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Abstract 1 

Polygenic risk scores (PRS) are becoming increasingly vital for risk prediction and 2 

stratification in precision medicine. However, PRS model training presents 3 

significant challenges for broader adoption of PRS, including limited access to 4 

computational resources, difficulties in implementing advanced PRS methods, and 5 

availability and privacy concerns over individual-level genetic data. Cloud 6 

computing provides a promising solution with centralized computing and data 7 

resources. Here we introduce PennPRS (https://pennprs.org), a scalable cloud 8 

computing platform for online PRS model training in precision medicine. We 9 

developed novel pseudo-training algorithms for multiple PRS methods and 10 

ensemble approaches, enabling model training without requiring individual-level 11 

data. These methods were rigorously validated through extensive simulations and 12 

large-scale real data analyses involving over 6,000 phenotypes across various 13 

data sources. PennPRS supports online single- and multi-ancestry PRS training 14 

with seven methods, allowing users to upload their own data or query from more 15 

than 27,000 datasets in the GWAS Catalog, submit jobs, and download trained 16 

PRS models. Additionally, we applied our pseudo-training pipeline to train PRS 17 

models for over 8,000 phenotypes and made their PRS weights publicly 18 

accessible. In summary, PennPRS provides a novel cloud computing solution to 19 

improve the accessibility of PRS applications and reduce disparities in 20 

computational resources for the global PRS research community. 21 

 22 

Keywords: Cloud computing; GWAS Catalog; Polygenic risk scores; Precision 23 

medicine; Resampling-based pseudo-training.   24 
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Introduction 1 

The last two decades have seen remarkable growth in genome-wide association 2 

studies (GWAS), yielding extensive data resources valuable for genetic risk 3 

prediction1,2. Polygenic risk scores (PRS), calculated as the sum of the number of 4 

alleles of genetic variants weighted by their effect sizes, encapsulate cumulative 5 

genome-wide risks for complex traits and diseases3-5. Numerous studies have 6 

highlighted the utility of PRS in precision medicine to help disease risk stratification 7 

and inform clinical intervention decisions6-9. To improve the accuracy and 8 

robustness of PRS, a wide range of methods, software, standards, and web 9 

resources have been developed3,10-14. Recent initiatives aim to further extend PRS 10 

applications to more diverse and admixed global populations15-18. Such efforts 11 

have been reflected by the establishment of a series of NHGRI-funded consortia, 12 

including the PRIMED19, which aims to develop and evaluate methods to improve 13 

the use of PRS for predicting disease risks in diverse ancestry populations, and 14 

the eMERGE Network20,21, which supports genomic medicine translation by 15 

returning PRS results to individuals along with healthcare recommendations in 16 

diverse clinical settings. The combination of methodological advancements, 17 

increasingly rich discovery GWAS data, and decreasing costs in biotechnology are 18 

anticipated to persistently and substantially improve both the capabilities and 19 

accessibility of PRS-based disease risk prediction and stratification. 20 

 21 

The accessibility and scalability of PRS applications, however, are often hindered 22 

by significant challenges in the PRS model training process, particularly for users 23 

of advanced PRS algorithms (Fig. 1a). For example, access to high-performance 24 

computational resources required to run these algorithms and store large-scale 25 

GWAS summary data is often dependent on existing institutional infrastructure, 26 

which may not be readily available to all PRS researchers across diverse 27 

organizations and scientific fields. Additionally, managing and testing various PRS 28 

methods within local pipelines can involve a steep learning curve and make it 29 

difficult to keep up with the frequent updates to new methods. A further 30 

complication arises from the need for an independent individual-level dataset 31 

during the training process, which is typically used as tuning data for optimizing 32 
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model parameters and training ensemble models. This dataset must be sufficiently 1 

large and independent from the one used to generate GWAS summary statistics. 2 

Due to privacy concerns surrounding the sharing of individual-level genetic data, 3 

obtaining such a dataset can present logistical challenges in PRS applications. 4 

Furthermore, for certain traits, even when individual-level datasets are available, 5 

their sample sizes may be insufficient to produce reliable and stable parameter 6 

tuning results. 7 

 8 

The use of cloud computing is gaining increasing momentum in biomedical 9 

research22-28, especially with centralized research resources, given the energy-10 

efficient nature of cloud computing for hosting large-scale computing and data 11 

sources with high scalability and security29. Several biobanks have recently 12 

developed study-centric cloud computing platforms, such as the UK Biobank 13 

Research Analysis Platform (https://ukbiobank.dnanexus.com/) and the All of Us 14 

Researcher Workbench (https://www.researchallofus.org/data-tools/workbench/), to 15 

increase their data accessibility across diverse research communities. Cloud 16 

computing provides a promising next-generation solution to address the 17 

challenges in the widespread expansion of PRS applications. By leveraging robust 18 

online resources (such as Amazon Web Services [AWS]), cloud computing can 19 

provide a well-organized platform for diverse PRS users, facilitating efficient data 20 

analysis through centralized data storage and unified pipelines. However, a key 21 

barrier to implementing PRS model training on online servers is the reliance of 22 

many PRS methods on individual-level genetic data, which raises concerns about 23 

availability and data privacy. Recent advances have introduced the pseudo-24 

training approach for PRS model development30-33. This approach allows for the 25 

sampling of pseudo-training and validation summary statistics from the underlying 26 

probability distribution of GWAS summary statistics. These sampled statistics 27 

closely mimic what would be obtained if there were access to two subsets of the 28 

GWAS samples, enabling parameter tuning and the derivation of PRS models. 29 

This “self-training” approach makes it possible to generate PRS weights without 30 

the need for individual-level genetic data.  31 

 32 
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 5 

Building on these advancements, this paper aims to integrate cloud computing with 1 

pseudo-training approaches to enable online training of PRS models, providing a 2 

secure, efficient, and scalable solution for the PRS research community. We first 3 

developed pseudo-training versions for multiple single- and multi-ancestry PRS 4 

methods and rigorously showed their robust performance across thousands of 5 

phenotypes from various data sources. Based on their reliable numerical 6 

performance, we introduced PennPRS (https://pennprs.org/), a scalable cloud 7 

computing platform for online training of PRS models using summary statistics only 8 

(Fig. 1b). PennPRS provides a wide range of user options and supports both 9 

single- and multi-ancestry analyses across the five super populations34, including 10 

European (EUR), African and African American (AFR), Admixed American (AMR), 11 

East Asian (EAS), and South Asian (SAS). Users can input GWAS summary 12 

statistics, submit a job with selected methods and customized settings, and 13 

download the trained PRS models upon completion. As a centralized PRS online 14 

training platform, PennPRS provides cloud computing functionalities, extensive 15 

data resources, and offline pipelines, offering an efficient solution to PRS model 16 

development in precision medicine (Fig. 2a). It is designed to accommodate the 17 

training needs of various research groups with diverse requirements and 18 

computational resources.  19 

 20 

Results 21 

Summary data-based PRS model tuning and ensemble learning  22 

We developed single-ancestry pseudo-training pipelines with summary data-23 

based parameter tuning for three PRS methods: Clumping and Thresholding 24 

(C+T)4,5, Lassosum235,36, and LDpred237,38, which we denote by C+T-pseudo, 25 

Lassosum2-pseudo, and LDpred2-pseudo, respectively (Fig. 2b). The PUMAS31 26 

workflow was used to derive pseudo training and validation subsamples from the 27 

input GWAS summary statistics, enabling the selection of optimal tuning 28 

parameters. While the general framework of PUMAS pseudo-training has been 29 

established, applying it to specific PRS methods is challenging due to the 30 

complexities involved in implementing different PRS methods and non-universality 31 

of the original PUMAS software to the general GWAS summary data. Therefore, 32 
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we made a series of important modifications to both the methodology and the 1 

software to ensure proper alignment between the PUMAS algorithm and each of 2 

the implemented PRS methods. For example, the original Lassosum2 and 3 

LDpred2 algorithms may generate non-convergent PRS weights under some 4 

tuning parameter settings, which can result in problematic parameter tuning. To 5 

address this potential issue, we developed a data-driven approach to improve 6 

robustness of the summary data-based parameter optimization in Lassosum2-7 

pseudo and LDpred2-pseudo (see Methods). 8 

 9 

For single-ancestry analysis, we further developed two ensemble approaches 10 

within our pseudo-training framework: Ensemble-pseudo and Ensemble-ARM-11 

pseudo. These approaches combine PRS models trained by different methods 12 

using a linear combination strategy39 (Ensemble-pseudo) or an adaptive 13 

regression by mixing approach40 (Ensemble-ARM-pseudo) (Fig. 2b).  The two 14 

ensemble learning methods were originally designed for use with the need for 15 

individual-level tuning datasets. Here we redeveloped them for pseudo-training 16 

within the PUMA-CUBS31 framework, incorporating a series of modifications to 17 

ensure robustness. Details are provided in the Methods section.  18 

 19 

Notably, our pipeline supports multi-ancestry PRS training based on ancestry-20 

stratified GWAS summary data from multiple ancestral populations, a process that 21 

is typically computationally intensive and requires more learning resources (Fig. 22 

