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Natural stilbenes are an important group of nonflavonoid phytochemicals of polyphenolic structure characterized by the presence
of a 1,2-diphenylethylene nucleus. Stilbenes have an extraordinary potential for the prevention and treatment of different diseases,
including cancer, due to their antioxidant, cell death activation, and anti-inflammatory properties which associate with low toxicity
under in vivo conditions. This review aims to discuss various approaches related to their mechanisms of action, pharmacological
activities in animal models and humans, and potential chemoprevention in clinical studies. The biological activity of natural
stilbenes is still incompletely understood. Furthermore, after administration to animals or humans, these molecules are rapidly
metabolized. Thus pharmacokinetics and/or activities of the natural structures and their metabolites may be very different. Novel
drug formulations have been postulated in order to improve stability and bioavailability, to minimize side effects, and to facilitate
interaction with their domains in target proteins. These pharmacological improvements should lead stilbenes to become effective
candidates as anticancer drugs.

1. Introduction

Despite the fact that the total European population comprises
just one-ninth of the world’s population, the percentage of the
global burden of cancer in Europe is of approximately 25%
[1]. Recent epidemiological research estimates that approx.
1,323,000 and 585,000 deaths were caused by cancer in the
European Union and the United States, respectively, in 2014
[2, 3]. At the beginning of 21st century cancer was the second
cause of death only preceded by cardiovascular diseases and
followed by diseases derived from complications associated
with diabetes and chronic respiratory diseases [4]. This
tendency has been changing with time and nowadays cancer
exceeds the cardiovascular diseases mortality rate in some
advanced countries, possibly due to improvements in patient
care, more effective therapies, and awareness of the popula-
tion to acquire healthier life style [3, 5, 6]. In consequence,
considerable attention has been focused on chemoprevention
as an alternative approach to the control of cancer.

Multiple evidences suggest that oxidative stress induced
by reactive oxygen species (ROS) is closely related to mul-
tistage carcinogenesis [7]. ROS are the most abundant free

radicals in cells and have been related with a number of tis-
sue/organ injuries. Oxidative stress is caused by an imbalance
between ROS production and the biological system’s ability
to neutralize or remove ROS by specific scavengers and the
antioxidant enzymatic machinery. Thus, oxidative stress can
cause protein, lipid, and DNA damage and thereby modu-
late/trigger initiation, promotion, and progression of cancer
[8]. In this sense, antioxidants are defined as compounds
that can delay, inhibit, or prevent the oxidative damage by
scavenging free radicals and diminishing oxidative stress [9].

During the last 20 years the interest in phytochemicals
of polyphenolic structure has grown considerably. Natu-
ral polyphenols are plant secondary metabolites generated
through the shikimate-derived phenylpropanoid and/or the
polyketide pathway(s), with two or more phenolic rings,
and being devoid of any nitrogen-based functional group
in their basic structure [10]. They are produced by plants
to protect themselves against stressing situations such as
excessive ultraviolet (UV) irradiation, heat exposition, insects
attacks, and fungus or bacterial infections [10]. Over 8,000
different phenolic compounds have been identified in the
plant kingdom. Natural polyphenols are abundant in fruits,
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Figure 1: Anticarcinogenic mechanisms induced by major stilbenes.

vegetables, whole grains, and foods and beverages derived
from them, such as chocolate, wine, olive oil, or tea, thus
becoming the most important among all phytochemicals
present in the human diet [11]. Natural polyphenols have
received increasing attention due to their potent antioxidant
properties and their marked effects in the prevention of
various oxidative stress associated diseases such as cancer
[12, 13]. Indeed, potential anticancer properties have been
suggested for various polyphenols, including, for example,
green tea polyphenols, grape seed proanthocyanidins, resver-
atrol, silymarin, curcumin, quercetin, luteolin, and genistein
[14, 15]. Although the chemopreventive effects of natural
polyphenols are mainly due to their antioxidant activity,
mechanistic studies suggest that, in addition, they have
multiple intracellular targets (Figure 1) [7].

