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Abstract
Breast cancer metastasis to gynaecological organs is an understudied pattern of tumour spread. We explored
clinico-pathological and molecular features of these metastases to better understand whether this pattern of dis-
semination is organotropic or a consequence of wider metastatic dissemination. Primary and metastatic tumours
from 54 breast cancer patients with gynaecological metastases were analysed using immunohistochemistry, DNA
copy-number profiling, and targeted sequencing of 386 cancer-related genes. The median age of primary tumour
diagnosis amongst patients with gynaecological metastases was significantly younger compared to a general
breast cancer population (46.5 versus 60 years; p < 0.0001). Median age at metastatic diagnosis was 54.4, time
to progression was 4.8 years (range 0–20 years), and survival following a diagnosis of metastasis was 1.95 years
(range 0–18 years). Patients had an average of five involved sites (most frequently ovary, fallopian tube,
omentum/peritoneum), with fewer instances of spread to the lungs, liver, or brain. Invasive lobular histology and
luminal A-like phenotype were over-represented in this group (42.8 and 87.5%, respectively) and most patients
had involved axillary lymph nodes (p < 0.001). Primary tumours frequently co-expressed oestrogen receptor
cofactors (GATA3, FOXA1) and harboured amplifications at 8p12, 8q24, and 11q13. In terms of phenotype
conversion, oestrogen receptor status was generally maintained in metastases, FOXA1 increased, and expression
of progesterone receptor, androgen receptor, and GATA3 decreased. ESR1 and novel AR mutations were
identified. Metastasis to gynaecological organs is a complication frequently affecting young women with invasive
lobular carcinoma and luminal A-like breast cancer, and hence may be driven by sustained hormonal signalling.
Molecular analyses reveal a spectrum of factors that could contribute to de novo or acquired resistance to
therapy and disease progression.
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Introduction

Metastatic spread is the single most significant predic-
tor of poor survival in breast cancer. In order to metas-
tasise, tumour cells must develop the necessary
biological capabilities to overcome extrinsic selection
pressure, and thus clonal evolution is driven by the
selective acquisition of somatic mutations, as well as

dynamic interactions with the microenvironment [1].
The extent and overall clinical significance of diversity
in metastatic progression is still being elucidated,
partly because metastatic deposits are not routinely
biopsied and the availability of samples for molecular
analysis is limited.
The most common sites of breast cancer metastasis

are the bone, lung, liver, and brain [2,3]. Analyses of
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autopsy and surgical series have compared organ-
specific spread of the two main histological types,
invasive carcinoma of no special type (IC-NST) and
invasive lobular carcinoma (ILC). IC-NST spreads
more frequently to the lung/pleura, liver, and brain,
and whilst ILC can spread to these organs too, it has a
propensity to spread to unusual sites, including perito-
neum, gynaecological organs, gastrointestinal
(GI) tract, adrenal glands, and skin [4–7]. In addition
to histological type, tumour grade, expression of
receptors for oestrogen and progesterone and human
epidermal growth factor (ER/PR/HER2) and molecular
subtype are also associated with different organ tro-
pism and latency [6,8–12].
Gynaecological metastases (GMs) are relatively rare

and thus this pattern of spread is poorly understood.
Breast cancer is the second most common primary
tumour type to spread to gynaecological organs fol-
lowing colorectal cancer, raising the possibility that
dissemination from the breast may be targeted rather
than simply due to proximity [13–15]. Available data
suggest that patients present with a primary breast can-
cer at a young age (range 46–54 years [13,16–19]),
and usually have an ER-positive, HER2-negative, and
ILC phenotype [20,21]. Hormone signalling and/or an
infiltrative pattern of tumour growth may be important
contributors to this pattern of dissemination.
Here we present a comprehensive analysis of a

unique cohort of breast cancer patients with GMs, pro-
viding insight into the natural history and heterogeneity
of breast cancer progression.

Materials and methods

Patient cohort and statistical analyses
Analysis of the Queensland Centre for Gynaecological
Cancer and Pathology Queensland databases identified
54 breast cancer patients who were diagnosed with
metastasis to gynaecological tissues in Queensland
between 1982 and 2015. This cohort is referred to as
the GM cohort. Clinical and pathology data were
obtained from pathology reports, clinical charts, and
the Queensland Cancer Registry. Archival formalin-
fixed, paraffin-embedded (FFPE) tissue blocks were
available for 39 cases: 15 cases with matched primary
and metastatic tumours; 4 with only the primary avail-
able; 20 with only metastases available. The Queens-
land Follow-Up (QFU) cohort [22–24] was used to
compare various clinico-pathological parameters. This
cohort contains 449 consecutive, unselected primary
breast cancer cases diagnosed between 1986 and