2c). We developed PROSPER-pseudo, a pseudo-training pipeline for PROSPER41 23 

which is an ensemble learning-assisted multi-ancestry PRS method. PROSPER-24 

pseudo will generate two complementary population-specific models: PROSPER-25 

Single-pseudo and PROSPER-pseudo, where the former provides the best single 26 

PRS generated before the final ensemble step in PROSPER, and the latter 27 

provides the final PRS that combines multiple PRS across different ancestries and 28 

tuning parameter settings (see Methods). In summary, we have developed three 29 

single-ancestry methods, two ensemble approaches, and one multi-ancestry 30 

method as the primary methods for implementation on our cloud computing 31 

platform, all based on pseudo-training that eliminates the need for individual-level 32 
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 7 

data. A summary of our pseudo-training algorithms for implementing these single- 1 

and multi-ancestry PRS methods is provided in Supplementary Fig. 1. 2 

Additionally, we have developed several complementary methods for the offline 3 

pipeline, which will be introduced in later sections.  4 

 5 

Large-scale evaluation of the PRS pseudo-training approach  6 

We evaluated the performance of our PRS pseudo-training methods through 7 

extensive simulations and real data analyses. Simulation results of the single-8 

ancestry methods under various settings of genetic architecture of the phenotype 9 

(such as heritability and causal variant proportion) and GWAS sample size42 10 

demonstrate that our PRS pseudo-training methods perform comparably to those 11 

original methods that tuned model parameters with a sufficiently large hold-out 12 

individual-level dataset (e.g., Ntuning = 1000, Fig. 3a, Supplementary Fig. 2, and 13 

Supplementary Table 1). As training GWAS sample size increases, our pseudo-14 

training methods tend to better approximate the PRS under the optimal tuning 15 

parameter setting. Pseudo-training versions of the ensemble PRS tend to have 16 

slightly lower prediction R-squared (R2) than individual-level data-based ensemble. 17 

It is important to note that the above comparisons assume access to sufficiently 18 

large individual-level tuning data. However, when the number of individual-level 19 

tuning samples is insufficient (e.g., Ntuning < 1,000), pseudo PRS training notably 20 

outperforms traditional PRS training methods that rely on individual-level tuning 21 

data (Figs. 3b and 3c). For example, compared to the traditional PRS training 22 

pipelines using an individual-level tuning dataset of size Ntuning = 400 or 100, our 23 

PRS pseudo-training pipeline for the same PRS methods achieved a 6.5% or 44.7% 24 

higher R2, respectively. These findings highlight the utility of the PRS pseudo-25 

training methods we developed, particularly in scenarios where individual-level 26 

data is limited or unavailable for parameter tuning. 27 

 28 

We examined the performance of our pseudo-training pipelines for single-ancestry 29 

PRS model training across different phenotypes and data sources (Fig. 2d). First, 30 

we used 2,106 multi-organ multi-modal imaging phenotypes with GWAS summary 31 

data available from the UK Biobank (UKB)43 study, including 1,432 brain structural 32 
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 8 

magnetic resonance imaging (sMRI)44, 674 diffusion MRI (dMRI), 82 resting-state 1 

functional MRI (rfMRI), 41 abdominal MRI45, 82 cardiovascular MRI46, and 46 eye 2 

optical coherence tomography images (OCT)47 (average N = 32,859). These 3 

imaging phenotypes are well-established clinical biomarkers with widespread 4 

practical applications in precision medicine48. We found that all three single-5 

ancestry pseudo-training methods, as well as the two pseudo-training ensemble 6 

approaches, demonstrated strong performance across these diverse imaging 7 

modalities (Figs. 4a and 5a, Supplementary Tables 2-5; mean R2 = 0.0562 vs. 8 

0.0567, R2 correlation = 0.955). Consistent with our simulation studies, we 9 

observed that pseudo-training methods outperform individual-level data-based 10 

tuning as the individual-level tuning sample size decreases (Fig. 4b and 11 

Supplementary Fig. 3). For example, with a tuning sample size Ntuning = 1,000, 12 

300, and 100, our pseudo-training methods produced PRS with R2 values that were 13 

0.4%, 6.9%, and 18.5% higher, respectively, compared to methods using 14 

individual-level tuning data for eye OCT phenotypes (Fig. 4b).  15 

 16 

Furthermore, we trained PRS for 29 binary disease phenotypes based on GWAS 17 

summary statistics from the FinnGen49 study and evaluated their performance on 18 

matched clinical outcomes using UKB testing individuals50 (average Ncase = 23,048, 19 

Supplementary Table 6). Again, all three single-ancestry pseudo-training 20 

methods demonstrated performance comparable to the traditional methods using 21 

individual-level tuning data (area under the ROC curve [AUC] correlations = 0.880). 22 

Notably, the pseudo-training ensembles outperformed the individual-level data 23 

ensembles, even though the individual-level tuning datasets are large (Fig. 5b and 24 

Supplementary Table 7; mean AUC = 0.564 vs. 0.555, one-sided P = 1.51×10-7). 25 

In addition, we evaluated the PRS performance on 2,734 Olink plasma proteins 26 

with GWAS data from the UKB-PPP project51 (average N = 40,852, Fig. 5c and 27 

Supplementary Tables 8-9). Plasma proteins, which are crucial for disease 28 

diagnosis and treatment52,53, exhibit a unique special architecture, generally 29 

showing higher heritability and with cis-loci accounting for a large proportion of 30 

genetic variation51. For such genetic architecture, our analysis revealed that C+T-31 

pseudo and LDpred2-pseudo showed highly consistent performance with training 32 
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 9 

based on individual-level tuning data (mean R2 = 0.0562 vs. 0.0567, R2 correlation 1 

= 0.998), whereas Lassosum2-pseudo consistently delivered sub-optimal 2 

performance for proteins with high prediction R2 (e.g., > 0.40) (mean R2 = 0.475 3 

vs. 0.557). These findings suggest that C+T-pseudo and LDpred2-pseudo may be 4 

more suitable for deriving genetic scores53 for these proteins and other molecular 5 

traits with similar genetic architecture.  6 

 7 

For multi-ancestry PRS training, our simulation studies suggested that PROSPER-8 

Single-pseudo, the pseudo-trained best single PROSPER PRS without 9 

implementing the final ensemble step, approximates its individual-level data-based 10 

version (PROSPER-Single) well, while the PROSPER-pseudo PRS (with the final 11 

ensemble step) tends to perform slightly worse than PROSPER PRS, its individual-12 

level data-based version, if large hold-out individual-level dataset exists (Fig. 6a 13 

and Supplementary Table 10). We further evaluated their performance in multi-14 

ancestry real data applications using ancestry-stratified GWAS summary statistics 15 