Natural stilbenes are a group of polyphenols character-
ized by the presence of a 1,2-diphenylethylene nucleus [16, 17].
There are more than 400 natural stilbenes [16], however they
are present in a limited and heterogeneous group of plant
families since the key enzyme involved in stilbene biosynthe-
sis, stilbene synthase, is not ubiquitously expressed [17]. Since
the original research by Jang et al. where a stilbene, resveratrol
(Resv), was shown as a potent chemopreventive agent [18],
these compounds have awakened the interest of the scientific
community involved in anticancer drug development.

This review will focus on stilbenes and their potential
as antioxidants and chemopreventive agents, thus including
their molecular targets and signaling pathways; evidences
from clinical trials for its toxicity, bioavailability, and benefit
in humans; and biological improvements based on the devel-
opment of analogs.

2. Cancer Chemopreventive Role of
Natural Stilbenes

Cancer development is a progressive multistep process
started with initial driver mutations (initiation) and followed

by promotion and progression that ultimately lead to malig-
nancy. Administration and consumption of agents to prevent,
inhibit, or delay carcinogenesis are gathered in the global con-
cept of chemoprevention [7, 19]. Stilbenes have shown ability
to reduce the incidence of tumorigenesis by interfering with
molecular events at all steps, that is, initiation, promotion,
and progression stages of carcinogenesis. The limited distri-
bution of the stilbenes in the plant kingdom led anticancer
studies to focus on a reduced number of compounds [20].
With similarities and particularities, the number of targets
and mechanisms where they are involved paved the way to
their protective or therapeutic effects against cancer.

2.1. Resveratrol. Resv (3,4,5-trihydroxy stilbene) was orig-
inally identified as a phytoalexin by Langcake and Pryce
[21]. This natural stilbene has been found in at least 185
plant species [17] and is present in foods and beverages
derived from them such as, for example, mulberries, peanuts,
grapes, and red wine [18]. Its potential anticancer activity
was originally reported by Jang et al. [18] and more than
2,000 references may be found in PubMed crossing Resv and
cancer, thus showing the great interests in their chemopre-
ventive and chemotherapeutic properties. In fact, Resv has
undergone in vitro and in vivo carcinogenesis assays formany
types of cancers, that is, breast [22], lung [23], colon [24], skin
(nonmelanoma skin cancer and melanoma) [25], prostate
[26], ovarian [27], liver [28], oral cavities [29], thyroid [30],
and leukemia [31].

The chemopreventive properties of Resv have been
associated with its antioxidant activity since it was first
published that its anticancer activity, affecting all steps in
the carcinogenesis process, was linked to the inhibition of
cyclooxygenase 2 (COX-2) [18].

Up to now three different COX isoforms have been
described: COX-1, expressed in normal tissue, participating
in tissue homeostasis; COX-2, overexpressed in case of
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inflammation or neoplasia development; and COX-3, a vari-
ant of COX-1 [32]. The important role of COX-2 in the pro-
gression of tumorigenesis is supported by studies that show
an elevated level of the enzyme in premalignant and malig-
nant tissue, which is accompanied by a decrease in the rate of
survival of cancer patients [33, 34] and is a bad prognostic fac-
tor [35, 36]. Clinical trials have shown that COX-2 inhibitors
may be a good strategy to prevent the development of colonic
adenomas and potentially carcinomas [32]. However, the
clinical efficacy of COX-2 inhibitors in the prevention of
cancer has been challenged due to higher cardiovascular risks
[37]. In this scenario, the use of natural compounds without
toxic effects and demonstrated efficacy as potential COX-2
inhibitors, such as Resv, is of particular interest.

It has also been described that prostaglandins, produced
by COX activity, are able to enhance cancer development
and progression acting as tumor promoters or carcinogens
[36, 38]. In fact, an increase in prostaglandin synthesis
has important effects on carcinogen metabolism, tumor cell
proliferation, andmetastatic potential [39, 40] andmay affect
tumor growth in both humans and experimental animals.
Thus inhibition of prostaglandin synthesis has been investi-
gated to prevent tumor development [38, 40, 41].