1993 at the Royal Brisbane and Women’s Hospital,
with detailed clinical data and a minimum of 25 years
clinical follow-up data. Due to the historic nature of the
cohort, distant metastasis data are unreliable for the
QFU cohort. The Harrell data [25] were used to com-
pare the frequency of metastasis and expression of
ER/HER2 between the GM primary tumours and those
that spread specifically to the brain, lung, bone, and
liver. Human research ethics committees of The Uni-
versity of Queensland (ref. 2005000785) and The
Royal Brisbane and Women’s Hospital (2005/022)
approved the study. All statistical analyses were carried
out using GraphPad Software, La Jolla, CA, USA.
Fisher’s exact and Chi-square tests were used and a
P value of <0.05 was considered significant. Supple-
mentary material, Figure S1, illustrates the number of
GM cases that underwent immunophenotyping and
molecular profiling.

Tissue microarray construction and
immunohistochemical analysis
All FFPE blocks were recut, stained with haematoxy-
lin and eosin (H&E) and reviewed by a pathologist
SS, GM, SP, MC to identify tumour-rich areas for
sampling in tissue microarrays (TMAs) (duplicate
1 mm biopsy cores). TMAs were stained for ER, PR,
HER2, Ki67, EGFR, CK8/18, CK5/6, CK14, p53,
androgen receptor (AR), FOXA1, and GATA3 (see
supplementary material, Table S1 for technical details
and scoring systems used for each antibody). The anti-
bodies were detected using the MACH1 Universal
HRP Detection Kit (Biocare Medical, LLC, Concord,
CA 94520, USA). For cases where blocks were una-
vailable, ER, PR, and HER2 data were extracted from
diagnostic pathology reports. Ki67 staining was also
undertaken on whole sections of tumour (for compari-
son to TMAs), with both manual scoring and digital
image analysis using the Leica Aperio Scanscope
(Leica Biosystems, Melbourne, Australia) and the
algorithm Nuclear v.9. Supplementary material,
Figure S2 illustrates the immunophenotyping classifi-
cation systems utilised for the GM and QFU cohorts.

Array-based comparative genomic hybridisation
and targeted sequencing
TMA cores (1 mm, 4–6 cores per tumour) were taken
and DNA was extracted using the Qiagen DNeasy
Blood and Tissue Kit (Qiagen, Pty Ltd, VIC, Austra-
lia), following overnight sodium thiocyanate (1 M)
incubation and 3 days proteinase K (ThermoFisher
Scientific, Australia) digestion at 55 �C. Qiagen AW2
buffer was replaced with two 70% ethanol washes as
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recommended by Agilent Technologies to remove
impurities that interfere with the labelling protocol for
array-based comparative genomic hybridisation
(aCGH). DNA yield and quality were assessed using
the Nanodrop spectrophotometer, Qubit BR DNA kit
(both ThermoFisher Scientific), and the Illumina
Infinium HD FFPE QC Assay (Illumina, Scoresby,
VIC, Australia) following the manufacturer’s proto-
cols. DNA samples with delta Cq values <5 were
considered suitable for downstream microarray appli-
cations. Whole genome DNA copy-number changes
for 84 samples from 27 cases were measured on the
Agilent SurePrint G3 Human CGH Microarray
4 × 180 K format, following the ULS labelling proto-
col (Agilent Technologies, Mulgrave, VIC, Australia)
[16]. Penetrance was calculated using Agilent Cytoge-
nomics software version 3.0 and presented alongside
centromere positions calculated from the Genome Ref-
erence Consortium Human Build 37 (GRCh37-HG19)
chromosome assembly using base and graphics pack-
ages within the R programming environment (version
3.4.1); R Core Team (2017). Thirty-five samples
(41.6%) from 14 cases yielded satisfactory hybridisa-
tion data for analysis (supplementary material,
Table S2), consistent with our previous experience of
aCGH profiled archival samples [16]. Array CGH data
are available at the Gene Expression Omnibus (GEO)
website, accession number GSE115080.
Targeted sequence analysis was performed on DNA

extracted from matched tumour and normal DNA from
non-involved lymph nodes from seven cases (a total of
37 samples, see supplementary material, Table S3).
The Comprehensive Capture Panel v2 (Peter MacCal-
lum Cancer Centre, Melbourne, Australia) screens for
mutations in the coding regions and splice sites of
386 cancer-related genes. DNA libraries were prepared
using the KAPA Hyper Library Preparation Kit
(KAPA Biosystems, Illumina) and enriched using a
custom designed SureSelect XT Target Enrichment
assay (Agilent Technologies). Samples were uniquely
indexed, pooled, and sequenced on an Illumina
NextSeq500 (Illumina) to generate 2 × 75 bp reads at
a target germline coverage of 100 reads/base and tar-
get tumour coverage of 500 reads/base. Sequence per-
formance was assessed using FastQC, GATK
DepthOfCoverage, and custom scripts. A bioanalysis
pipeline consisting of read trimming with cutadapt,
alignment to hg19 with BWA-MEM, base quality
score recalibration and indel realignment with GATK,
and removal of duplicate reads with Picard was per-
formed. Variants were called with GATK Haplotype-
Caller for normal DNA, or MuTect, GATK
Indellocator, and VarScanSomatic for tumour. Annota-
tion was performed with Variant Effect Predictor from