(Supplementary Tables 11-14). We first analyzed four blood lipids, including high-16 

density lipoprotein (HDL), low-density lipoprotein (LDL), log-transformed 17 

triglycerides (logTG), and total cholesterol (TC). We used GWAS summary data 18 

for EUR, AFR, AMR, EAS, and SAS from the Global Lipids Genetics Consortium54 19 

(GLGC) (N = 33,658-930,671). The performance was evaluated on UKB validation 20 

individuals of EUR, AFR, AMR, EAS, and SAS ancestries54,55. Our results showed 21 

that pseudo-training had consistent performance across all ancestries (Fig. 6b, 22 

mean R2: 0.084 [PROSPER-Single-pseudo] and 0.088 [PROSPER-pseudo] vs. 23 

0.089 [PROSPER], R2 correlation = 0.93 and 0.95, respectively). We also 24 

evaluated the performance of multi-ancestry pseudo-training using GWAS 25 

summary statistics for 1,413 brain dMRI and sMRI phenotypes from the Chinese 26 

Imaging Genetics (CHIMGEN) study56, jointly with matched imaging phenotypes 27 

in the UKB study. Specifically, the inputs were the CHIMGEN summary statistics 28 

(average N = 7,058) and UKB European summary statistics (average N = 32,620), 29 

with performance evaluated in independent testing data from hold-out UKB 30 

samples (average N = 2,510 for EUR ancestry and N = 222 for EAS ancestry). We 31 

found that pseudo-training outperformed individual-level data training for both EUR 32 
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 10 

(R2 = 0.027 vs. 0.023), which has sufficient tuning samples, and EAS (R2 = 0.010 1 

vs. 0.008), which has limited tuning samples, although the results for EAS had 2 

larger uncertainty due to the much smaller testing sample sizes (Fig. 6b and 3 

Supplementary Fig. 4). As expected, analyses of GLGC and CHIMGEN data also 4 

showed improved prediction accuracy when GWAS training data from both 5 

ancestries were integrated (Fig. 6c) and the consistent pattern of relative 6 

performance of PROSPER-Single-pseudo and PROSPER-pseudo across 7 

different data resources (Supplementary Fig. 5).  8 

 9 

Overall, our large-scale numerical results demonstrate that, without access to an 10 

independent individual-level tuning dataset, the developed summary data-only 11 

pseudo-training methods can produce PRS weights comparable to those 12 

generated using a large individual-level tuning dataset. Furthermore, pseudo-13 

training may even outperform traditional methods, particularly when the tuning 14 

dataset is limited in size. These findings lay the methodological groundwork for the 15 

development of PennPRS as a centralized cloud computing solution for online 16 

PRS model training. 17 

 18 

PennPRS: a cloud computing platform for the global PRS community  19 

We established a centralized cloud computing platform hosted on AWS to 20 

implement the developed pseudo-training methods, enabling users to freely train 21 

PRS weights online using GWAS summary statistics (Fig. 1b). Upon completing 22 

registration, users can upload GWAS summary statistics or query over 27,000 23 

harmonized summary statistics from the GWAS Catalog57, select PRS methods 24 

and model parameters, and submit jobs. These jobs are managed by the queuing 25 

system and processed on our server, and users can download the generated PRS 26 

weights and log files once the job is completed. In addition to the set of newly 27 

developed pseudo-training PRS methods (C+T-pseudo, Lassosum2-pseudo, 28 

LDpred2-pseudo, and PROSPER-pseudo) and pseudo-training ensemble 29 

methods (Ensemble-pseudo and Ensemble-ARM-pseudo), PennPRS supports 30 

three existing tuning-parameter-free methods (PRS-CS-auto58, LDpred2-auto37, 31 

and DBSLMM59). Our platform presents a robust frontend-to-backend web 32 
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infrastructure with detailed tutorials and a comprehensive data harmonization 1 

pipeline to ensure regularized PRS training and an efficient user experience (see 2 

Methods).  3 

 4 

Similar to many biomedical cloud computing platforms in other fields22-27, the 5 

PennPRS team will cover data analysis expenses for all users. This approach 6 

aligns with our mission to make PRS accessible to more researchers and, 7 

ultimately, to study participants in precision medicine, while reducing disparities in 8 

computational resources within the global PRS research community and the 9 

broader fields of genetic and medical research. To optimize the efficiency of our 10 

computational infrastructure, we conducted various tests to determine the optimal 11 

configurations for our platform, such as RAM and CPU deployment for different 12 

PRS methods implemented. We also conducted extensive tests to validate the 13 

platform’s stability and computational performance. For example, using the three 14 

single-ancestry pseudo-training methods and their two ensemble approaches as a 15 

case study, we analyzed the runtime for each step in the algorithm. We found that 16 

using 2 CPUs (with 30 GB RAM) allowed a typical job to complete in approximately 17 

two and a half hours, while increasing to 4 CPUs reduced the runtime to around 18 

two hours (Supplementary Table 15). Based on these empirical observations, we 19 

have optimized our configuration to make efficient use of AWS resources, currently 20 

supporting up to eight concurrent user jobs. The AWS cloud computing service, 21 

additionally supported by our local computing IT teams, provides a flexible 22 

management system for CPU and RAM, enabling us to easily maintain the server 23 

and adjust resource allocation for scaling up or down as needed.  24 

 25 

Public sources: GWAS Catalog data querying and working examples 26 

The GWAS Catalog57 has become an invaluable database of public GWAS 27 

summary statistics, with a fast-growing collection of data curated and harmonized 28 

for post-GWAS applications. We have developed a feature that links PennPRS 29 

directly to the GWAS Catalog database to enable efficient PRS model training. 30 

This allows users to query data from the GWAS Catalog for PRS pseudo training 31 

directly without the need to download, preprocess, and upload the data to 32 
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PennPRS. To enable this functionality with high quality, we focused on harmonized 1 

datasets from the GWAS Catalog and ensured that the provided data meet the 2 

basic requirements for implementing the various PRS methods supported, such as 3 

having the necessary GWAS summary-level data information and excluding data 4 

from exome studies. Currently, we provide access to over 27,000 datasets for 5 

users to query directly through PennPRS.   6 

 7 

We provide two examples of querying GWAS Catalog datasets for efficient PRS 8 

pseudo-training on PennPRS. The first example demonstrates the use of the 9 

PennPRS single-ancestry data analysis pipeline to train a PRS model for height in 10 

Hispanics. In this example, we first navigated to the PennPRS GWAS Queryable 11 

Database (https://pennprs.org/data) and searched for “height”. We identified the 12 

dataset from the study “GCST90095033” as a suitable input for PRS training, 13 

which provided GWAS summary statistics from 59,771 Hispanic or Latin American 14 

individuals60. We then created a single-ancestry data analysis job on PennPRS, 15 

entering the relevant dataset information (e.g., study accession ID) to enable direct 16 

querying from the GWAS Catalog. Next, we selected three pseudo-training 17 

methods (C+T-pseudo, Lassosum2-pseudo, and LDpred2-pseudo) along with the 18 

ensemble option, which would utilize two ensemble methods, Ensemble-pseudo 19 

and Ensemble-ARM-pseudo, to train two ensemble PRS models combining PRS 20 

trained by the three selected methods and submitted the job. PennPRS completed 21 

the job in approximately two and a half hours, returning five PRS models along 22 

with a detailed log file. Similarly, the second example demonstrates the use of the 23 

PennPRS multi-ancestry data analysis pipeline to train PRS models for height 24 

across four ancestries (EUR, AFR, AMR, and EAS). We queried four 25 

corresponding ancestry-specific GWAS datasets from the GWAS Catalog 26 

(“GCST90029008”, “GCST90013468”, “GCST90095033”, and “GCST90018739”) 27 

and used the multi-ancestry method, PROSPER-pseudo, for online training. 28 

PennPRS completed this job in approximately ten and a half hours, generating 29 

eight PRS models for the four ancestries (PROSPER-Single-pseudo PRS and 30 

PROSPER-pseudo PRS for each ancestry). Detailed steps and illustrations for 31 
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these examples are available in the tutorial (https://pennprs.gitbook.io/pennprs), 1 

serving as quick-start guides for new users. 2 

 3 

PennPRS offline pipeline and pretrained PRS models 4 

In addition to establishing the online PRS training server, we have developed a 5 

comprehensive pipeline for offline implementation of the supported PRS pseudo-6 

training and tuning-parameter-free methods. The cloud computing server is 7 

designed as a convenient and eco-friendly29 online tool for PRS users, particularly 8 

those who face challenges in setting up local computational clusters, while the 9 

offline pipeline is powerful for large-scale analyses if researchers have access to 10 

high-performance computing clusters. In our offline pipeline, we have additionally 11 

developed novel pseudo-training versions of three single- and multi-ancestry PRS 12 

methods, including PRS-CS-grid58-pseudo, PRS-CSx61-pseudo, and MUSSEL55-13 

pseudo. Due to the nature of these methods, they have much higher memory and 14 

computational demands than other methods and are therefore included exclusively 15 

in our offline pipeline. By offering both online and offline options, we aim to 16 

accommodate the diverse needs of research groups and help reduce disparities in 17 

computational resources for the PRS application community.  18 

 19 

To demonstrate the power and efficiency of our offline pipeline, we applied it to a 20 

wide range of phenotypes, including those mentioned in our model evaluations (for 21 

which we had access to individual-level testing data for performance assessment), 22 

as well as many more GWAS summary datasets from the GWAS Catalog57, 23 

Biobank Japan (BBJ)62, the Million Veteran Program (MVP) study63, and the Global 24 