Different authors have confirmed that Resv inhibits
COX-2 expression and decreases prostaglandin E2 (PGE(2))
production. In this regard, Cianciulli et al. described that
Resv downregulates COX-2 and PGE(2) in a concentration
dependent fashion in the human intestinal cell line Caco-2
treatedwith lipopolysaccharide and that thismechanismmay
be related to NF-𝜅B inhibition [42]. NF-𝜅B is an inducible
transcription factor strongly linked to inflammatory and
immune responses and associated with oncogenesis [43].
Different stimuli may activate the release and translocation
of NF-𝜅B to the nucleus (e.g., those activating some
membrane receptors (B cell receptor or tumor necrosis factor
receptors) or several extracellular stimuli (inflammatory
cytokines, viral and bacterial infections, oxidative and
DNA-damaging agents, UV light, and osmotic shock)),
where the transcription factor binds to promoter regions of
genes encoding proinflammatory inducible enzymes such
as COX-2, iNOS, and other inflammatory-related proteins
[44, 45]. These anti-inflammatory effects of Resv have been
also observed in a variety of cell lines, such as HeLa cells,
Jurkat, RAW 264.7 macrophage, or U-937 cells [46, 47], and
in in vivo experiments in rodents [48].

In addition to suppressing LPS-induced NF-𝜅B-
dependent COX-2 activation, Resv also activates AMPK
[42, 47, 49] which effectively prevents tumorigenesis [29].
Thus, these mechanisms, at least in part, support the
chemopreventive role of this stilbene.

On the other hand, studies on the redox status and
functionality of the antioxidantmachinery show the ability of
Resv as a potent chemoprotector in different in vivo models
of cancer development. Administration to rats of the potent
hepatotoxic carcinogen azoxymethane (AOM) induced a
potent oxidative unbalance triggered by glutathione (GSH)
depletion, lipid peroxidation, and increased NO levels in
the liver. All these effects were partially reversed by Resv
administration [50]. Moreover, Resv acts as an antioxidant, at

nutritionally relevant concentrations, by inducing the expres-
sion of superoxide dismutase (SOD) and catalase through
a mechanism involving phosphatase and tensin homologue
(PTEN)/protein kinase B (PKB) signaling pathway [51].
PTEN is a tumor suppressor gene and its expression is
commonly decreased or lost in a large number of can-
cers of high frequency. The protein encoded by this gene
is a phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase
and its main role is to dephosphorylate phosphoinositide
substrates. So, it negatively regulates intracellular levels of
phosphatidylinositol-3,4,5-trisphosphate in cells and acts as
a tumor suppressor by negatively regulating the PKB sig-
naling pathway. Inhibition of phosphatidylinositol 3-kinase
(PI3K)/PKB pathway by PTEN has been associated with
upregulation of SOD, GSH peroxidase, and catalase activ-
ities [52]. We confirmed these antioxidant properties of
Resv in a mouse model. The pretreatment of mouse skin
with Resv decreased several ultraviolet B radiation- (UVB-)
induced oxidative events in a dose-dependent manner. Resv
administration restored GSH levels, SOD, GSH peroxidase,
and catalase activities to control values (mice without UVB
irradiation) [53].

Despite scientific advances regarding the biological
effects of Resv, our understanding of its anticancer mech-
anisms is far from a complete understanding. There are
numerous evidences showing the capability of this polyphe-
nol to induce programed cell death in different types of
cancer. Proapoptotic stimulation by Resv has been associated
with cell cycle alterations [54–56], caspase induction [54,
55, 57, 58], downregulation of Bcl-2, Bcl-xL, Survivin, and
XIAP levels [59], and upregulation of Bax levels [58, 59],
Bak, PUMA, Noxa, P21, Bim, TRAIL-R1/DR4, and TRAIL-
R2/DR5 [59, 60]. Interestingly, a number of these effects may
be correlated with P53 activation [55, 57–59]. For instance,
Resv and piceatannol increased the cytoplasmic concentra-
tion of calcium in MDA-MB-231 human breast cancer cells,
which induced the activation of P53 and the transcription
of different proapoptotic genes [60]. Moreover, treatment of
mutant P53 prostate cancer DU145 cells with Resv induced
phosphorylation of the tumor suppressor which restored
wild-type P53 DNA binding [61, 62] and P53 acetylation [63],
activating proapoptotic events.