Ensembl Release 73. Variant filtering was performed
by identifying rare (population allele frequency < 0.01),
non-synonymous variants, detected in tumour tissue
but deficient in matching normal DNA, and were fur-
ther refined by manual variant curation (see supple-
mentary material, Table S4 for sequencing statistics).
A custom filter was applied to capture variants meet-
ing the following criteria: present in tumour and not
matched normal; present in <10% of samples tested
with this panel; present in <0.4% of individuals in the
Exome Server Project; present in <0.4% of individuals
in the 1000 Genomes study; not intronic (excluding
splicing regions); not synonymous; not in an untrans-
lated region; and not in an intergenic region.

Validation of CNAs with nanoString cancer CNV
panel
Copy-number alterations were validated in the primary
tumour and multiple metastases from two cases (GM63
and GM78) using the nanoString nCounter v2 Cancer
CN Assay, following the manufacturer’s instructions
(MAN-C0024-02, nanoString, Bio-strategy, VIC, Austra-
lia). Briefly, 600 ng of DNA was fragmented using the
Alu1 restriction enzyme prior to hybridisation. The probes
were processed on the nCounter FLEX prep station and
probes counted on the nCounter Digital Analyzer
(GEN2). The data were analysed following the nCounter
Data Analysis Guidelines for CNV (MAN-C0014-02),
using matched normal DNA for data normalisation.

Results

Clinical characteristics of breast cancer patients
with GMs
The clinical and pathology features of the cohort of
54 GM patients were compared to those of an unse-
lected breast cancer cohort (QFU; Table 1). The
median age at diagnosis of the primary tumour was
significantly lower in the GM cohort (46.5 versus
60 years; p < 0.0001). Using a cut-off of 51 years as
the average age of menopause in Australia [26], GM
patients were more likely to be pre-menopausal at the
time of diagnosis compared to QFU patients (57.4%
versus 32.9%; p = 0.0004). There was no difference in
tumour grade or size, however the GM cohort was
enriched for lobular histology (42.6% versus 14.4%
ILC; p < 0.0001) and ILC primary tumours were
larger than IC-NST (p = 0.0075; supplementary mate-
rial, Table S5). The patients were also more likely to
have regional lymph node metastases at the time of
primary diagnosis (83.3% in GM cohort versus 46.2%
in the QFU cohort; p < 0.0001).
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The median age at diagnosis of metastatic disease
was 54.4 years (range 35–82 years). There were
258 metastatic deposits recorded for the 54 patients
(median five metastases/patient; range 1–11, Table 1).
The most common gynaecological organs involved
were the ovaries (46/54; 85.1%), fallopian tubes
(29/54; 53.7%), and uterus (20/54; 37%; Figure 1A;
supplementary material, Table S6). Uterine metastases
were more frequent in ILC cases than IC-NST
(p = 0.0214; Figure 1A). Most cases (48/54; 88.9%)
also had other organs involved, particularly the perito-
neum/omentum (26/48; 54.2%), bone (22/48; 45.8%),
and regions of the GI tract (appendix, stomach, colon,
but excluding liver; 14/48; 29.5%). Bone metastases
were more frequent in IC-NST cases, and GI

metastases were more frequent in ILC cases, but these
frequencies did not reach statistical significance
(Figure 1B). The more usual sites of breast cancer
metastasis, such as lung, liver, and brain were less fre-
quently involved in this cohort (16.7, 14.6, and 14.6%,
respectively; Figure 1B; supplementary material,
Table S6), however they were more frequently
involved in IC-NST compared to ILC cases. Fur-
thermore, in 70.4% of cases, the GMs were the
first metastatic site detected (supplementary material,
Table S6).
The median metastasis-free survival was 5 years

(6 years for ILC cases, 4.3 years for IC-NST cases,
p = ns; Figure 1C). Interestingly, we found that ILC
patients who relapsed after 5 years were significantly
younger than those who relapsed within 5 years
(median age at primary tumour diagnosis 41.8 years
versus 50.9 years, p = 0.0364, supplementary material,
Table S5).
Breast cancer-specific survival (BCSS) data were

available for 32 cases. At 10 years, 50% of patients
were still alive (Figure 1D) and survival was not
affected by primary tumour type (albeit small sample
sizes. Figure 1E). When considering survival after
metastasis diagnosis, the median survival time was
only 1.95 years (ILC: 1.6 years, IC-NST: 2.3 years,
Figure 1F).