Biobank Meta-analysis Initiative (GBMI) consortium64. Specifically, we have 25 

conducted single-ancestry analysis with all three single-ancestry pseudo-training 26 

methods (C+T-pseudo, Lassosum2-pseudo, and LDpred2-pseudo) and their 27 

ensembles (Ensemble-pseudo and Ensemble-ARM-pseudo) using default tuning 28 

parameter settings on over 8,000 harmonized GWAS Catalog datasets and 169 29 

phenotypes from BBJ. We have also conducted multi-ancestry analysis with 30 

PROSPER-pseudo on 181 ancestry-stratified GWAS summary datasets from the 31 

MVP and nine ancestry-stratified GWAS summary datasets from the GBMI. We 32 
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have made these pretrained PRS models publicly available in the PennPRS public 1 

resource hub (https://pennprs.org/result), allowing users to freely download and 2 

utilize them in their research. As the GWAS Catalog and other databases continue 3 

to expand, harmonizing and making more curated GWAS summary statistics 4 

publicly available, we will leverage the established PennPRS pipeline to analyze 5 

these summary datasets and share the trained PRS models with the PRS research 6 

community. These resources will accelerate the application of PRS across various 7 

fields.  8 

 9 

Discussion 10 

PRS training methods and their cluster-based implementations have been 11 

traditionally handled by local servers, typically established by individual research 12 

groups. However, the fast-paced evolution of PRS methodologies, along with the 13 

growing volume of GWAS resources, presents logistical, computational, and 14 

environmental challenges for hosting these PRS pipelines locally. This is 15 

particularly true for smaller research groups that may lack sufficient computational 16 

resources or are new to PRS. In this paper, we developed a series of pseudo-17 

training algorithms, data resources, and cloud computing functionalities to enable 18 

online single- and multi-ancestry PRS pseudo-training using summary data only, 19 

eliminating the need for local setups. Our platform aims to lower the barriers to 20 

PRS applications across various phenotypes and ancestry populations, while also 21 

reducing disparities in computational resources within the global PRS research 22 

community. 23 

 24 

The development of cloud computing platforms and centralized resources have 25 

provided significant environmental benefits29,65 and opened new opportunities 26 

across the broad fields of biomedical data science22-28. The novel pseudo-training 27 

methods we developed provide several advantages for cloud-based PRS model 28 

training solutions. First, pseudo-training mitigates the privacy risks and concerns 29 

associated with uploading or sharing individual-level genetic datasets online. 30 

Second, individual-level validation data is not always available for PRS model 31 

development, and our pseudo-training pipeline provides a more accessible 32 
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solution for PRS training across a wider range of disease and health outcomes. 1 

Third, pseudo-training could deliver PRS with better prediction performance, 2 

especially for those disease outcomes with limited individual-level tuning data 3 

available (e.g., Ntuning < 1,000). The pseudo-training approach we developed would 4 

lend power for these understudied outcomes. Fourth, the pseudo-training 5 

approach facilitates seamless integration with online GWAS data resources, such 6 

as the GWAS Catalog, providing a centralized data resource for PRS model 7 

training. In the future, we plan to extend the functionality of pseudo-training and 8 

PennPRS in several directions. For example, the current training procedure relies 9 

on the five super ancestral population labels34 (e.g., EUR and AFR). We aim to 10 

expand our framework to include additional population labels and further integrate 11 

flexible genetic ancestry continuum information66 as the field increasingly 12 

incorporates diverse and admixed ancestry information18. We will also provide 13 

unified PRS models for the general population instead of ancestry-specific PRS 14 

models that require categorizing individuals into discrete ancestry groups15. 15 

Furthermore, beyond generating PRS model training, we will additionally develop 16 

pseudo-training methods to produce additional accuracy metrics and uncertainty 17 

measures for the generated PRS models, such as confidence intervals67, which 18 

are increasingly critical for downstream clinical applications of PRS68-71. 19 

 20 

Notably, the applicability of the FAIR data principles72 to our cloud computing 21 

platform highlights the broad impact of PennPRS on future translational research 22 

involving PRS. By providing standardized computing pipelines, curated data 23 

resources, detailed documentation, and accessible PRS weight files, PennPRS 24 

facilitates transparency and ensures the Findability, Accessibility, Interoperability, 25 

and Reusability of PRS resources. This is particularly important as the adoption 26 

and application of PRS continue to expand in precision medicine, a process that 27 

typically involves multiple steps, from PRS model development and assessment 28 

to implementation and translation in clinical settings. Efficient data and information 29 

sharing between these stages will be critical for successful translation. In addition, 30 

the computing methods and data resources provided by our PennPRS platform 31 

enable efficient between study comparisons of PRS within the same ancestry 32 
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background. This is particularly important given the diversity of biobanks in the US 1 

and globally. By providing a centralized platform, PennPRS anchors comparisons 2 

to a consistent linkage disequilibrium and allele frequency background, reducing 3 

bias or noise that might hinder cross-study comparisons. This allows researchers 4 

to focus on other factors affecting performance18,73, improving the reliability and 5 

generalizability of PRS analyses across studies.  6 

 7 

There are also limitations to cloud computing platforms. For example, if users have 8 

already established powerful local computational clusters—typically supported by 9 

their research institutions’ infrastructure—they might consider setting up the 10 

pipeline locally, although this approach may be more time consuming and less 11 

environmentally friendly65. To meet this complementary need, we have developed 12 

a ready-to-use offline version of PennPRS pipeline. Another challenge of cloud 13 

computing platform is the maintenance of the server and pipelines. To ensure 14 

sustainable development of our platform, we have formed a dedicated 15 

interdisciplinary team of researchers centered around the PRS research 16 

community at the University of Pennsylvania, in collaboration with researchers 17 

from other institutions, to support regular updates to PennPRS. These updates will 18 

include incorporating additional PRS methods, generating new data resources, 19 

and more efficient method implementations. The long-term maintenance of the 20 

platform is supported by the robust AWS server, with additional technical 21 

assistance from our local IT teams. We welcome user feedback and suggestions 22 

to improve the PennPRS platform and better meet the diverse needs of the global 23 

PRS research community. 24 
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  26 

Methods 27 

Single-ancestry PRS pseudo-training 28 

Single-ancestry PRS training aims to develop PRS models for a target genetic 29 

ancestral population based on a single GWAS summary dataset generated from 30 

training samples of the same population. We developed a general summary data-31 

based parameter optimization approach for multiple single-ancestry PRS methods 32 
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that avoids the need for individual-level tuning data (Supplementary Fig. 1a). We 1 

have implemented the approach to develop pseudo-training versions of three 2 

single-ancestry PRS methods: C+T-pseudo, LDpred2-pseudo, and Lassosum2-3 

pseudo, which are included in our PennPRS cloud computing platform. We have 4 

also developed the pseudo-training version of an additional method, PRS-CS-grid-5 

pseudo, which has a much higher computational demand and is included in our 6 

offline pipeline. Our PRS pseudo-training pipeline follows the general framework 7 

of PUMAS31,33. Specifically, in Step 1, we use the subsampling approach in 8 

PUMAS to sample marginal association statistics for two “pseudo” subsets of 9 

training and validation individuals from the full GWAS summary data31. This 10 

approach enables us to generate GWAS summary statistics for pseudo training 11 

and validation sets for PRS training and parameter tuning, respectively, without 12 

the need to collect an independent individual-level dataset for parameter tuning. In 13 

