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Background: Computed tomography (CT) is now universally applied into clinical practice with its non-
invasive quality and reliability for lesion detection, which highly improves the diagnostic accuracy of patients 
with systemic diseases. Although low-dose CT reduces X-ray radiation dose and harm to the human body, it 
inevitably produces noise and artifacts that are detrimental to information acquisition and medical diagnosis 
for CT images.
Methods: This paper proposes a Wasserstein generative adversarial network (WGAN) with a convolutional 
block attention module (CBAM) to realize a method of directly synthesizing high-energy CT (HECT) 
images through low-energy scanning, which greatly reduces X-ray radiation from high-energy scanning. 
Specifically, our proposed generator structure in WGAN consists of Visual Geometry Group Network 
(Vgg16), 9 residual blocks, upsampling and CBAM, a subsequent attention block. The convolutional block 
attention module is integrated into the generator for improving the denoising ability of the network as 
verified by our ablation comparison experiments.
Results: Experimental results of the generator attention module ablation comparison indicate an 
optimization boost to the overall generator model, obtaining the synthesized high-energy CT with the best 
metric and denoising effect. In different methods comparison experiments, it can be clearly observed that our 
proposed method is superior in the peak signal-to-noise ratio (PSNR), structural similarity index measure 
(SSIM) and most of the statistics (average CT value and its standard deviation) compared to other methods. 
Because P<0.05, the samples are significantly different. The data distribution at the pixel level between the 
images synthesized by the method in this paper and the high-energy CT images is also most similar.
Conclusions: Experimental results indicate that CBAM is able to suppress the noise and artifacts 
effectively and suggest that the image synthesized by the proposed method is closest to the high-energy CT 
image in terms of visual perception and objective evaluation metrics.

Keywords: Low-dose computed tomography; convolutional block attention module (CBAM); generative 
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Introduction

Over the past decades, an increasing number of researchers 
and specialists have concentrated on the important subject 
of how to reduce patient X-ray radiation doses while 
obtaining satisfying pictures. However, to obtain better 
imaging results with conventional computed tomography 
(CT) systems, patients must receive a higher dose of X-ray 
radiation, which is harmful to their health (1). Dual energy 
CT (DECT) mainly utilizes the different absorptions 
produced by substances at different energy X-rays, showing 
great technical advantages in the detection and imaging 
of various systems of the human body (2). The DECT 
imaging system consists of two X-ray sources and two 
detectors. the acquisition processes for high and low-
energy are independent of each other, and their noise 
generation conditions are almost the same. The radiation 
dose required is not twice that of a conventional scan, but 
essentially equivalent or even less (3-7). In addition, DECT 
is capable of providing more favorable data on the function, 
morphology, occurrence, development, and prognosis of 
diseases as well, in addition to obtaining ordinary CT scan 
images (8). A variety of clinical applications have been 
successfully confirmed as well, making it possible to resolve 
problems that come with ordinary CT. For example, DECT 
was able to distinguish between calcified and noncalcified 
calculi in all cases, and dual-energy urinary calculus analysis 
was also effective with a low-dose protocol (9). DECT can 
also improve the ability to show tiny lesions, and the case (10)  
gave an example of dual-energy CT making it more 
effective than single-energy CT to detect bladder cancer.

Related work

Leading industrial CT suppliers have implemented two 
different systems to obtain distinct energy data. One with 
a dual source sets two tubes running at different voltages 
and corresponding detectors mounted orthogonally in one 
gantry, leading to inaccurate data information caused by a 
low sampling rate or signal crosstalk. The other is a single 
source whose main function is quickly switching the voltage 
of the single-tube emission source to achieve high- and low-
energy scanning, which leads to the time interval between 

two scans affecting the information of the image (11). For the 
purpose of reducing the radiation dose of DECT, on the one 
hand we are able to improve the reconstruction algorithm 
to minimize noise and dose. On the other hand, the tube 
current modulation technique is used to directly reduce 
the tube current. The first type is based on some iterative 
reconstruction algorithms or analytical reconstruction 
methods such as the total variation (TV)-based methods, 
the penalized weight least-square (PWLS) method (12,13), 
as well as the cone-beam computed tomography (CBCT) 
reconstruction approach in the field of deep learning (14), by 
means of introducing with compressed sensing theory we are 
able to perform sparse reconstruction. With the second type, 
white noise will be generated by sparse X-ray photons in a 
low current environment, resulting in a negative impact on 
image quality. Iterative reconstruction techniques are now 
well established and reliable. However, compared with the 
traditional filtered back projection (FBP), the reconstruction 
speed is slightly slower due to the use of nonlinear 
operations that consume more resources (15-17). Therefore, 
we hope to identify the mapping relationship between low-
energy scans and high-energy scans to reduce high-energy 
CT scans in the DECT system as much as possible and 
replace them with low-energy CT scans.