Biomarker profile of primary tumours that spread
to gynaecological organs
Compared to the QFU cohort of unselected primary
breast cancers, primary tumours in the GM cohort
more frequently expressed ER (93.5%; p < 0.0001);
were less frequently positive for HER2 (0%,
p < 0.0001), basal markers (CK14: 0%, p = 0.0564;
CK5/6: 0%, p = 0.0016; EGFR: 0%, p = 0.096), and
p53 [immunohistochemical (IHC) score < 180 in
89.5% of cases; p = 0.0147]; and had a lower Ki67
proliferative index (all primary tumours were <10%
positive; p = 0.0259, Table 2, supplementary material,
Figure S3, Tables S7 and S8). In comparison to
the primary tumours profiled in the Harrel et al dataset
[25], GM primary tumours more frequently expressed
ER, and lacked HER2 expression compared to primary
tumours that spread to the brain (p < 0.0001 and ns,
respectively), lung (p < 0.0001 and p = 0.0085, respec-
tively), bone (p = 0.0055 and p = 0.001, respectively),
and liver (p < 0.0001 and p < 0.0001, respectively)
(supplementary material, Figure S4).
Given that luminal-like phenotype is usually associ-

ated with favourable clinical outcomes including long
life expectancy, we investigated whether aberrant

Table 1. Clinico-pathological characteristics of breast cancer
metastatic to gynaecological organs

GM (n = 54) QFU (n = 445) P value

Histological type n (%) n (%)
IC-NST 26 (48.1) 256 (57.5) <0.0001
ILC 23 (42.6) 64 (14.4)
Other 5 (9.3) 124 (27.9)

Age of breast cancer
diagnosis

Years (95% CI) Years (95% CI)

Median 46.5 (43–54) 60 (57–62) <0.0001*
Median ILC cases 44.8 (41.6–53.9) 62.5 (57–66) <0.0001*
Median IC-NST cases 46 (41.8–56.8) 58 (55–63) 0.0022*
Range 30–79 27–88

Menopausal status n (%) n (%)
Premenopausal 31 (57.4) 141 (32.9) 0.0004
Postmenopausal 23 (42.6) 287 (67.1)

Tumour size n (%) n (%)
<2 cm 14 (43.8) 177 (46.6) 0.1922
2–5 cm 12 (37.5) 169 (44.5)
>5 cm 6 (18.8) 34 (8.9)
Unknown 22

Tumour grade n (%) n (%)
Grade 1 2 (6.6) 63 (14.2) 0.3622
Grade 2 14 (46.7) 220 (49.5)
Grade 3 14 (46.7) 161 (36.3)
Unknown 24

Lymph node status n (%) n (%)
Positive 30 (83.3) 116 (46.2) <0.0001
Negative 6 (16.7) 135 (53.8)
Unknown 18

Age of first metastasis
diagnosis

Years (95% CI)

Median 54.4 (49.8–59.3)
Range 35–82

Number of metastatic
sites

n (%)

1–3 22 (40.7)
4–11 32 (59.3)
Median 5
Range 1–11

*t-test; all other P values were derived using Chi-square analysis. Significant
P values are underlined.
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Figure 1. (A) Distribution of gynaecological organs involved by metastatic disease, stratified by primary tumour type. The ovary was the
most common site involved (85.1%, 46/54 patients). Metastasis to the uterus was more frequent in ILC than IC-NST (p = 0.0214). Forty-
eight cases (88%) presented with multiple metastases. (B) Frequencies of co-presenting metastatic sites. The most common sites
involved were peritoneum/omentum (54.2%, 27/48 patients), followed by bone (45.8%, 22/48), and GI tract (29.2%, 12/48). Common
sites of breast cancer metastasis (lungs, liver, brain) rarely coincided with GMs. Bone, lung, and brain metastases were more frequent in
IC-NST and GI metastases were more frequent in ILC, but the differences were not statistically significant. (C) Metastasis-free survival in
the GM cohort. The median time to metastasis was 5 years. Approximately 25% of patients developed metastases after 10 years from
primary tumour diagnosis. (D, E) BCSS in the GM cohort (n = 36): 50% of patients were alive at 10 years post-primary diagnosis, and
BCSS was not affected by primary tumour type or time to metastasis (<5 years versus >5 years). (F) Median survival after first metastasis
diagnosis was 1.9 years (ILC: 1.6 years, IC-NST: 2.3 years). 75% of patients died within 5 years of metastatic diagnosis.
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expression of AR and ER pathway regulators could
account for the paradoxically poor outcome of GM
cases. AR was expressed at similar frequencies in the
GM and QFU cohorts (89.5% versus 88%, p = ns).
FOXA1 and GATA3, key regulators of ER transcrip-
tional activity [27,28], were both highly expressed in
primary tumours in the GM cohort (FOXA1: 100%
versus 77.7%, p = 0.0181; GATA3: 100% versus
84.6%, p = ns). The biomarker profile was not signifi-
cantly different between primary ILC and IC-NST
(supplementary material, Figure S5).