Step 2, we apply each selected PRS method to train PRS models on the pseudo 14 

summary-level training dataset.  In Step 3, we conduct parameter tuning on the 15 

pseudo summary-level validation dataset. This summary data-based parameter 16 

tuning is conducted using the method in PUMAS that allows estimation of the 17 

prediction R2 of PRS using summary statistics only. This step selects the best 18 

tuning parameter setting for each method based on performance on the pseudo 19 

validation summary dataset. If multiple PRS methods are implemented in Step 2, 20 

we will proceed to Step 4, which offers the option to train ensemble PRS models. 21 

These models combine the PRS models generated by various methods using the 22 

pseudo-validation dataset and two ensemble approaches: Ensemble-pseudo and 23 

Ensemble-ARM-pseudo, which will be introduced in the next section. Finally, in 24 

Step 5, we train the final PRS models on the full GWAS summary dataset with 25 

selected tuning parameter settings obtained from Step 3 and trained ensemble 26 

weights for different methods in the ensemble PRS models from Step 4. To 27 

increase stability of the parameter tuning results, we repeat the training-validation 28 

data splitting procedure in Step 2 k=2 times and conduct Steps 2 to 4 with k-fold 29 

cross-validation. Specifically, for parameter tuning, we select the parameter setting 30 

that correspond to the highest estimated prediction R2 on the pseudo validation 31 
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data averaged across the k folds; and for ensemble PRS training, we obtain the 1 

weights in the ensemble model as the average across the k folds. 2 

 3 

We have identified several potential issues of the original PUMAS algorithm when 4 

incorporating it with different PRS methods and have made substantial 5 

modifications accordingly to ensure the applicability and increase the robustness 6 

of our pipeline. For example, the original Lassosum2 and LDpred2 algorithms may 7 

generate non-convergent or problematic PRS weights (e.g., overly large "𝛽$!") 8 

under some tuning parameter settings, which can lead to inflated R2 estimate for 9 

these settings, resulting in problematic parameter tuning by PUMAS. We resolved 10 

this issue by discarding the tuning parameter settings in which there exist genetic 11 

effect estimates "𝛽$!" > 1.	Furthermore, it is likely that the final PRS model trained 12 

on the full GWAS summary data has non-convergent variant weights, even though 13 

the selected optimal tuning parameter setting gives a converged model when 14 

trained on the pseudo training dataset. This issue is due to the unstable 15 

performance of the PRS methods, not the PUMAS pseudo-training algorithm itself. 16 

To avoid this inconsistency in the PRS models trained based on the pseudo-17 

training dataset and the original summary dataset, we select optimal tuning 18 

parameters only from the settings that lead to converged variant weights on the 19 

original summary data. We also noticed that the selected tuning parameter setting 20 

may be far from the optimal setting if its adjacent tuning parameter settings led to 21 

nonconvergent results. We thus only consider parameter settings for which the 22 

adjacent settings also lead to converged results. If no such candidate setting 23 

exists, then we will skip this step and just select the setting that gives the highest 24 

R2 on the pseudo validation set. Finally, for traits that have minimal heritability or 25 

have a small GWAS sample size, the PRS model trained by some of the methods 26 

may have limited power, reflected by negative prediction R2 estimates on the 27 

pseudo validation data. In this case, we still output the trained PRS models but will 28 

also print a warning message to let users know about this issue. We will also 29 

exclude the corresponding PRS models from the pseudo ensemble learning step. 30 

 31 

Pseudo ensemble learning combining multiple single-ancestry PRS models 32 
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As mentioned in the previous section, if multiple PRS methods are implemented in 1 

single-ancestry analysis, we will provide an option to conduct pseudo-training of 2 

ensemble PRS models combining PRS trained by the various methods based on 3 

the pseudo validation dataset. We propose two approaches for the pseudo 4 

ensemble PRS training. The first approach trains a linear combination39 of the PRS 5 

models obtained from the various methods (“Ensemble-pseudo”). This approach 6 

was proposed in the PUMA-CUBS framework33. We notice that this approach 7 

sometimes generates a PRS that has a lower power than the best single PRS 8 

model, possibly due to the suboptimal performance of some of the single PRS 9 

models. Therefore, we propose an alternative approach adopting a model 10 

combination method named adaptive regression by mixing (ARM)40, which, under 11 

certain conditions, can approximate the optimal performance among a set of single 12 

models (“Ensemble-ARM-pseudo”). We observe from our simulation studies and 13 

data applications that either one of the two approaches outperforms the other on 14 

different phenotypes and with different training GWAS datasets. We thus provide 15 

both ensemble PRS models to users to further increase the power of the “best” 16 

PRS model provided by PennPRS. 17 

 18 

Multi-ancestry PRS pseudo-training 19 

Multi-ancestry PRS training jointly analyzes ancestry-stratified GWAS summary 20 

statistics from 𝐾 ancestral populations (a subset of [EUR, AFR, AMR, EAS, and 21 

SAS]) and generates ancestry-specific PRS models for the 𝐾  populations. We 22 

developed a GWAS summary data-based parameter tuning approach for multi-23 

ancestry PRS training that avoids the need for individual-level tuning data 24 

(Supplementary Fig. 1b). We have implemented this approach to develop the 25 

pseudo-training version of PROSPER on our PennPRS cloud computing platform 26 

and two other methods, PRS-CSx-pseudo and MUSSEL-pseudo, which require 27 

much larger memory and/or are computationally more intensive and are thus only 28 

included in our offline pipeline. 29 

 30 

Our general multi-ancestry PRS pseudo-training framework follows that of 31 

PUMAS31,33. Specifically, in Step 1, we use the subsampling approach in PUMAS 32 
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to generate summary statistics for pseudo training and validation sets for PRS 1 

training and parameter tuning, respectively, for each of the 𝐾 ancestry populations. 2 

In Step 2, we apply each selected method to train PRS models on the pseudo 3 

training dataset. For PROSPER-pseudo and MUSSEL-pseudo which prerequire 4 

implementation of the single-ancestry Lassosum2 and LDpred2 algorithms, 5 

respectively, we use a procedure similar to the one in single-ancestry pseudo-6 

training for selecting optimal parameters of Lassosum2-pseudo and LDpred2-7 

pseudo. In Step 3, we conduct parameter optimization of the multi-ancestry joint 8 

modeling step in PROSPER or MUSSEL on the pseudo summary-level validation 9 

dataset. This step selects a best PRS model for each ancestry based on its 10 

performance (the estimated prediction R2) on the pseudo validation dataset. All 11 

three methods have a final ensemble learning step (Step 4, Supplementary Fig. 12 

1), where PRS-CSx trains a linear combination of the 𝐾 best ancestry-specific PRS 13 

models from Step 3, while PROSPER and MUSSEL use the super learner 14 

algorithm74 with base learners including linear regression, elastic-net regression, 15 

and ridge regression to train an “optimal” linear combination of all PRS models 16 

across all tuning parameter settings and ancestries. For PRS-CSx, we use the 17 

ensemble approach in PUMAS to train the final PRS model for each ancestry 18 

based on the pseudo validation dataset of that ancestry. For PROSPER and 19 

MUSSEL, a summary data version of the super learner can be implemented for 20 

the final ensemble step utilizing a recently developed approach75. For now, we 21 

consider an alternative strategy, where we train a linear combination of a subset 22 

of 𝐿 best performing single PRS models without regularization. Specifically, for 23 

each ancestry, we first select the top 𝐿 of the ∑ 𝑀"
#
"$%  PRS models that have the 24 

highest prediction R2 on the pseudo validation dataset of that ancestry, where 𝑀" 25 

denotes the number of tuning parameter settings, i.e., number of candidate PRS 26 

models, generated for ancestry	𝑘, 𝑘 = 1,2, … , 𝐾. We then train a linear combination 27 

of these 𝐿 top PRS models on the pseudo validation dataset. We set 𝐿 to the 28 

minimum between five and the number of converged PRS models among the 29 

∑ 𝑀"
#
"$%  models. Finally, in Step 5, we train the final PRS models on the full original 30 

