m > versus —4.2 ug m > and
parison, NO, trends were less pronounced at Urban Background and 7.4 ug m~> versus —7.6 pg m > for O3 and NO, at Rural Background,
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Table 1

Overall (absolute and percent) trends for NO, NO,, NO, O3, PM;¢ and PM, s at UK AURN sites: for each site, Average Yearly Change (pre-2020) are the average annual change as determined
by Theil-Sen analysis for the period 01 January 2015 to 31 December 2019, and Change Locking Down and Change while Locked Down are determined as the net sum of changes due for
break-points/segments detected during the periods 10 March to 10 April 2020 and 11 April to 30 June 2020, respectively. Results are reported as site type median with 5% and 95%

quantiles in parentheses.

Species Change Average yearly change (pre-2020)

Change locking down (10 March 10 April 2020)

Change while locked down (11 April to 30 June

ligm > yr ] ligm™] 2020) [pgm ]
Rural Urban Urban Traffic ~ Rural Urban Urban Traffic Rural Urban Urban Traffic
Background Background Background Background Background Background
NO Absolute —0.07 [—-0.37, —0.35 —1.55 0.41[—0.36, —39[-737, —9.68[—32.96, —042[-0.76, 137[-2.5, 6.06 [2.28,
0.03] [—1.27,0.51] [—6.39,0.38] 0.8] 0.54] —4.34] 0.25] 13.26] 13.51]
Percent —6.91 —5.72 —5.88 80.8 [—42.58, —45.79 —49.85 —36.12 26.26 [—45.62, 50.1[17.07,
[—16.57,4.41] [—11.3, [—11.48, 156.88]* [—59.39, [—79.29, [—61.93,55.28] 516.38]% 107.49]
10.59] 2.24] 46.08] —29.88]
NO, Absolute —0.19[—0.85, —0.74[—2.6, —1.48 1.76 [—1.35, —4.16[—7.88, —7.58[—20.32, 1.49[—2.81, 3.06 [—6.1, 4.99[—747,
0.25] 0.04] [—3.74, —0.1] 5.19] 4.55] 2.14] 3.05] 6.71] 13.52]
Percent —3.41[—838, —3.31 —4.35 39.61[—126.86, —25.62[—39, —32.17 25.46 [—29.34, 20.61[—37.73, 3137
5.06] [—7.94,0.27] [—8.04, 158.09]* 36.7] [—54.87,10.54] 186.37] 45.09] [—33.15, 98]
—0.36]
NOx Absolute —0.27[—1.32, —1.26 —33 1.37[—1.32, —5.66 —17.14 0.93 [—4.27, 3.19[—-6.37, 8.95[2.12,
—0.04] [—4.61,036] [—13.17, 4.74] [—15.39,8.66] [—48.25, —5.27] 2.34]| 9.54] 32.54]
0.56]
Percent —3.31[—9.62, —4.13 —5.29 40.21[—68.57, —28[—42.63, —38.19 1096 [—32.01, 21.27[-27.35, 34.17[5.52,
—0.17] [—9.25,0.81] [—10.04, 109.27]* 47.29] [—67.83, 829.57] 42.62] 91.26]
0.95] —17.42]
o3} Absolute 0.48[—1.62, 066[—2.05 137[-0.56, —43[—-10.21, 6.96[—6.35, 7.39(6.3,12.62] 4.25[—8.53, 1.89[—7.76, ca. —6.82°
2.12] 1.95] 3.71] 11.59] 10.12] 12.44] 13.98]
Percent 0.84[—3.06, 1.46[—3.81, 834[—152, —7.44[—1643, 1391[—11.99, 17.46[16.37, 6.77 [—13.66, 3.55[—15.04, ca.—17.24°
3.65] 5.12] 16] 20.81] 22.07] 49.13] 21.88] 28.7]
PM;o,  Absolute —026[—1.02, —0.13[—1.9, —0.25 5.81[1.71, 6.16 [—0.71, 6.26 [—3.62, —3.52[-73, —2.06 [—9.55, —2.09
0.28] 1.04] [—1.51,1.06] 11.37] 10.52] 11.16] —1.64] 422] [—10.37, 5.35]
Percent —2.68[—6.71, —0.95 —1.15 73.05 [28.4, 61.28 [—6.23, 47.81[—25.28, —2591 —12.39 —13.08
4.85] [—10.88, [—7.69,6.15] 118.68]° 98.39] 80.89] [—33.31, [—41.25, [—38.01, 44.3]
8.95] —22.33] 27.25]
PM,s Absolute —043[—0.85 —0.22[—-1.1, —043 3.94[1.55,7.04] 4.79 (147, 5[0.59, 8.49] —1.08[—1.86, 0.46 [—6.45, 0.18 [—6.7,
0.33] 0.34] [—0.87,0.38] 6.94] 2.24] 4.72] 4.5]
Percent —5.73 —2.08 —3.05 80.46 [47.26, 90.73 [30.92, 84.81[25.85, —14.19 5.51[—43.27, 2.46[—45.19,
[—12.09, [—9.55,4.11] [—7.41,444] 114.1] 143] 134.99] [—22.35,80.9]  50.06] 92.96]
11.51]