2.2. Pterostilbene. Pterostilbene (3,5-dimethoxy-4-hydrox-
ystilbene; Pter) is a natural analog of Resv, but with higher
bioavailability [64, 65]. Due to its close structural similarity
Pter possesses significant antioxidant activity in vitro in
comparison with Resv [66, 67] and a clear clinical potential
in different diseases [68].Moreover, Pter has been reported to
have cancer chemopreventive properties in different in vitro
and in vivo experiments and other Resv-like health benefits.
In these experiments, Pter was shown to inhibit growth,
adhesion, andmetastatic growth and to be an active apoptotic
agent [68–71]. These effects have been shown in different
types of cancers such as breast cancer [54, 68, 72–74], lung
cancer [54, 75, 76], stomach cancer [68], prostate cancer [77],
pancreatic cancer [78], melanoma [54], or colon carcinoma
[54].
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As it occurs with Resv, the antioxidant properties of Pter
may also contribute to cancer chemoprevention. Rimando
et al. [66] demonstrated that the antioxidant activity of
Pter inhibits carcinogen-induced preneoplastic lesions in a
mouse mammary organ culture model. Later, Chiou et al.
[79] demonstrated that Pter is more potent than Resv in
preventing AOM-induced colon tumorigenesis via activation
of the Nrf2-mediated antioxidant signaling pathway. In the
same experimental model, Pter decreased the expression
of inflammatory genes, such as iNOS and COX-2 [80, 81].
Similarly, in HaCaT immortalized human keratinocytes Pter
increased Nrf2 translocation into the nucleus and expression
of Nrf2-dependent (oxidative stress related) molecules, thus
further supporting the role ofNrf2 as a central regulator in the
chemoprevention effect elicited by Pter [53]. Furthermore,
in cultured HT-29 colon cancer cells the cytokine induction
of the p38-activating transcription factor 2 pathway was
markedly inhibited by the polyphenol compared to other
anti-inflammatory pathways, such as NF-𝜅B, Janus-activated
kinase-signal transducer and activator of transcription (JAK-
STAT), extracellular signal-regulated kinase (ERK), c-Jun
NH2-terminal kinase, and PI3K [80]. That inhibition was
associated with iNOS and COX-2 reduction, suggesting that
p38 mitogen-activated protein kinase cascade is a key signal
transduction pathway for the anti-inflammatory action of
Pter [80].

Pter has also been found as potent as Resv in
inhibiting NF-𝜅B, AP-1, COX-2, and iNOS in a 12-O-
tetradecanoylphorbol-13-acetate (TPA) induced mouse
skin carcinogenesis model [82]. Moreover, Pter induces the
expression of PTEN in prostate cancer decreasing the levels of
miR-17, miR-20a, and miR-106b. The effect in restoring both
PTENmRNA and protein levels was lower for Resv [83], thus
suggesting that Pter might show higher in vivo activity due
to the substitution of hydroxyl by methoxy groups. In this
context, we have recently published that, in an UVB-induced
mouse skin carcinogenesis model, Pter is clearly superior
to Resv in preventing acute and chronic skin damage [53].
In this study we demonstrated that the anticarcinogenic
effect associated with a Pter-induced maintenance of skin
antioxidant defenses (i.e., GSH levels, catalase, superoxide,
and GSH peroxidase activities) and a reduction of UVB-
induced oxidative damage on proteins, DNA, and lipids [53].