GWAS summary data based on the selected optimal parameter settings from Step 31 

3 and trained ensemble weights for different single PRS models from Step 4. We 32 
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notice that the single best PRS model may have a higher prediction power than 1 

the final ensemble PRS. We thus provide both the best single PRS model 2 

(“PROSPER-Single-pseudo PRS”, Figs. 1c and 5, Supplementary Figs. 4-5) and 3 

the final PRS model with the ensemble step (“PROSPER-pseudo PRS”, Figs. 1c 4 

and 5, Supplementary Figs. 4-5) to the user. Again, we repeat the training-5 

validation data splitting procedure in Step 2 k=2 times and conduct Steps 2-4 with 6 

k-fold cross-validation to increase stability of the results. Specifically, for parameter 7 

tuning, we select the parameter setting that correspond to the highest estimated 8 

prediction R2 on the pseudo validation data averaged across the k folds; and for 9 

the ensemble step, we obtain the weights in the ensemble model as the average 10 

across the k folds. In our multi-ancestry analysis pipeline, we also consider the 11 

various modifications to the original PUMAS algorithm implemented in our single-12 

ancestry analysis pipeline to improve robustness of the pseudo-training. 13 

 14 

Configuration of the online PennPRS pipeline 15 

Our PennPRS cloud computing pipeline currently supports seven PRS methods, 16 

including pseudo-training versions of three single-ancestry methods, C+T-pseudo, 17 

lassosum2-pseudo, and LDpred2-pseudo; three tuning-parameter-free single-18 

ancestry methods, PRS-CS-auto, LDpred2-auto, and DBSLMM; and pseudo-19 

training version of one multi-ancestry method, PROSPER-pseudo. PennPRS 20 

supports PRS model development based on genetic variants in the HapMap 376. 21 

For implementation of methods that have tuning parameters, we set up default 22 

tuning parameter settings based on the ones in the original algorithms of the 23 

methods but with slight modifications to balance between prediction performance 24 

and computational efficiency of our online PRS training. We use genotype data of 25 

unrelated individuals from the Phase 3 1000 Genomes project as the linkage 26 

disequilibrium (LD) reference data. We now introduce the parameter settings and 27 

other relevant details of the newly developed pseudo-training methods supported 28 

by PennPRS. 29 

 30 

C+T-pseudo. C+T-pseudo first conducts an LD clumping step to select relatively 31 

independent genetic variants with an absolute pairwise correlation lower than r2 = 32 
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0.1 within a genetic distance 500kb calculated based on the reference genotype 1 

dataset for the same ancestral population from the Phase 3 1000 Genomes 2 

Project34. It then selects the remaining genetic variants that reach varying p-value 3 

cutoffs (tuning parameter: pt)4,5. Our default candidate values for pt are 5×10−8, 4 

5×10−7, 5×10−6, 5×10−5, 5×10−4, 5×10−3, 5×10−2, and 5×10−1. C+T-pseudo then 5 

selects the score with the “optimal” p-value threshold based on the performance 6 

on the pseudo validation dataset with respect to the prediction R2. PennPRS runs 7 

C+T-pseudo using PLINK 1.9077. 8 

 9 

Lassosum2-pseudo. Lassosum2-pseudo is a penalized regression-based 10 

approach that estimates joint genetic effect sizes based on GWAS summary 11 

statistics. Tuning parameters include (i) 𝜆 : shrinkage parameter in the L2 12 

regularization (default candidate values: 0.001, 0.01, 0.1, and 1); (ii) number of 13 

candidate values for 𝜆, the shrinkage parameter in the L1 regularization (default: 14 

30); and (iii) ratio between the lowest and highest candidate values of 𝜆 (default: 15 

0.01). The current version of PennPRS implements Lassosum2-pseudo with R 16 

package “bigsnpr” (version 1.6.1, last updated Jun 8, 2023). 17 

 18 

LDpred2-pseudo. LDpred2-pseudo is a Bayesian approach that jointly analyzes 19 

correlated genetic variants across the genome and accounts for LD37,38. It uses a 20 

spike-and-slab prior on genetic effect sizes, assuming a proportion (𝑝) of the 21 

genetic variants have non-zero effect on the phenotype. Tuning parameters 22 

include (1) the causal variant  proportion 𝑝 (default candidate values: 10−5, 3.2×10-23 
5, 10-4, 3.2×10-4, 10-3, 3.2×10-3, 10-2, 3.2×10-2, 10-1, 3.2×10-1, and 1), (2) 24 

heritability-related parameter, 𝛼: the total heritability is set to 𝐻& = 𝛼𝐻&', where 𝐻&' 25 

is the heritability estimated by LD score regression78 (default candidate values: 26 

𝛼 = 0.7, 1.0, and 1.4), and an additional sparse option (default: FALSE) to shrink 27 

the posterior genetic effects that exceed 𝑝  to zero. The current version of 28 

PennPRS implements LDpred2-pseudo with R package “bigsnpr” (version 1.6.1, 29 

last updated Jun 8, 2023). 30 

 31 
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PROSPER-pseudo. PROSPER-pseudo is a penalized regression-based multi-1 

ancestry PRS method that utilizes an L1 penalty to induce sparsity of genetic 2 

variants with non-zero effects and an L2 penalty to induce correlation in genetic 3 

effects between ancestries41.  Tuning parameters include (i) the number of 4 

candidate values of the shrinkage parameter in the L1 penalty (default: 5) and (ii) 5 

the number of candidate values of the shrinkage parameter in the L2 penalty 6 

(default: 5). 7 

 8 

Simulation studies  9 

We evaluated the performance of our proposed pseudo-training approach for both 10 

single- and multi-ancestry PRS development in comparison to the traditional, 11 

individual-level tuning data-based PRS training in various data settings based on 12 

a large-scale synthetic GWAS data previously generated42. The synthetic 13 

genotype data were generated for all five super populations (EUR, AFR, AMR, 14 

EAS, and SAS) using HAPGEN2 (version 2.1.2)79 to closely mimic the reference 15 

genotype data from the Phase 3 1000 Genomes Project. Phenotype data were 16 

generated assuming a causal variant proportion of 1%, 0.1%, of 0.05% and GWAS 17 

sample size of 15,000, 45,000, or 80,000 across the five ancestral populations. 18 

Details of the simulation procedure were previously described42. 19 

 20 

Real data analyses for evaluation of pseudo PRS training 21 

UKB imaging data analysis. We conducted a large-scale evaluation of single-22 

ancestry pseudo-training methods using multi-organ multi-modality imaging 23 

data48,80,81 from the UK Biobank (UKB) study, covering brain, heart, eye, and 24 

abdominal organs (Supplementary Tables 2-5). For the brain, we used imaging-25 

derived phenotypes from three major modalities: structural MRI (sMRI), diffusion 26 

MRI (dMRI), and resting-state functional MRI (rfMRI). For example, brain sMRI 27 

included 1,432 phenotypes generated from the FIRST, FAST, and FreeSurfer 28 

pipelines44. Brain dMRI data included 674 phenotypes processed with TBSS and 29 

ProbtrackX, while brain rfMRI encompassed 82 phenotypes from whole-brain 30 

spatial independent component analysis44,81-83, covering regional amplitude and 31 

global functional connectivity. For cardiac MRI, we used 82 phenotypes related to 32 
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the heart and aorta46,84. Additionally, 41 abdominal MRI phenotypes85-94 were 1 

included, covering kidney, liver, and abdominal organ or tissues. In addition, we 2 

analyzed 46 phenotypes derived from eye optical coherence tomography 3 

images47. The GWAS summary data for these imaging phenotypes were obtained 4 

from subjects of self-reported British European ancestry, with average sample 5 

sizes of 32,634 for brain, 30,506 for heart, 29,849 for abdomen, and 50,465 for 6 

eye. Age, sex, the top 40 genetic principal components (PCs), and imaging-7 

specific covariates were adjusted for, as detailed in a previous study45,48. PRS 8 

performance was assessed on 2,227 to 8,172 European non-British subjects, 9 

using the same set of covariates as those in the corresponding GWAS. 10 

 11 

FinnGen disease data analysis. We evaluated the performance of single-ancestry 12 

pseudo-training methods on binary phenotypes using GWAS summary statistics 13 

from the FinnGen study (R9)49. Following the FinnGen-phecode mapping 14 

approach used in previous studies48,50, we mapped 29 disease pairs, with an 15 

average of 333,355 cases and controls per phenotype (Supplementary Tables 6-16 

7). PRS performance was assessed on 1,225 to 155,170 European cases from the 17 

UKB, with adjustments for effects of age and sex. 18 

 19 

UKB-PPP Olink plasma protein data analysis. We evaluated the performance of 20 

single-ancestry pseudo PRS training methods on 2,734 Olink plasma proteins from 21 

the UKB-PPP51 project (Supplementary Tables 8-9). The GWAS summary 22 

statistics were obtained from a previous study95, which included 40,852 subjects 23 

of British European ancestry with adjustments for age, sex, and the top 40 genetic 24 