Immunophenotype of GMs
Overall, the expression of all markers investigated was
similar in primary and metastatic tumours (supplemen-
tary material, Figure S3 and Table S7). A case-by-case
assessment of 13 individual cases with complete sam-
ple sets showed that while expression of ER and
FOXA1 was maintained or increased during progres-
sion to gynaecological organs, expression of accessory
proteins involved in hormonal regulation decreased
during progression, with the percentage of tumour
cells expressing PR, AR, and GATA3 in distant
metastases lower in 69.2% (9/13), 38.5% (5/13), and
46% (6/13) of cases, respectively (Figure 2).

DNA copy-number alterations in metastasis to
gynaecological organs
The primary tumours (n = 9) displayed copy-number
alterations (CNAs) consistent with ER positive primary

tumours [29,30], with gains (1q, 7q, 8q, 11q, 16p, and
17q) and losses (8p, 16q, 22q, and Xq) identified in
over 50% of the samples (supplementary material,
Figure S6). The most common alterations in ovarian
metastases (n = 17, CNAs identified in over 50% of
samples) included gain at 1p/q, 3p, 6p, 7p/q, 8q, 12q,
15q, and 17q, 19p/q; and loss at 8p, 13p/q, 16q, 22q
and Xq (supplementary material, Figure S6). Frequent
gains were identified in loci encoding MDM4, CDK6,
FGFR1, MYC, CCND1, CDK4, and MDM2 (supple-
mentary material, Table S9). We observed instances of
both concordance and discordance in CNA profiles of
matched primary and metastatic tumours, reflecting
clonal progression and divergence (Figures 3 and 4,
supplementary material, Figures S7–S11).
Amplification of the region containing CCND1

(11q13) was identified in the metastases in two cases
but not in the primary tumour (GM59 and GM63) and,
similarly, FGFR1 (8p11.23) was amplified only in the
metastases in one case (GM16). FGFR1 was amplified
in the primary tumour alone in cases GM78 and
GM74. Co-amplification of 8p12 and 11q13 has been
associated with resistance to endocrine therapy [31]
and was present in 2 of 9 (22%) of the primary
tumours and 3 of 17 (17.6%) of the ovarian metastases
(supplementary material, Figure S12). Among the
matched cases, FGFR1 and CCND1 were co-amplified
in the primary tumour only in GM78, and the metasta-
ses only in GM59. The nanoString Cancer CNV panel
of 88 cancer-related loci, performed on GM63 and
GM78, validated the presence of gains and losses in
these cases (supplementary material, Table S10).

Table 2. Biomarker expression of primary tumours that spread to gynaecological sites
Primary tumours GM cohort Primary tumours QFU cohort

Positive (%) Positive (%) P value

ER 43/46 (93.5) 333/433 (76.9) 0.0075
PR 23/35 (65.7) 267/427 (62.5) ns
HER2 0/33 (0) 43/441 (9.8) 0.06
CK14 0/18 (0) 27 394 (6.9) ns
CK5/6 0/19 (0) 43/407 (10.6) ns
EGFR 0/17 (0) 31/340 (9.2) ns
AR 17/19 (89.5) 358/407 (88.0) ns
GATA3 19/19 (100) 356/421 (84.6) 0.091
FOXA1 19/19 (100) 317/408 (77.7) 0.018
p53 low (<180*) 17 (89.5) 205 (62.3) 0.015
p53 high (>180*) 2 (10.5) 124 (37.7) nd
Ki67 low (0–10%) 19/19 (100) 255 (71.9) 0.026
Ki67 moderate (10–30%) 0 (0) 87 (17.2) nd
Ki67 high (>30%) 0 (0) 55 (10.9) nd
Luminal A-like† 14/16 (87.5) 261/398 (65.5) 0.0001

The QFU cohort of unselected breast cancer cases were used for comparison. P values were calculated using Fisher’s exact tests.
*IHC score. A cut-off of 180 was used to define high/low expression. †Luminal A-like: ER positive, HER2 negative, Ki67 < 20%. Significant P values are underlined.
ns, not significant; nd, not determined.
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Targeted sequencing of matched primary tumours
and GMs
Seven cases with DNA available from normal tissue,
primary tumour, and metastases were analysed by tar-
geted next-generation sequencing of 386 genes (sup-
plementary material, Table S3). The most frequently

mutated genes were CDH1 and PIK3CA (supplemen-
tary material, Figure S13). CDH1 was mutated in five
of seven (71.4%) primary tumours, all five of which
were of lobular histological type. Metastases from
these cases harboured the same CDH1 mutation as the
primary tumours. PIK3CA was mutated in four of
seven primary tumours; GM74 had two PIK3CA