Notes: For Average Yearly Change/Theil-Sen analyses, percent changes are calculated relative to mid-point concentration for available data time-range; For both lockdown related
changes/Break-point/segment analyses, percent changes are calculated relative to concentration prior to first detected change in that time period. As a result, percent changes locking
down and while locked down should not be compared directly because each is calculated relative to its start-point. (From example, a 50% reduction from 100 pg m~ followed by a

50% increase from there does not return levels to 100 pg m™: 100 ug m—> — 50% = 50 uyg m~>; then 50 uyg m > + 50% = 75 ug m—>.)
@ Considered less reliable because large uncertainty associated with change, start-point concentration or combination.
b Median change reported without 5% and 95% quantiles as ESTIMATE ONLY because insufficient measurements for quantile calculation.

Urban Background and Urban Traffic AURN stations, respectively, in
Table 1 or trends in Fig. S3 Left. This is consistent with reduced O
quenching (O3 + NO — 0, + NO», etc.) in areas where NOy levels
have decreased, and, lockdown-related trends reported elsewhere
(e.g. Collivignarelli et al., 2020, in Italy and Tobias et al., 2020, in
Spain). However, although O3 decreased in the weeks that followed,
again in reasonable alignment with the increases in NO, as vehicles re-
turn to the road while the UK was locked down, there were also large
increases in O3 levels at many AURN stations in May/June, most likely
driven by warmer weather rather than an association with either the
lockdown or vehicle-related NO/NO,, so suggesting at least two poten-
tial sources for O3 changes observed.

The association between a change in on-road vehicle numbers, emis-
sion rates and airborne pollution levels would be expected to be less dis-
tinct for particulates by comparison to gaseous species like NO, NO, and
NO, because non-traffic-related sources tend to be larger particulate
contributors even at roadsides (see e.g. Jones et al., 2019) and the
main traffic sources are more complex (exhaust, brake and tyre wear,
road dust resuspension compared with exhaust alone) (Hester and
Harrison, 2016). In addition, bus services were not stopped in most
areas during the UK lockdown, and these are potentially a major air-
borne particle source, either because of tail-pipe emissions from buses
not equipped with diesel particle filters (see e.g. Smit et al., 2019) or
higher levels of particle resuspension associated with the large frontal
area of the vehicle class more generally. However, if PMo and PM; 5

levels were affected by lockdown, the expected effect would be a
decrease during lockdown, similar to the observed for NO,, and similar
to trends reported by others elsewhere (Bao and Zhang, 2020;
Collivignarelli et al., 2020; Tobias et al., 2020). By contrast, pronounced
increases were observed for both PM;o and PM, 5 while locking down.
Furthermore, these increases were highly similar at all three site types
(Table 1; On average, PM;( 5.8, 6.2 and 6.3 ug m™> and PM, 5 3.9, 4.8
and 5 ug m— at Rural Background, Urban Background and Urban Traffic
AURN Stations, respectively) and part of pattern of changes (a decrease
prior to lockdown followed by an increase while locking down and then
a further increase and decrease while locked down) that was highly
inconsistent with vehicle-related particulate emissions being their
major contributor. Elsewhere others have identified secondary aerosols
and regional pollution as potential confounders for lockdown-related
particulate impact assessment (e.g. Tobias et al., 2020). These, meteoro-
logical processes (e.g. rain washout and resuspension) or other as-yet-
accounted-for phenomena could be sources for the observed changes.
Although this analysis provides no specific insights regarding the
sources of particulate changes during the lockdown, it does clearly dem-
onstrate that associated break-point/segment trends are distinctly dif-
ferent from those seen for NO, NO, and NOy, and distinctly different to
what would be expected as a response to lockdown.

In addition, Theil-Sen regression of trends 01 January 2015 to 31 De-
cember 2019 clearly show that NO, NO,, NOy, PM;o and PM, 5 levels
were typically all decreasing and Os levels were typically increasing
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year-on-year across the UK prior to lockdown (Table 1 and Figs. S4—
$10), and in some cases these yearly changes were of the order of 10
to 25% of the magnitude of the changes observed while locking down.