In recent years, data-driven deep learning-based methods 
relying on powerful nonlinear mapping capabilities have 
become a new trend and have been widely used in the field of 
medical imaging, including in segmentation (18), denoising 
(3,19-21) and reconstruction (22) tasks. Particularly for 
low-dose CT noise reduction, novel methods have been 
developed to convert between images presenting similar 
anatomy but different energy. For example, a residual 
encoder-decoder convolutional neural network (RED-
CNN) (23) was proposed for generating low-dose CT 
images to replace normal-dose CT images. However, only 
taking into account the mean square error between the 
generated CT image and the real image might induce the 
resultant images to be vulnerable to blurred edges and 
missing detail information. To tackle this problem, the 
generative adversarial network (GAN) (24) was introduced 
for low-dose CT. Then, it was found that the Wasserstein 
distance is superior to the Jensen-Shannon (JS) divergence 
even if the two distributions do not overlap, because 
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the Wasserstein distance still reflects their proximity 
and overcome the difficulty in training GAN, yielding 
the Wasserstein distance-based GAN (WGAN) (25). 
Furthermore, In order to avoid gradient disappearance 
and gradient explosion during WGAN training, Improved 
Training of Wasserstein GANs (26) proposes a gradient 
penalty to solve this problem by setting an additional loss 
term similar to the L2 regularity. Importantly, Wasserstein 
generative adversarial network with visual geometry group 
perceptual loss (WGAN-VGG) (27) enhances the texture 
details of the generated images to make the recovered 
images more visually appealing and more in line with 
human sensory characteristics. The perceptual loss was 
implemented by visual geometry group (VGG) (28), which 
was pretrained on natural images.

In addition, Huang et al. (29) proposed a cycle-consistent 
generative adversarial network with attention (CaGAN) 
for low-dose CT noise reduction, which demonstrated that 
the attention module has a positive effect on improving the 
quality of generated images.

Contributions

Although these prior network architectures have achieved 
significant performance gains, it is still a great challenge 
in low-dose CT imaging to ensure that image details meet 
the diagnostic requirements. Consequently, inspired by 
these methods, we make use of the WGAN and devise a 
generator network structure in which an attention module 
(CBAM) and residual block are integrated for low-dose CT 
noise reduction. Our contributions can be summarized as 
follows:

(I) We propose a new generator model consisting 
of Vgg16, 9 residual blocks, upsampling and 
subsequent CBAM for synthesizing high-energy 
CT from low-energy CT, which is equivalent 
to reducing the noise of low-dose CT and the 
radiation dose of high-energy CT.

(II) We make the parameters of CBAM adjustable, by 
which we attempt to perform a large number of 
ablation experiments with training and test data to 
demonstrate that this model is acceptable.

Methods

Data sources

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 

approved by the ethics committee of Shenzhen Institutes 
of Advanced Technology, Chinese Academy of Sciences 
(Shenzhen, China). Individual consent for this retrospective 
analysis was waived. We analyzed a dataset of 80 patients, 
including different parts (chest, abdomen and head) of the 
human body. The dataset was divided into 6:2:2 beforehand 
for training, testing, and validation. The images were 
acquired using Siemens Somatom Definition Flash Dual-
Source CT, with 80 kV scanning in system A and 140 kV  
scanning in System B. There was no time difference 
between different energy scans. The phase angle difference 
between the two sets of Siemens Somatom Definition 
Flash dual-source CT systems is 93 degrees in the XY-axis 
direction. Because it is spiral scanning and the scanning 
bed moves at a certain speed at the same time, there may 
be spatial dislocation in the images of different energies 
collected by the two sets of systems. In this experiment, 
a thin layer collimation layer thickness (64*0.6 mm), fast 
rack speed (0.33 s/turn) and small pitch (0.75) were used to 
reduce the possible spatial dislocation in the acquisition of 
the same layer. Meanwhile, Siemens’ unique AMPR conical 
wire harness artifact correction image reconstruction 
algorithm could also greatly reduce the possible spatial 
dislocation between two sets of images. Finally, all data were 
acquired using the same machine in the same institution.