Figure 2. Immunophenotyping of endocrine-related biomarkers between the primary tumour and matched metastases in 13 cases. Each
case displayed a variety of changes in expression of these biomarkers within metastatic deposits in a case; the changes in expression
also varied between cases. Data points with a black border indicate lymph node metastases that were removed at primary tumour diag-
nosis in cases GM59 and GM63.
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Figure 3. Legend on next page.
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mutations in the primary tumour, yet only one
(c.3140A>G) was shared with the ovarian metastasis
(supplementary material, Figure S10).
An ESR1 mutation (c.1387T>C, S463P) was identi-

fied in two of six metastases sampled from case GM63
(Figure 4, supplementary material, Table S11), and
AR was mutated in two cases. In case GM63 a novel
nonsense mutation (c.2011C>T, Gln671*; Figure 4D)
was identified in all the distant metastases, but not the
primary tumour or lymph node metastasis. This was
corroborated by IHC, where AR protein expression
was observed in the primary and lymph node metasta-
sis, but not the distant metastases (Figure 4B). Mis-
sense mutations at this codon (Q671L and Q671R)
have been reported for oesophageal and prostate cancer
respectively (COSMIC [32]). All tumours in GM78 har-
boured a novel AR mutation (c.869G>T; C290F), and
all were positive for AR by IHC (Figure 3B). Again,
this point mutation has not been previously reported
(COSMIC [32], however a c.867G>A mutation result-
ing in the same amino acid change has been reported in
one primary breast cancer [33].
All cases shared at least one mutation between the pri-

mary tumour and metastases (supplementary material,
Figures S7–S11, individual case reports), along with
unique mutations present in either the primary tumour
alone (e.g. TBX3 in GM06BR), or metastases alone
(e.g. RB1, TP53 in GM74LO). Despite being a relatively
homogeneous cohort in terms of metastatic spread,
we observed substantial inter-case diversity (Figures 3
and 4, supplementary material, Figures S7–S11),
with no two cases showing similarity in genomic
or phenotypic characteristics during progression to
gynaecological organs.

Discussion

Substantial evidence now supports the theory of orga-
notropism, where breast cancers with different biologi-
cal properties have a predilection to spread to different
organs. To further understand this concept, we studied
a unique cohort of 54 breast cancer cases with metas-
tases to gynaecological organs. We demonstrated that

relative to a general, unselected breast cancer cohort
from the same region of Australia, patients with
tumours metastatic to gynaecological organs presented
at a significantly younger age (likely pre-menopausal),
with a higher frequency of lymph node metastases and
were more likely to exhibit invasive lobular histology.
From a biological point of view, the primary tumours
were all of luminal-like phenotype with high expres-
sion of ER, PR, AR, FOXA1, and GATA3, suggesting
that patients would be likely to respond to endocrine
therapy [34]. Interestingly, they rarely expressed bio-
markers typically associated with aggressive clinical
behaviour (e.g. HER2, basal markers, p53), and
expressed Ki67 at relatively low frequency. Thus, his-
topathologically, the primary tumours exhibit features
consistent with a favourable prognosis, and yet para-
doxically these patients had very poor overall survival,
in agreement with previous reports demonstrating that
young age is an independent prognostic factor [35]. It
is also important to highlight that population-based
studies of young breast cancer patients describe higher
proportions of ER−, HER2+, and triple negative dis-
ease [36,37], which we did not observe in this cohort.
The enrichment for ILC is consistent with previous

studies investigating features of tumours spreading
to gynaecological sites or comparing patterns of
metastasis between ILC and IC-NST [4–6,17,20].
Collectively, these and our data support the idea that
gynaecological organs are metastasis targets for ILC.
Given that ILC and IC-NST are biologically and clini-
cally different diseases with divergent long-term out-
comes [38–41], we investigated the clinical features of
breast cancer metastatic to gynaecological organs strat-
ified by histological type. While ILC generally affects
older women [7,41], patients in the GM cohort were
relatively young (median 44 years), suggesting that
young age of ILC diagnosis may be a risk factor for
GM, and raising the possibility that these women
could benefit from closer clinical surveillance. More-
over, ILC patients who relapsed after 5 years were sig-
nificantly younger than those who relapsed within
5 years, suggesting that these women may be suitable
candidates for extended endocrine therapy [42,43],
addition of palbociclilb [44], or inclusion in emerging
clinical trials specifically for E-cadherin defective ILC