PCs. PRS performance was assessed on 2,517 to 2,923 European non-British 25 

subjects, using the same set of covariates as in the GWAS. 26 

 27 

GLGC blood lipids data analysis. We trained ancestry-specific PRS models by both 28 

pseudo-training and individual-level tuning versions of the various methods for four 29 

blood lipids, including high-density lipoprotein (HDL), low-density lipoprotein (LDL), 30 

log-transformed triglycerides (logTG), and total cholesterol (TC)54. The ancestry-31 

stratified training GWAS summary data were obtained from the Global Lipids 32 
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Genetics Consortium54 (GLGC) on five ancestry groups including EUR (N = 1 

840,018-927,975), AFR or admixed AFR (N = 87,759-92,554), Hispanic/Latino 2 

(N = 33,989-48,056), EAS (N = 80,676-145,512), and SAS (N = 33,658-34,135)54. 3 

We validated method performance on a random set of 20,000 UKB individuals of 4 

EUR ancestry and all UKB individuals of AFR (N = 9,169), AMR (N = 750), EAS 5 

(N = 2,019), and SAS (N = 10,853) ancestry. We inferred the ancestry of the UKB 6 

individuals by a genetic component analysis41. We used 50% of these UKB 7 

samples to conduct individual-level data-based parameter tuning, ensemble PRS 8 

training, and conducting the ensemble step in PROSPER, and used the remaining 9 

50% (testing set) to evaluate PRS performance of the various methods. GWAS 10 

sample sizes, validation sample sizes, and the number of genetic variants 11 

analyzed are reported in Supplementary Table 11. Detailed data quality control 12 

procedures were previously described42,55. Age, gender, and the top 10 genetic 13 

PCs were adjusted for as covariates when calculating prediction R2 of the PRS 14 

models. 15 

 16 

UKB/CHIMGEN brain imaging data analysis. We evaluated the performance of 17 

multi-ancestry pseudo-training methods on brain imaging phenotypes using 18 

GWAS summary statistics from both the Chinese Imaging Genetics (CHIMGEN) 19 

study56 for East Asians (average N = 7,058) and the UKB study for British 20 

European ancestry (average N = 34,286). Similar to our single-ancestry analysis 21 

on UKB, we included 968 phenotypes from sMRI and 445 from dMRI. PRS 22 

performance was assessed on 443 Asian subjects from the UKB study (half were 23 

used as tuning samples for parameter optimization for traditional PRS training 24 

methods, half were used as testing data to evaluate performance of all methods) 25 

with adjustments for the same set of covariates as in the single-ancestry analysis 26 

on the same phenotypes. GWAS sample sizes, validation sample sizes, and the 27 

number of genetic variants analyzed are reported in Supplementary Table 13. 28 

 29 

Other GWAS datasets on which we have generated PRS models  30 

We applied our offline pipeline to GWAS summary statistics from the Biobank 31 

Japan (BBJ)62, the Million Veteran Program (MVP) study63, the Global Biobank 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 10, 2025. ; https://doi.org/10.1101/2025.02.07.25321875doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.07.25321875
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

Meta-analysis Initiative (GBMI) consortium64, and the GWAS Catalog57. For the 1 

BBJ, we conducted single-ancestry analysis on GWAS summary statistics for 169 2 

phenotypes available at https://pheweb.jp/downloads. For the GWAS Catalog, we 3 

analyzed nearly 8,000 harmonized datasets in single-ancestry analysis. For the 4 

GBMI, we performed multi-ancestry analysis on nine phenotypes with ancestry-5 

stratified GWAS summary statistics from the five super populations34. For the MVP 6 

study, we carried out multi-ancestry analysis on 181 phenotypes with ancestry-7 

stratified GWAS summary statistics from AFR, AMR, EAS, and EUR populations. 8 

Using default parameter settings, our pipelines were successfully applied to these 9 

data resources, and the generated PRS models have been shared in the PennPRS 10 

public resource hub. 11 

 12 

Cloud computing platform development  13 

PennPRS is a cloud-based platform hosted on AWS that consists of two main 14 

components: the frontend and the backend. For the frontend, we used Next.js 15 

(https://nextjs.org/) and MUI (https://mui.com/) to create a clean, intuitive interface. 16 

Users can easily input their data (through file uploads or data queries), choose the 17 

type of analysis, PRS methods, and parameter setting they want, and view job 18 

status and results. We used Next.js to ensure that the platform loads quickly and 19 

that all interactions (such as submitting data or viewing outputs) are smooth and 20 

responsive. The backend provides the infrastructure for PRS model development, 21 

including data harmonization and QC pipelines, GWAS Catalog data querying, and 22 

various PRS methods and training mechanisms. We developed the backend with 23 

FastAPI (https://fastapi.tiangolo.com/), which allows us to process multiple tasks 24 

efficiently, supporting both simple requests and more complex data processing. 25 

For example, when a user uploads data for PRS analysis, FastAPI sends this data 26 

to the job queue, ensuring that requests are processed in a fair and timely manner.  27 

 28 

In addition, Redis (https://redis.io/) is used for job management and queue, 29 

keeping track of all incoming requests and organizing them so that the system can 30 

handle multiple tasks simultaneously. Redis also helps prevent delays and keeps 31 

the platform running smoothly even during busy times. Moreover, since different 32 
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types of analyses have different resource requirements, we organized the 1 

computing infrastructure into distinct subgroups to optimize resources. Each 2 

subgroup is tailored to handle specific types of jobs, ensuring that the right 3 

resources (such as memory and CPU power) are available for the task at hand, 4 

which optimizes resource allocation and improves overall efficiency. Once the 5 

analysis is completed, the results are sent back to the frontend so users can 6 

access and download them. To ensure reliability and scalability, the platform 7 

incorporates monitoring tools for system performance checks, automated testing, 8 

and continuous integration pipelines. This setup enables quick future updates and 9 

secure data handling, ensuring a smooth user experience as demand grows.  10 

 11 

Code availability  12 

The developed PRS pseudo-training methods and PennPRS pipelines can be 13 

freely accessed at https://pennprs.org/ and https://github.com/PennPRS/pipeline.   14 

 15 

Data availability  16 

The simulated genotype and phenotype data used in our simulations are available 17 

at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/C18 

OXHAP. GWAS summary statistics used in our PRS training and evaluation can 19 

be obtained from their respective data sources, subject to data sharing policies 20 

and approvals. Specifically, the harmonized GWAS summary statistics from the 21 

GWAS Catalog are available at https://www.ebi.ac.uk/gwas/downloads/summary-22 

statistics. The EUR GWAS summary statistics for the UKB imaging phenotypes 23 

across different organs are available from previous study45,48. The EUR protein 24 

GWAS summary statistics from the UKB-PPP project are available from previous 25 

study95. The EUR GWAS summary statistics from the FinnGen study are available 26 

at https://www.finngen.fi/en/access_results. The EAS GWAS summary statistics 27 

from BBJ are available at https://pheweb.jp/. The EAS GWAS  summary statistics 28 

for brain imaging phenotypes from the CHIMGEN study are available from 29 

previous study56. Ancestry-stratified GWAS summary statistics from the GBMI are 30 

available at https://www.globalbiobankmeta.org/resources. Ancestry-stratified 31 

GWAS summary statistics for blood lipids across five super populations from 32 
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GLGC are available at http://csg.sph.umich.edu/willer/public/glgc-1 

lipids2021/results/ancestry_specific. Ancestry-stratified GWAS summary statistics 2 

from the MVP study are available from previous study63. The individual-level UK 3 