All the data in this group were scanned by dual-source 
CT, and their image sizes were all 512*512. To improve the 
training speed of the network model, all the datasets must 
be transformed into the form of tfrecord. It is necessary for 
the dataset to make a clipping between 0 and 1 by dividing 
by 3,000. We normalize the input images between 0 and 1 
because the model will be increasingly convergent with the 
backpropagation gradient being under control.

The 80 patients included 55 males and 25 females with 
ages ranging from 25 to 75 years old. The low and high 
energies of the scanned images are 80 kV and 140 kV, 
respectively. We use the reconstructed paired high-low 
energy images as the training set, which contains 48 patients 
aggregating approximately 30,000 slices, and choose 16 
patients with approximately 10,000 slices for testing. The 
remaining 16 patients with approximately 10,000 slices were 
prepared for validation. In addition, the patch size is set to 
224*224 by means of a function that randomly crops the 
original 512*512 pictures.

Wasserstein generative adversarial network (WGAN)

As shown in Figure 1, a generative model G and a 
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discriminative model D constitute the WGAN. The 
generative model uses a pair of low-energy CT and high-
energy CT to learn a function that maps a low-energy CT 
value distribution to a high-energy CT value distribution. 
The task of the discriminative model is to determine whether 
the images are from the synthesized high-energy CT 
distribution or the real high-energy CT distribution. Here, 
G and D are trained to solve the following min-max problem:

( ) ( ) ( )( )min max , log log 1
r gGAN x P x PG D

L G D E D x E D x = + −       [1]

where Pr is the true sample distribution and Pg is the sample 
distribution generated by the generator. the superiority of 
the Wasserstein distance over the JS divergence is that even 
if the two distributions do not overlap, the Wasserstein 
distance still reflects their proximity and overcome the 
difficulty in training GAN, yielding the Wasserstein 
distance-based GAN (WGAN) (25).

Network architecture

Figure 2: A diagram of the proposed generator structure in 
WGAN, consisting of Vgg16, 9 residual blocks, upsampling 
and a subsequent attention block (CBAM). In this model, 
we make use of the low-energy CT images that are 
randomly cropped from 512*512 to 224*224 as input for the 
requirement of Vgg16. We use a pretrained Vgg16 network 
to replace the encoder part of the generator, which can 
greatly reduce the training time.

In addition, as shown in Figure 3, the residual module 

is introduced in the generator structure, and nine tandem 
residual neural network blocks are used for deep connection, 
which can continuously capture the edge, texture, local 
features and global features with richer semantic information 
of the input low-dose CT and complete the transformation 
of low-dose CT features to those of high-dose CT.

Furthermore, the convolutional block attention 
module (CBAM) (30) is integrated into the generator 
for improving the denoising ability of the network (31). 
As shown in Figure 4A, CBAM applies the channel and 
spatial attention modules in turn to emphasize meaningful 
features in the two dimensions of space and channel. Figure 
4B illustrates that the channel dimension is unchanged 
and the spatial dimension is compressed. The module 
focuses on meaningful information in the input image. 
Since the SENet (32) only maps spatial information into 
the channel through Global Average Pooling (GAP) to 
get a local optimal solution of the feature, which leads to 
the problem of lost information, we consider using Global 
Max Pooling (GMP) to compensate for the problem of 
lost spatial information when using GAP alone, making 
the extracted high-level features more comprehensive and 
richer. Next in the shared two-layer perceptron (MLP), the 
features are further extracted, finally by feature fusion and 
sigmoid function, attention vector of channel domain can 
be obtained. Figure 4C describe the process for obtaining 
attention vector of spatial domain, the main steps are as 
follows:

(I) Channel-refined feature FC goes through both GAP 
and GMP operations along the channel dimension 

BP BP

Input

Generator

Logit

Label

Discriminator

D-logit

D-label

Wasserstein
Distance

Score

BP

Figure 1 Overall workflow of the WGAN: Input, noise ~ U (−1,1). BP, backpagation; D-logit, formed from logit image going through 
Discriminator network; D-label, formed from label image going through Discriminator network; Score, measurement of similarity between 
images; WGAN, Wasserstein generative adversarial network.
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to obtain two different channel feature description 
operators, respectively.