Figure 3. Case GM78. (A) The patient presented with a lymph node positive, grade 2 ILC at age 41; metastases to the left ovary, trans-
verse colon, and omentum were diagnosed 8 years later. (B) Morphology and immunophenotype of tumours: the ovarian metastasis dis-
played two distinct morphological patterns; PR and GATA3 were lost during metastasis, while ER, AR, and FOXA1 remained positive.
(C) Copy-number profiling highlights the clonal nature of all tumours, together with evidence of intra-tumour heterogeneity (e.g. 1p−,
1q−, and 20q+ in the metastases). (D) Targeted gene sequencing demonstrated shared mutations included CDH1 and AR (white boxes
indicate that no mutation was detected). Of note, AR protein was still expressed at 3+ intensity in 100% of the tumour cells. The colon
sample failed sequencing. BR, breast; Cxt, chemotherapy; LO, left ovary; OM, Omentum; XRT, radiation therapy.

33Breast cancer metastasis to gynaecological organs

© 2018 The Authors. The Journal of Pathology: Clinical Research published by The Pathological
Society of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res; January 2019; 5: 25–39



Figure 4. Legend on next page.

34 Kutasovic et al

© 2018 The Authors. The Journal of Pathology: Clinical Research published by The Pathological
Society of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res; January 2019; 5: 25–39



[45]. We also observed that ILC was more likely to
colonise the uterus than IC-NST and, amongst non-
GMs, ILC more frequently colonised the GI tract and
less frequently the lungs and CNS compared to
IC-NST.
The interval between diagnosis of primary and meta-

static disease can be between 5 and 20 years [17,20],
and so there may be opportunities for prevention ther-
apy for patients deemed to be at high risk, and/or earlier
detection and surgical/medical intervention for meta-
static disease. Survival after metastatic diagnosis in this
group of patients is poor (median of 1.9 years). This is
likely to be due to the late presentation of disease
owing to both the lack of apparent symptoms associ-
ated with metastases to gynaecological organs, GI tract,
peritoneum, and so on [14,17,18,20], and the wide-
spread nature of dissemination (we recorded a median
of five distinct sites of metastasis; range 1–11).
The luminal phenotype of all primary tumours in the

cohort suggests that progression to gynaecological sites
may be hormonally driven, and indeed we found high
expression of hormone receptors and co-factors. Gynae-
tropic metastatic behaviour might be explained by the
tumour cells seeking out the oestrogen-rich environment
of the ovaries [20], particularly in pre-menopausal
women, and colonising other sites en route. There are
significant data to suggest that the molecular phenotype
of the primary tumour impacts the pattern of metastasis
[6,8–12]. For instance, in contrast to the current study,
we have previously showed that primary breast cancers
that spread to the brain are ER and/or PR negative in up
to 76% of cases [46]. We and others have also previ-
ously shown that ER and PR are frequently down-
regulated during spread to distant organs, with a specific
association with metastasis to lungs, liver, and bone
[16,47], suggesting hormonal signalling is less impor-
tant in the progression of disease. However, in line with
the idea that ER plays an important role in spread to the
ovaries, the level of expression of ER seen in the pri-
mary tumour remained high in most cases, and in most
metastases within individual cases.

The interplay between ER, PR, and AR and pioneer
factors GATA3 and FOXA1 is complex, with growing
evidence to suggest that the various members of this
axis can alter tumour cell transcription programmes
with unpredictable outcomes – expression has been
associated with both good prognosis and endocrine
therapy resistance [28,48]. Expression of PR, AR,
FOXA1, and GATA3 in our GM cohort was
extremely variable, both between and within cases.
For instance, down-regulation of one or more of these
five key factors was observed in every case with
matching primary and metastatic tissue available. To
illustrate, case GM78 had high expression of ER and
AR in all samples, yet PR expression decreased from
80% in the primary tumour to 10% in three of four
metastases; expression of GATA3 went from 100%
positive to negative in all metastases; and FOXA1
expression went from ~40% positive to 100% positive
in all metastases. This suggests that the hormonally
driven transcriptional programme of the primary
tumour is significantly altered during metastasis to
gynaecological sites and appears heterogeneous
between metastases from the same patient (Figure 2).
Such evolution in the dynamic interactions between
these receptors and co-factors may contribute to
treatment-resistant tumour cell clones. These intriguing
findings require independent validation and compari-
son to other metastatic sites, when such cohorts
become available.
Genomic alterations may also contribute to the

aggressive behaviour of these tumours. The recurrent
amplification of genes found at 8p11-12 and 11q13
(e.g. FGFR1 and CCND1, respectively) are associated
with resistance to therapy in ER-positive breast cancer
[31,49,50]. In a group of mostly older women treated
with letrozole in the neoadjuvant setting, Giltnane
et al [31,50] identified the pro-survival effects of
amplified FGFR1 and/or CCND1 in oestrogen-
deprived ER+/HER2− breast cancer, and that the com-
bination of ER antagonists with FGFR1 or CDK4/6
inhibitors could increase cancer cell death. Several