In addition, numerous studies have corroborated that
Pter is an efficient anticancer agent acting on multiple
signal transduction pathways. In the AOM-induced colon
carcinogenesis model in rats, Pter, administered in the
diet, decreased formation of aberrant crypt foci [81, 84];
transcriptional activation of iNOS and COX-2; GSK-3b
phosphorylation and Wnt/b-catenin signaling; expression of
VEGF, cyclin D1, and MMPs; activation of Ras, PI3K/PKB,
and EGFR signaling pathways [84]; and mucosal levels of
the proinflammatory cytokines, TNF-𝛼, IL-1b, and IL-4 [85]
and reduced the nuclear presence of phospho-p65 [85].
Moreover,McCormack et al. [86] showed the inhibitory effect
of Pter on leptin-stimulated breast cancer in vitro through
reduction of cell proliferation and JAK/STAT3 signaling.
After that, microarray analysis of Pter-treated pancreatic
cancer cells revealed upregulation of proapoptosis genes and

altered levels of phosphorylated STAT3, MnSOD antioxidant
activity, cytochrome C, and Smac/DIABLO [78]. Moreover
Liu et al. have recently reported the ability of Pter to inhibit
JAK2/STAT3 signaling downregulating the expression of
STAT3 target genes, including the antiapoptotic proteins Bcl-
xL and Mcl-1, and leading to upregulation of mitochon-
drial apoptosis pathway-related proteins (Bax, Bak, cytosolic
cytochrome c, and cleaved caspase 3) and cyclin-dependent
kinase inhibitors such as p21 and p27 in osteosarcoma [87].

The chemopreventive role of Pter is not limited to its
antioxidant and anti-inflammatory properties or the cell
death induction by apoptosis. It has been suggested that this
stilbene may induce cell death, also, by autophagy [73, 76, 77,
88, 89]. However, the initial observations were based on accu-
mulation of LC3II and autophagosomes, which is not a clear
evidence of autophagic cell death [90, 91]. In fact, autophago-
somes and LC3II accumulation are not significantly associ-
ated with active autophagy [54, 92]. Recently we have shown
that Pter-induced tumor autophagy is an hsp70-dependent
lysosomal membrane permeabilization mechanism [54].

The traditional cancer progression model has been
rewritten in the last years highlighting the importance of
tumor heterogeneity in chemo/radio-resistance development
and relapse after treatment. In this sense, cancer stem cells
(CSC) have emerged as a highly tumorigenic cell pool
displaying properties of normal stem cells such as their ability
to self-renew, to form differentiated progeny, and to generate
a heterogeneous lineage of all types of cancer cells within a
tumor, thus turning into a very attractive anticancer target
[93–95]. In this context, it has been described that Pter and
Resv can promote expression and activity of Argonaute-2, a
central RNA interference (RNAi) component, which inhibits
breast cancer stem-like cell characteristics by increasing
the expression of a number of tumor-suppressive miRNAs
(including miR-16, miR-141, miR-143, and miR-200c) [96].
Pter suppressed not only the generation of CSC but the
metastatic potential in different experimental models [97,
98]. Under the influence of tumor-associated macrophages,
which promote tumor growth and progression, Pter was
shown to modulate epithelial-to-mesenchymal transition
signaling pathways [97]. In addition, this stilbene was able to
prevent the enrichment of CD133(+) hepatoma CSCs under
irradiation [98].

2.3. Piceatannol and Pinosylvin. Piceatannol (trans-3,5,3,4-
tetrahydroxystilbene) is a hydroxylated analog of Resv found
in a variety of plant sources including, for example, grapes,
peanut, passion fruit, and white tea. Although less studied,
piceatannol has health-promoting effects similar to Resv [99–
101]. Li et al. [102] showed that the anticancer properties of
piceatannol may be attributed to its prooxidant properties,
which in the presence of copper (Cu)(II) induces formation
of the hydroxyl radical through the Haber Weiss and Fenton
reactions and DNA breakage. In fact, there are authors
that propose that the anticancer action of plant polyphenols
involves, in part, mobilization of endogenous copper and its
consequent prooxidant action [103].