(II) The above results are stitched together and then 
subjected to a 7*7 convolution operation for 
expanding Receptive Field, which is significant to 
process spatial information.

(III) By sigmoid function, attention vector of spatial 
domain can be obtained.

Accordingly, we believe that CBAM can guide the 
network to concentrate on the meaningful features and 
suppress unimportant ones.

Table 1 reflects the parameters of CBAM adjustable, ‘A’ 
represents CBAM, and the subsequent number stands for 
the number of CBAM counting from bottom to top in 
Figure 2. The ratio represents the channel multiplier of the 
full connection regardless of ascending and descending. As 
the number of feature map channels increases or decreases 
exponentially in our generator, deeper features require 
a larger ratio to simplify their redundant information. 

Therefore, the number of fully connected neurons is 
reduced, which can reduce the complexity of the model 
parameters and prevent the model from overfitting. That is 
the reason why we set the attention module with adjustable 
parameters in the U-shaped generator network structure.

It can be seen from the Figure 5 that the structure of 
the discriminator network D has four convolutional blocks 
that consist of two convolution operations followed by a 
LeaklyReLu (33) activation function structure. In the last 
part of this network, we use two fully connected layers, and 
the final layer removes the LeaklyReLu activation function 
to obtain a single output, which is a Wasserstein distance 
between the high-dose CT distribution and low-dose CT 
distribution.

Hybrid loss

The prior investigation justifies the use of a hybrid 
loss function for optimal diagnostic quality (34). As a 
comprehensive metric for the consistency of generated and 
real images, the hybrid loss enables the generated images 
to synthesize multi-scale information and improve the 
generalization performance of the model.

Adversarial loss
For the purpose of accelerating the training process and 
obtaining better denoised images, gradient penalty is often 
applied for the WGAN (26) loss.

Figure 3 The architecture of the residual block: each box 
represents the size and number of convolution kernel.
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Figure 2 The architecture of the generator: Concat, concatenation for 3 channels; Conv, 3*3, Relu, convolution operation, convolution 
kernel size, activation function, respectively; CBAM, convolutional block attention module.
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( ) ( ) ( )

( )( )2

ˆ 2

,

ˆ ˆ 1

r gWGAN GP x P x P

x

L G D E D x E D x

E xD xλ

− = − +      

 + ∇ −  

 

 [2]

In order to avoid gradient disappearance and gradient 
explosion during WGAN training, Improved Training of 
Wasserstein GANs (26) proposes a gradient penalty to solve 

this problem by setting an additional loss term similar to the 
L2 regularity. The last term restricts Critic’s gradient norm 
to converge to 1. x̂  is the linear interpolation between the 
generated samples and the real samples and λ=10.

Perceptual loss
It is of vital importance for medical images to preserve the 
significant features and details as a reference for diagnosis 
of diseases (35). Perceptual loss has been widely investigated 
in image transformation tasks over the past years (1). 
Compared with the normal L2 loss, the details of the output 
characteristics can be enhanced. To enhance the texture details 
of the generated images and make the recovered images 
visually better and more consistent with human sensory 
features, we add perceptual loss to the loss function of the 
generator. The perceptual loss can be described as follows:

( ) ( ) ( )( ) ( )
2

,
1

Perceptual x y F
L G E G y x

whd
φ φ = −    [3]

where ϕ denotes the pretrained VGG-19 network for the 

feature extractor. F
∗  is the Frobenius norm. w, h, and d 

represent the width, height, and depth, respectively. The 
VGG-19 model was trained originally for the ILSVRC 
Challenge in 2014 and won first place in ILSVRC 

Figure 4 Overview of the convolutional block attention module. (A) Two parts of the convolutional block attention module. (B) Channel 
attention module. (C) Spatial attention module. CA, channel attention module; Fc, channel refined feature; SA, spatial attention module; 
GMP, Global Max Pooling; GAP, Global Average Pooling; MLP, two-layer perceptron.