Biobank data used in this study can be requested from 4 

https://www.ukbiobank.ac.uk/. The PRS model weights generated by the 5 

PennPRS pipeline have been made publicly available through the PennPRS public 6 

resource hub at https://pennprs.org/result.  7 
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Figure legends  1 

 2 

Fig. 1: The Challenges of Traditional PRS Model Training and the Promise of 3 

PennPRS Cloud Computing Platform.  4 

a. Left: A figurative representation of the key challenges in performing PRS model 5 

training with local computing servers and pipelines. Right: Our proposed cloud 6 

computing approach for online PRS model training, which leverages centralized 7 

computing and data resources alongside novel pseudo-training algorithms and 8 

pipelines to overcome these challenges. b. An overview of the cloud computing 9 

platform of PennPRS and its major impacts on PRS applications in precision 10 

medicine. 11 

 12 

Fig. 2: Development and Distribution of the PennPRS Cloud Computing 13 

Platform and Accompanying Data and Computational Resources. 14 

a. A summary of the main contributions of our study, including the distribution and 15 

large-scale validation of PRS pseudo-training pipelines, establishment of the 16 

PennPRS cloud computing platform, and distribution of queryable GWAS 17 

summary data sources, pretrained PRS models, and offline pipeline. b. Workflow 18 

of the single-ancestry PRS training supported by PennPRS. c. Workflow of the 19 

multi-ancestry PRS training supported by PennPRS. d. Highlighted features of 20 

PennPRS: (i) new PRS pseudo-training pipelines supporting three single-ancestry 21 

methods, two ensemble approaches combining different single-ancestry methods, 22 

and one multi-ancestry method; and (ii) large-scale application and validation of 23 

the PRS pseudo-training pipeline across nine data resources and over 6,000 24 

phenotypes. 25 

 26 

Fig. 3: Comparison of Single-ancestry PRS Pseudo-training and Traditional 27 

PRS methods with Individual-level Tuning Data of Various Sample Sizes 28 

under various settings of causal SNP proportion and heritability.  29 

We compared the prediction R2 of the PRS models trained by C+T-pseudo, 30 

Lassosum2-pseudo, LDpred2-pseudo, Ensemble-pseudo, and Ensemble-ARM-31 

pseudo (R2sum) with those of PRS models trained based on individual-level tuning 32 
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dataset (R2ind) that has a sample size a. Ntuning=1,000, b. Ntuning=400, or c. 1 

Ntuning=100. Results were summarized across 10 training GWAS summary 2 

datasets of NGWAS=15,000 and averaged across 100 random splits, with each split 3 

having Ntuning tuning samples for individual data-based parameter tuning and 4 

Nval=2,500 validation samples for calculating prediction R2 for all models. Detailed 5 

results are reported in Supplementary Table 1.  6 

 7 

Fig. 4: Evaluation of Single-ancestry PRS Pseudo-training on Body Imaging 8 

Phenotypes Using GWAS Summary Data and Validation Data from the UK 9 

Biobank (UKB) study.  10 

a. We compared our PRS pseudo training approaches, C+T-pseudo, Lassosum2-11 

pseudo, LDpred2-pseudo, Ensemble-pseudo, and Ensemble-ARM-pseudo (R2sum)  12 

with the original methods that use individual-level tuning dataset (R2ind) on 41 13 

abdominal MRI (average NGWAS=29,849), 82 cardiac MRI (average NGWAS=30,506), 14 

and 46 eye OCT (average NGWAS=50,465) phenotypes and evaluated their 15 

performance on hold-out independent UKB samples of EUR origin (Nval=5,760). b. 16 

We assessed the relative performance of the pseudo-training methods to their 17 

original versions utilizing individual-level tuning datasets of different sizes Ntuning= 18 

1,000, 300, or 100, on the abdominal MRI, cardiac MRI, and eye OCT phenotypes. 19 

Results were averaged across 100 random splits, with each split having Ntuning 20 

tuning samples for individual data-based parameter tuning and the remaining 21 

samples for calculating prediction R2 for all models. Detailed data information and 22 

results are summarized in Supplementary Tables 2-3. 23 

 24 

Fig. 5: Additional Evaluation of Single-ancestry PRS Pseudo-training across 25 

Various Phenotypes and Data Sources.  26 

We compared our PRS pseudo-training approaches, C+T-pseudo, Lassosum2-27 

pseudo, LDpred2-pseudo, Ensemble-pseudo, and Ensemble-ARM-pseudo (R2sum)   28 

with the original methods that use individual-level tuning dataset (R2ind) on a. 2,363 29 

brain multi-modal imaging phenotypes based on GWAS summary statistics of EUR 30 

ancestry from the UK Biobank (UKB) study (NGWAS=32,620) and evaluated their 31 

performance on hold-out independent UKB samples of EUR ancestry (Nval=5,020); 32 
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b. 29 binary disease phenotypes based on GWAS summary statistics of EUR 1 

ancestry from the FinnGen study (a total of 333,355 cases and controls on average) 2 

and evaluated their performance on UKB samples of EUR ancestry (23,048 cases 3 

on average); and c. 2,734 Olink plasma proteins based on GWAS summary 4 

statistics of EUR ancestry from the UKB-PPP project (NGWAS=40,852) and 5 

evaluated their performance on hold-out independent UKB samples of EUR 6 

ancestry (Nval=2,731). We used half of the UKB validation samples for individual-7 

level parameter tuning and the remaining half to report AUC (for binary disease 8 

phenotypes) and prediction R2 (for continuous phenotypes) for both our pseudo-9 

training approach and the individual-level tuning data-based training approach. 10 

Here rfMRI stands for resting-state functional MRI, dMRI stands for diffusion MRI, 11 

and sMRI stands for structural MRI. Detailed data information and results are 12 

summarized in Supplementary Tables 4-9.  13 

 14 

Fig. 6: Evaluation of Multi-ancestry PRS Pseudo-training by Simulation 15 

Studies and Applications on Various Phenotypes and Data Sources.  16 

a. Results show the comparison of the PRS trained by pseudo-training methods 17 

(R2sum, PROSPER-Single-pseudo and PROSPER-pseudo) with PROSPER-Single 18 

PRS and PROSPER PRS trained with individual-level tuning datasets (R2ind) on a. 19 

simulated datasets under different settings of heritability, negative selection 20 

patterns, and causal genetic variant proportions assuming a 100,000 GWAS 21 

sample size for EUR and varying GWAS sample sizes for each non-EUR 22 

population (15,000, 45,000, or 80,000) with 2,500 tuning samples for individual 23 

data-based parameter tuning and 2,500 validation samples for calculating 24 

prediction R2 for the various models; b. Four blood lipid phenotypes based on 25 

GWAS summary statistics of EUR, AFR, AMR, EAS, and SAS ancestries from the 26 

GLGC study (NGWAS=33,658-930,671) and evaluated their performance on 27 

independent UK Biobank (UKB) samples (Nval=1,752-19,030); and 382 brain 28 

diffusion MRI (dMRI) phenotypes based on GWAS summary data of EUR ancestry 29 

from the UKB study (NGWAS=28,626-32,744) and GWAS summary data of EAS 30 

ancestry from the CHIMGEN study (NGWAS=7,058) and evaluated their 31 

performance on hold-out independent UKB samples (Nval=4,955 for EUR and 32 
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Nval=413-444 for EAS, half for parameter tuning for the original PROSPER method 1 

and the remaining half for calculating R2 for all models). c. Comparison of the 2 

performance of multi-ancestry method, PROSPER-pseudo, and its single-ancestry 3 

analogue, Lassosum2-pseudo, on the 382 dMRI phenotypes. Detailed data 4 

information and results are summarized in Supplementary Tables 11-14. 5 
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