Figure 4. Case GM63. (A) The patient presented with a lymph node positive, grade 2 ILC at age 51; metastases to the left and right ova-
ries and Fallopian tubes, uterus, and omentum were detected 6 years later. (B) Immunophenotype of the tumours: white = negative,
grey = 100% positive. (C) Copy-number analysis highlights clonal relatedness of all tumours (shared alterations include 1+, 6q−, 8p−,
16p+, 16q−, 17q−). The axillary lymph node metastasis (detected at the time of primary tumour diagnosis) is more similar to the pri-
mary tumour than to the distant metastases; note 13q loss in distant metastases but not the primary tumour or lymph node.
(D) Targeted gene sequencing reveals shared mutations between tumours, including PIK3CA, MED13, and CDH1 (not detected in the
Fallopian tube metastases; may be due to technical limitations of the DNA in this tumour). Note: (1) an AR mutation in the metastases
but not the primary tumour mirrors loss of protein expression during progression; (2) an ESR1 mutation (S463P) detected in the left
Fallopian tube and omental tumours. The metastasis in the uterus was too small for analysis. BR, breast; BSO, bilateral salpingo-oopho-
rectomy; LN, lymph node; LO, left ovary; LT, left Fallopian tube; OM, omentum; RO, right ovary; RT, right Fallopian tube; TAH, total
abdominal hysterectomy.
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cases harboured amplification of these regions, and in
some cases the amplifications were identified in metas-
tases and not the primary tumour, suggesting they
were present in a minor sub-clone not sampled from
the primary tumour [16] or were acquired to enhance
survival during progression/treatment.
Mutations in ESR1 are particularly important in

endocrine therapy resistance, producing protein prod-
ucts that function independently of ligand binding
[51–53]. Detecting mutant ESR1 in circulating DNA
may therefore prove to be an important biomarker of
relapse [54,55], though heterogeneity between metas-
tases in the same patient may be confounding. Indeed,
we identified a previously reported ESR1 mutation
(S463P [56]) in just two of six metastases from one
case. Mutation of AR is a mechanism of treatment
resistance in castrate-resistant prostate cancer [57],
with most variants occurring in the ligand binding
domain (analogous to ESR1 mutations). The gene is
rarely mutated in primary breast cancer (7/977, 0.7%
[29]) and has not yet been reported in metastatic breast
disease. We identified two cases with AR mutations. In
one case, all tumours harboured the variant, and in the
other only the distant metastases harboured the variant,
correlating with loss of protein expression. These
novel mutations reside in exon 1, which encodes the
N-terminal Activator Function-1 (AF-1) domain
(C290F), and in exon 4 at the beginning of the ligand
binding domain (LBD, G671*) [57]. The functional
roles of these alterations in breast cancer are yet to be
elucidated, though we hypothesise they will impair
functional AR owing to: (1) the importance of exon
1 for wild-type AR activity and (2) loss of the LBD
[58,59]. These changes are worthy of further investiga-
tion given the analogous mechanisms of ESR1 muta-
tions in endocrine resistance, and the lack of
understanding of the role of AR in ER-positive meta-
static breast cancer.
We also cannot exclude the contributions of other

mechanisms of metastasis driving this pattern of dis-
semination, such as tumour dormancy [60,61], or
microenvironmental cues from the bone marrow or
‘pre-metastatic niche’ [62–64]; it is unlikely that the
mechanisms are mutually exclusive. Epithelial to
mesenchymal transition is not a defining feature of
ILC [65] and may play a less overt role in this
context.
In summary, this study adds to our understanding of

the clinical and phenotypic characteristics of breast
cancer metastases to gynaecological organs. We
acknowledge the challenges of collating such cohorts
for analysis and that there may be bias towards certain
patient subsets in which tissue is available for analysis.

Nevertheless, combined with available clinical data
and comparison to other available cohort data, we
identify some findings that may be of clinical rele-
vance. The patients were frequently young and suf-
fered from widespread metastatic disease after variable
latency, suggesting they may benefit from extended
clinical surveillance. Progression of disease was char-
acterised by the maintenance of ER signalling, but
with apparent changes in hormone signalling through
associated co-factors, and acquisition of genomic alter-
ations characteristic of aggressive clinical behaviour.
Where possible, sampling and analysis of metastatic
deposits may be beneficial for treatment planning, for
example changing endocrine therapy if metastatic
deposits harbour unique ESR1/AR mutations or other
hormone signalling-associated changes, or consider-
ation of CDK4/6 or FGFR inhibitors for cases har-
bouring amplification of CCND1 and/or FGFR1.
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