CA SA

FcFeature

GMP
MLP

Refined feature

Feature GAP

CA

Sigmoid

Fc

GAP

GMP

Conv Sigmoid SA

A

B

C

Table 1 The parameters of convolutional block attention module

Attention module Ratio

A0 –

A1 1/64

A2 1/32

A3 1/16

A4 1/8

Attention module, the number of convolutional block attention 
module; Ratio, the channel multiplier of the full connection 
regardless of ascending and descending; A0, original network 
with no convolutional block attention module; A1, 1 convolutional 
block attention modules added; A2, 2 convolutional block 
attention modules added; A3, 3 convolutional block attention 
modules added; A4, 4 convolutional block attention modules 
added.
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positioning and second place in classification, which is one 
of the seminal works laying the foundation for the field of 
deep learning.

Similarity loss
Natural images are highly structured, which is reflected 
in strong correlations between the pixels of the image, 
especially if they are spatially similar to medical CT images 
of different dose levels. These correlations carry important 
information about the structure of the object in the 
visual scene. The SSIM is calculated in three dimensions: 
luminance, contrast, and structure. When measuring the 
distance between two figures, more emphasis is placed on 
the structural similarity of the two figures, rather than using 
MSE or PSNR, which calculate the difference between 
the two images on a pixel-by-pixel basis. The SSIM can be 
described as follows:

( )( ) 1 2 3
2 2 2 2

1 2 3

2 2
, x y x y xy

x y x y x y

C C C
SSIM G x Y

C C C
µ µ σ σ σ

µ µ σ σ σ σ
+ + +

= ∗ ∗
+ + + + +  [4]

where μx, μy, σx, σy, and σxy denote the means, standard 
deviations, and the covariance value of G(x) and Y, 
respectively. In addition, the value of SSIM takes values in 
the range of 0–1. The SSIM loss can be defined as equation 5:

( ) ( )( )1 ,SSIML G SSIM G x Y= −  [5]

The total loss of proposed generator is summarized as 
below:

( ) ( ) ( ),Total WGAN Perceptual SSIML L C D L G L Gα β γ= + +  [6]

Where α, β and γ are weight coefficients of the above 

three terms. By fixing one variable and then optimizing 
the remaining two variables, these weight coefficients were 
assigned: α=10−3, β=10−4, and γ=5.

Results

Contrast enhancement

Ioversol Injection 350 100 mL (350 mg iodine per mL) 
produced by Jiangsu Hengrui Pharmaceutical Co., Ltd. was 
used in this study, and 1.2 mL contrast agent was injected 
into the patient’s right elbow vein evenly according to the 
injection duration of 18 s. After contrast agent injection, 
normal saline was injected at a slightly faster flow rate for 10 s.  
The contrast agent tracking technique was used, and the 
area of interest was set on the abdominal aorta 2 cm below 
the level of the renal artery. After the computed tomography 
value reached 120 HU, computed tomography angiogram 
(CTA) scanning in the cephalic direction was performed with 
a delay of 12–15 s (36-40). After the injection of contrast 
agent into the patient, the patient’s right upper extremity 
vein, right subclavian vein, superior vena cava, heart, aorta, 
arteries of all parts of the body, liver, spleen, pancreas, kidney 
and other organs were successively enhanced display.

There is different attenuation for the same substance in 
different energies of X-rays. The same substance decays 
differently under different X-ray energies. Under low X-ray 
energy, the more it decays, the higher density it presents, 
while under high X-ray energy, the less it decays, the 
lower density it presents. As is shown in Figure 6, contrast 
agents in low-energy CT show high density, while in high-
energy CT, they show low density. Under identical display 
circumstances, high density and low density show different 
appearances of white and black. Notably, the same ROI 

Conv + LeaklyReLu Global Max Pooling FC (1) FC (1024) + LeaklyReLu

Figure 5 The architecture of the discriminator. LeaklyReLu, activation function; FC, fully connected network.
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appears sharper in high-energy images and has smaller CT 
values.