Paradoxically, in accordance with its origin and structure,
piceatannol also shows similar activities as those indicated
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for Resv such as the antioxidant activity, although mediated
by different pathways. Piceatannol inhibits NF-𝜅B activation
by H
2
O
2
, phorbol 12-myristate 13-acetate, LPS, okadaic acid,

and ceramide [104]. Moreover, piceatannol inhibits TNF-
induced I𝜅-Ba phosphorylation, p65 phosphorylation, and
p65 nuclear translocation. These effects, also observed under
Resv treatment, suggest a crucial role of the hydroxyl group
in positions 3 and 4 [104]. It has also been described
that piceatannol reduces the expression of iNOS, decreasing
the NO production, and COX-2 in LPS-stimulated RAW
264.7 cells and BV2 microglia cells [105, 106]. Piceatannol
is also able to increase heme oxygenase-1 expression and
protein levels in human breast epithelial MCF10A cells. The
underlying mechanism involves stimulation of Nrf-2 release
from Keap1, nucleus translocation, and direct binding of the
transcriptional factor to the antioxidant response element,
leading to an enhancement of heme oxygenase-1 expression
[107].

Regarding pinosylvin (3,5-dihydroxy-trans-stilbene), a
pine antifungal and antibacterial stilbene, its chemopre-
ventive activity may be also attributed to its antioxidant
and anti-inflammatory activity. In fact, pinosylvin, like Resv
or piceatannol, inhibited the production of PGE

2
in LPS-

inducedRAW264.7 cells, thereby inhibiting the expression of
COX-2 [108]. Later, in the same cellular model it was shown
that pinosylvin is also able to inhibit iNOS expression [109].

3. In Vivo Toxicity of Resveratrol
and Pterostilbene

3.1. Resveratrol. An initial starting point in the safety eval-
uation of a naturally occurring food substance is its natural
intake. The daily intake of dietary Resv is mainly from the
consumption of wine and grapes and foods derived from
them. This intake of up to 2mg/day is relatively low in
comparison to the level of safe oral intake that is derived
from oral preclinical studies with ResVida, a high purity
trans-Resv formulation [110]. This compound, commercial-
ized by DSM Nutritional Products Ltd., obtained GRAS
(Generally Regarded As Safe) designation by the U.S. Food
and Drug Administration (FDA) in 2008, with his Allowable
Daily Intake (ADI) being 450mg/day [110]. The ADI was
based on no-observed-adverse-effect-levels (NOAELs) of
750mg/kg bw/day in rats on a 13-week developmental toxicity
study by the dietary route and a standard safety margin of
100 [111]. Although it has been also described, in studies by
gavage, that Resv caused toxicity in the kidney and bladder
after 4-week treatment in rats, this was at very high dosages
(2.000–3.000mg/kg bw/day) [112].

Regarding Resv’s toxicity versus time, six-month studies
in rat and rabbit models showed no significant increase in
toxicity in comparison to the 4-week studies [110]. Kinetic
data from the DSM 13-week toxicity study support the
expectation of no increase in toxicity with longer term intake
[111]. About Resv genotoxic activity, short-term studies based
on the Ames test showed that this compound does not have
genotoxic activity in vivo, but experimental details are too
limited to evaluate the data in full [111].

Only a small number of clinical trials using Resv as a
single-agent, and formulated as a medicinal product, have
formally addressed and reported on safety and tolerability
[113–117]. No serious adverse event was detected in all these
studies. Adverse events were mild and only lasted for a
few days. The most common toxicity was gastrointestinal,
particularly diarrhea, nausea, and abdominal pain, but also
frontal headache and rash occurred in some patients. A
sequential dose study of Resv at repeated daily doses of
up to 5 g (0.5, 1.0, 2.5, and 5.0 g) for 29 days in healthy
volunteers was performed. The results of these clinical,
biochemical, and hematological analyses showed that Resv
administration is safe, although at the 2.5 g and 5 g dose
levels it caused reversible gastrointestinal symptoms such as
diarrhea, nausea, or flatulence in some individuals.

It is worthwhile to mention that a phase II clinical
trial (https://www.clinicaltrials.gov/), sponsored by Glaxo-
SmithKline in patients with multiple myeloma to assess the
safety and activity of SRT501 (a micronized formulation of
Resv), was terminated due to safety concerns after kidney
damage (cast nephropathy) developed in some patients. In
this trial, a high dose of 5 g SRT501/day was administered
orally for 20 consecutive days. This dose of Resv was signif-
icantly higher than that used in the safety study mentioned
above for ResVida [110]. Nevertheless cast nephropathy is a
condition closely associated with multiple myeloma, so the
finding in this study is of doubtful significance outside of this
disease condition.