Since this work was undertaken, the UK Air Quality Expert Group
(AQEG) has published their own report based on Defra's Call for Evi-
dence (AQEG, 2020). Although early work from this study was submit-
ted to that call, it is worth briefly commenting on other findings
reported there and published elsewhere e.g. Lee et al. (2020) and
Forster et al. (2020), and the relevance of this extension to work re-
ported to the Call in May 2020. All work points to similar interpretations
for NO, NO,, NOy and O3 trends about lockdown, and AQEG (2020)
highlighted the complex nature of particulate trends and the challenges
in their interpretation. Arguably, this approach, which uses break-point/
segmentation methods to identify dates of likely discrete change rather
than enforcing a 23/24th March 2020 change-point, provides unique
evidence regarding the nature of change observed at the time. The pro-
files estimated for the UK (Fig. 4), also, perhaps, suggest options for
‘unpicking’ what is and is not lockdown-related change for species like
O3 and particulates where multiple contributions are highly likely to
be contributing on relevant time-scales and at similar or greater magni-
tudes. Also, with regards the extension of the analysis into June (and po-
tentially in future onwards), it is also worth highlighting the important
of starting to treat the lockdown as series of events or more strictly
stages, e.g. ‘locking down’, ‘while locked down’ (maybe also ‘easing re-
strictions’), and ‘coming out of lock down’. The lockdown and each of
these stages are all likely to be dynamic events rather than static re-
gions, and the greatest insights regarding the interaction of traffic and
air quality will come from treating data from lockdown accordingly.
Break-point/segmentation is certainly one of the tools worth consider-
ing as part of this process.

4. Conclusions

The current analysis should be regarded as provisional. Firstly, the
analysis reported here is data that is not yet fully ratified, so potentially
subject to revision, and the analysis employs break-point/segment
methods that are in-development, and include some elements, e.g. the
matching of air quality and meteorological data sources, that may
be subject to further refinement. But, also equally importantly, the
lockdown is itself an event in progress, and any study of impacts will,
unavoidably, be provisional until there is sufficient data for the charac-
terization of baselines both before and after the lockdown.

However, these caveats acknowledged, the current analysis provides
provisional estimates of the magnitude of the air quality impact of the
lockdown across the UK and break-point segment evidence on the
very different change profiles observed for NO, NO,, NOy, O3, PM;o
and PM, 5 in the UK that may help to inform other on-going efforts to
characterize this highly unique event:

* NO, NO,, and NOy all exhibits trends highly consistent with airborne
species impacted the UK lockdown, e.g. an abrupt decrease while
locking down, on average NO —9.7 yg m ™ (—50%), NO,-7.6 ug m—>
(—32%) and NO, —17.1 pg m—> (—38%) at AURN Urban Traffic moni-
toring stations, and a more gradual increase while locked down associ-
ated with the return to the road of vehicle during this period, on average
NO 6.1 pg m—3,NO, 5 ug m > and NO, 9 ug m—> at AURN Urban Traffic
monitoring stations. This suggests that by the end of studied period (30
June 2020) a significant proportion, provisionally estimated at ca.
50-70%, of the air quality benefits observed while locking down had al-
ready been offset by the return of vehicles to the roads.

Although few UK Urban Traffic AURN Stations monitor Os, O3 levels in-
creased on average 7.4 g m > (17%) and 7.0 ug m > (14%) at these and
Urban Background AURN Stations, respectively. These changes were
broadly consistent with NO, reductions, supporting the assignment of
this as an associated event. However, later changes during lockdown
were less consistent trends while locked down, suggesting additional
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sources (most likely warm weather events) also make significant con-
tributions to O3 levels during this period.

Observed trends for both PM;¢ and PM, 5 were highly inconsistent with
an air quality response to the lockdown. Across the UK, irrespectively of
AURN site type, increases were observed for both species while locking
down (PM; 5.9 pg m~> to 6.3 pg m—> and PM,5 3.9 pg m~> to
5.0 ug m—>) and trends both before and after were distinctly different
to those expected for a lockdown response, indicating that the lock-
down was not the major source (or not a direct source) of the most pro-
nounced changes in levels of either of these species during this period.

Theil-Sen regression of the period 01 January 2015 to 31 December
2019 also indicated general year-on-year deductions for NO, NO,, NO,,
PM;, and PM, 5 and increases for O3, prior to lockdown, and highlight-
ing the limitations of ‘same-time-last-year’ studies that do not take
into account underlying air quality trends.

Likewise, the identification of similar magnitude events not associ-
ated with lockdown, e.g. NO-dominated events associated with changes
in on-road vehicle numbers in early January and Os events in May/June,
and a highly uncertain association between PM;q and PM;, changes and
the lockdown, also all highlight the potential limitations of studies that
treat the lockdown as an event that happened in isolation.

However, perhaps the most important observation is that even for
species like NO, that appears, in the UK at least, to exhibit a well isolated
response to locking down, the period while locked down was not a sta-
ble baseline. Numbers of vehicles on the roads were changing during
this time. As a result, even in the most ideal cases, studies that apply a
conventional ‘before-and-after’ model selected periods before lockdown
and in lockdown need, like this work, to be considered provisional
estimates of the impact of the lockdown. Arguably, this situation is un-
likely to change until we can robustly characterize both pre- and post-
lockdown baselines and look critically at all the potential sources of air
quality change about lockdown.
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