Ablation comparison experiment of the generator attention 
module

To verify that the CBAM attention mechanism will 
optimize the parameters of the original U-shaped network 
during training, we introduce the attention module 
variables A1–A4 sequentially to the original generator 
U-shaped structure A0 and analyze the evaluation metrics 
of the test images. Specifically, the entire training data 
are out of order, and the original image size of 512*512 
is randomly cropped to 224*224 and then input into the 
improved WGAN network. The results are as follows after 

10,000 iterations.
According to the Figure 7, it shows that the perceptual 

loss decreases as the number of iterations increases and 
finally converges to the minimum value continuously. In 
addition, adding the attention module can make the model 
converge faster and effectively reduce the PL value so that 
the images generated by the generator are more similar to 
the label images at the perceptual level; the PSNR increases 
as the number of iterations increases and finally converges 
to the maximum value continuously. In addition, adding 
the attention module can make the model converge faster 
and effectively increase the PSNR value so that the images 
generated by the generator are more similar to the label 
images at the pixel level.

We also selected a representative slice from the results 

A B

ROI 1: 55.9 mm2 m=92 Av=121.7

ROI 2: 55.9 mm2 m=49 Av=78.7

ROI 1: 55.9 mm2 m=225 Av=274.4

ROI 2: 55.9 mm2 m=122 Av=147.7

Figure 6 High energy (140 kV) and low energy (80 kV) CT for lower extremity venous case. (A) CT values for the 140 kV abdominal 
aorta and inferior vena cava, respectively. (B) CT values for the 80 kV abdominal aorta and inferior vena cava, respectively. CT, computed 
tomography; ROI 1, inferior vena cava; ROI 2, abdominal aorta.
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Figure 7 The change in PSNR and perceptual loss during 10,000 iterations. PL, perceptual loss; Iterations, the process of training a batch 
with 4 samples; PSNR, the peak signal-to-noise ratio.
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of the test set. Figure 8 contains the results using different 
CBAM.

In Figure 8 (a), the noise and artifacts caused by the lack of 
incident photons severely degrade the image quality. When we 
insert mutable CBAM in different depths of the generator, the 
images from (b) to (e) can be increasingly clear and smooth, 
which demonstrates that CBAM has a positive effect for the 
original network (A0) to generate better quality images. For 
the purpose of further comparison, the PSNR, PL and NMI 
were measured for all the test images in the red box.

Table 2 and Figure 9 show the quantitative results of 
Figure 8 were calculated. With the number of CBAM 
increasing, the PSNR and NMI rise gradually while PL 
drops steadily.

In Figure 9, the box plot shows a significant increase in 
PSNR and a slight decrease in PL after sequentially adding 
attention modules A1-A4, which indicates an optimization 
boost to the overall generator model. Moreover, the PSNR 
distribution shows a negative skew, and the PL distribution 

shows a positive skew, indicating that most of the data are 
distributed on the side with a larger PSNR and the side 
with a smaller PL.

Different methods comparison experiments

The above experiments establish the best U-shaped 
structure of the generator for this experiment, i.e., the 
addition of four attention modules, and in the field of deep 
learning, the experiments comparing several synthetic 
low-dose CT images are conducted on the basis of this 
optimized WGAN model.

The green box represents ROI 1, and the red box refers 
to ROI 2. Figure 10 indicates that the low-dose CT image 
has the worst performance in the two ROIs. ROI 2 is 
white with a blurred overall structure, and the organization 
or detailed information cannot be distinguished at all. 
Compared to LDCT, clearer edges could be found in RED-
CNN and WGAN-VGG, but the black block in the upper 

A0

a

A1 A2

A3 A4

b c d e

Figure 8 Results with a chest image. (a–e) The zoomed regions within the red box in A0–A4. A0, original network with no convolutional 
block attention module; A1, 1 convolutional block attention modules added; A2, 2 convolutional block attention modules added; A3, 3 
convolutional block attention modules added; A4, 4 convolutional block attention modules added.
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Table 2 Experimental results of the generator attention module ablation comparison

Generator network structure PSNR PL NMI

A0 41.784±2.001 7.336±3.530 1.539±0.064

A1 41.998±1.966 7.262±3.490 1.587±0.060

A2 42.083±1.938 7.128±3.352 1.608±0.061

A3 43.172±1.953 6.999±3.301 1.614±0.070

A4 44.240±1.932 6.918±3.371 1.621±0.074

Data are expressed as mean ± standard deviation. A0, original network with no convolutional block attention module; A1, 1 convolutional 
block attention modules added; A2, 2 convolutional block attention modules added; A3, 3 convolutional block attention modules added; 
A4, 4 convolutional block attention modules added; PSNR, the peak signal-to-noise ratio; PL, perceptual loss; NMI, normalized mutual 
information.
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Figure 9 Changes in evaluation indicators with different convolutional block attention modules. PSNR, the peak signal-to-noise ratio; 
PL, perceptual loss; NMI, normalized mutual information; TEST_PSNR, test results for PSNR; TEST_PL, test results for PL; TEST_
NMI, test results for NMI. A0, original network with no convolutional block attention module; A1, 1 convolutional block attention modules 
added; A2, 2 convolutional block attention modules added; A3, 3 convolutional block attention modules added; A4, 4 convolutional block 
attention modules added.

left corner of ROI 1 could hardly be found. In contrast, our 
method shows richer detailed information than the other 
methods. In addition, the statistics of some image metrics in 
the two ROIs are listed below.

In view of our output images are of array format whose 
intensity is equivalent to pixel values, i.e., between 0 and 1.  
We are able to make a reverse shift in intensity that is 
multiplied by 3,000 for mapping the output intensity ranges 
to HU. We only preserved the 0–3,000 range of CT values. 
All the training images are in the axial plane in the model.

To evaluate whether the sampled images of LECT and 
the synthetic images of other methods have statistically 
significant differences, we make use of a t test for validation, 
and the steps are listed below.

(I) Make a hypothesis and determine the level of 

bilateral test (α=0.05).
(II) Perform a t-statistic test and query the t value to 

obtain the corresponding P value.
(III) Comparing the values between P and α, if P≤α, the 

samples are significantly different.

1 2

1 2

x x

x xt
S −

−
=  [7]

1 2

2 2
1 2

1 2
x x

S SS
n n− = +  [8]

Table 3 shows the results of the quantitative analysis 
of this experiment, and the best data records have been 
marked. It can be clearly observed that our proposed 
method is superior in the image evaluation metrics PSNR, 
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SSIM and most of the statistics (average CT value and its 
standard deviation) compared to other methods. Because 
P<0.05, the samples are significantly different. The 
data distribution at the pixel level between the images 
synthesized by the method in this paper and the real images 
is also most similar. In Figure 11, we calculate the pixel 
distance between the real images and the images generated 
by these methods, from which we can visually see the 

difference at the pixel level.
The pixel distance between the method from left to right 

compared with the real image gradually decreases, which 
proves that the image generated by the proposed method is 
closest to the real image at the pixel level. To demonstrate 
that the outlines and edges of the synthetic images matched 
those of the real images, as seen in Figure 12, we mark the 
edges of the synthetic images clearly in the real images. The 

Table 3 Evaluation metrics of the test set images under different methods

Region Metric
Methods

HECT LECT RED-CNN WGAN-VGG CaGAN Proposed

ROI 2 SSIM – 0.485 0.651 0.725 0.764 0.815

Average CT value (HU) 415 776 658 542 476 440

SD 5.06 8.67 8.16 6.25 6.00 5.43

P value – – 0.036 0.004 <0.001 <0.001

ROI 1 SSIM – 0.445 0.621 0.736 0.796 0.831

Average CT value (HU) 85 175 152 118 96 91

SD 4.81 6.69 5.82 5.46 4.73 5.33

P value – – 0.008 0.023 0.016 <0.001

ROI, region of interest; SSIM, structural similarity; HU, Hounsfield unit; SD, standard deviation; P value, the probability of a status quo 
or worse scenario when the original assumptions are assumed to be correct; HECT, high-energy CT; LECT, low energy CT; RED-CNN, 
residual encoder-decoder convolutional neural network; WGAN-VGG, Wasserstein generative adversarial network with visual geometry 
group perceptual loss.

LDCT RED-CNN WGAN-VGG

CaGAN Proposed HECT

Figure 10 Generated head images from different methods. CT, computed tomography; LDCT, low-dose CT; RED-CNN, residual 
encoder-decoder convolutional neural network; WGAN-VGG, Wasserstein generative adversarial network with visual geometry group 
perceptual loss; CaGAN, cycle-consistent generative adversarial network with attention; Proposed, original network with 4 convolutional 
block attention modules; HECT, high-energy CT.
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positions marked by the green and blue arrows indicate 
superiority of the proposed method, which can generate 
more contour details similar to the real image than other 
methods. Moreover, the method is based on Canny edge 
detection with the same parameters.

Discussion

Training details

In the repeated experiments, we verify the effectiveness 
of the following training parameters. We use the Adam 
optimizer (41) with β1=0.5 and β2=0.9 in our network. At 
the beginning the learning rate is assigned to 10−4 and 
becomes half of the original after each epoch. The number 

of epochs is set to 100, 50,000 iterations in total. The 
slope of the LeaklyReLU activation function is set to 0.2. 
In addition, the patch size is set to 224*224 by means of a 
function that randomly crops the original 512*512 pictures. 
We also normalize the input images between 0 and 1 
because the model will be increasingly convergent with the 
backpropagation gradient being under control.

In terms of avoiding overfitting appearance, after every 
epoch, we attempt to document the generator loss of both 
the training and validation parts in turn. If the effect of 
model training is no longer enhanced, for example, if the 
training loss is decreasing while the verification loss is 
no longer decreasing or even increasing, then the model 
training should be ended.

As shown in Figure 13, a comparison between the 

LECT RED-CNN WGAN-VGG CaGAN Proposed

150

100

50

0

Figure 11 Heat map of pixel differences between images generated by different methods and high-energy CT images. LECT, low energy 
CT; RED-CNN, residual encoder-decoder convolutional neural network; WGAN-VGG, Wasserstein generative adversarial network with 
visual geometry group perceptual loss; CaGAN, cycle-consistent generative adversarial network with attention; CT, computed tomography.

RED-CNN WGAN-VGG CaGAN Proposed

Figure 12 Overlays of synthetic image edges on the real image. The positions marked by the green and blue arrows refer to the area 
where different methods are compared. RED-CNN, residual encoder-decoder convolutional neural network; WGAN-VGG, Wasserstein 
generative adversarial network with visual geometry group perceptual loss; CaGAN, cycle-consistent generative adversarial network with 
attention.
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validation and training, we can draw the conclusion that 
validation loss keeps decreasing as well when training loss 
is reducing. Consequently, overfitting does not occur in the 
training.

Image quality evaluation

Two out of three evaluation metrics were used in training/
optimization. Since the optimized metrics were biased 
toward optimal values, the performance reported is not 
informative of the method capability. Other metrics that 
were not used in training should be used in evaluation.

To quantitatively measure the similarity between 
generated images and real images, we adopt three 
evaluation criteria: peak signal-to-noise ratio (PSNR) (42) 
perceptual loss (PL) (1) for the training, and normalized 
mutual information (NMI) (43) for the test evaluation. 
PSNR focuses on comparing the differences between the 
pixel points of the two images, as an evaluation metric of 
image quality. PL not only enhances the texture details of 
the generated images but also makes the recovered images 
visually better and more consistent with human sensory 
features. In addition, we introduce the normalized mutual 
information for the test evaluation, a supplementary 
evaluation metric that measures the similarity of two 
images, and its larger value represents the higher similarity 
of the two images.

( ) ( )
( ),

H A H B
NMI

H A B
+

=  [9]

where  ( ) log
x X

H X x x
∈

= −∑  i s  the  entropy.  I t  ranges 
from 1 (perfectly uncorrelated image values) to 2 

(perfectly correlated image values, whether positively or 
negatively).

Limitations

If the model was trained using axial slices, the other image 
planes (coronal and sagittal) should be showed for visual 
inspection of the synthetic outcomes. However, all the 
training images are in the axial plane in the model, and the 
other image planes (coronal and sagittal) are not available in 
our dataset. In the future, we will make use of a 3D dataset. 
Additionally, we plan to take other attention mechanisms 
into account as a comparison.

The output image is not in HU, we achieve HU 
mapping to grayscale pixel size by cropping the image to 
within 0–3,000 and dividing by 3,000. The whole process 
is reversible and can be interconverted, but it may result in 
loss of image structure information.

Conclusions

In our paper, traditional generator network combining 
with an attention mechanism is proposed for synthesizing 
low-dose CT images, which makes use of the CBAM in a 
generator network and enhances a WGAN with a hybrid 
loss. First, the active role of attention in the structure of 
the generator U-shaped network is established through 
attention module ablation comparison experiments. Then, 
quantitative comparison of low-dose images synthesized 
by different methods is conducted. Experimental results 
indicate that our method is able to suppress the noise and 
artifacts effectively and prove that the image synthesized 
by the proposed method is closest to the high-energy CT 
image in terms of visual perception and objective evaluation 
metrics.
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