3.2. Pterostilbene. The toxicity of Pter, after intravenous
administration to xenograftedmice, has been assessed in sev-
eral studies involving the treatment of colorectal cancer [118],
prostate cancer [119], and melanoma [69]. The doses and
time of administration were 20mg/kg and 30mg/kg per day
during 23 days [118]; 50mg/kg per day during 4 weeks [119];
and 20mg/kg during 10 days [69]. In all these studies, Pter
was found therapeutically effective and pharmacologically
safe because it showed no organ-specific or systemic toxicity.

Regarding oral administration, Ruiz et al. [120] published
in 2009 a study in which they evaluated the toxicity of Pter
at high doses in healthy mice. For this purpose, mice were
fed during 28 days at doses of 30, 300, and 3000mg/kg
body weight/day of Pter. These daily doses did not cause
mortality during the experimental period at any dose, but
the red blood cell number and hematocrit increased after
Pter administration compared to control groups. However,
histopathological examination and evaluation of biochemical
parameters revealed no alterations regarding clinical signs or
organ weight at any dose [120].

Chromadex Inc. (Irvine, CA) achieved GRAS status for
its ingredient pTeroPure-branded Pter (http://www.fda.gov/)
in 2011. The ADI for pTeroPure is up to 30mg/kg per day
for food use (https://chromadex.com/NewsEventDetail.aspx?
Aid=510). Data from the first clinical trial on Pter (Effect
of Pter on Cholesterol, Blood Pressure and Oxidative Stress,
https://www.clinicaltrials.gov/, conducted at the University
of Mississippi Medical Center) were released in 2012. It
was concluded that oral administration of 125mg of Pter
twice per day was well-tolerated because there were no
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statistically significant adverse drug reactions on hepatic,
renal, or glucosemarkers based on biochemical analysis [121].
Despite these observations, more rigorous studies are needed
before dietary/therapeutic dosages can be standardized for
different applications.

4. Pharmacokinetics of Stilbenes

Stilbenes, as the majority of phenolic compounds, have low
bioavailability which limits their potential benefits for health
[122].The bioavailability depends on the route of administra-
tion but also relies on their absorption andmetabolism.Those
factors are mainly determined by the chemical structure of
the compound (degree of glycosylation/acylation, their basic
structure, conjugation with other phenolics, molecular size,
degree of polymerization, solubility, etc.) [11, 123]. That is the
reasonwhy bioavailabilitymay greatly differ among themany
different (even closely related) phenolic compounds.

4.1. Resveratrol. Many concerns regarding Resv effectiveness
in vivo arise from its low bioavailability and short half-life.
According to Asensi et al. [124], after intravenous administra-
tion to rabbits of 20mg of Resv/Kg its highest concentration
in plasma was 42.8 ± 4.4 𝜇M 5min after administration. But,
because of its rapidmetabolism and short half-life (14.4min),
this concentration decreased very rapidly at 60min to 0.9 ±
0.2 𝜇M. After oral administration of the same dose the
highest concentration in plasma within the first 5min was
lower (2-3 𝜇M), thus indicating the higher limitations on
bioavailability linked to the oral intake. Similar results were
reported by others in humans [125, 126].

However Resv is highly absorbed after oral adminis-
tration (about 75% of the dose administered to humans)
mainly by transepithelial diffusion [127]. Therefore, its low
bioavailability is caused by its rapid and extensive first-pass
metabolism in the intestine and liver. Oncemetabolized, Resv
is excreted through the urine and feces although some con-
jugated metabolites can be also reabsorbed by enterohepatic
recirculation (Figure 2) [126, 128].

Themainmetabolites of Resv are produced through three
metabolic pathways: glucuronic and sulfate conjugation of
the 3 and 4 phenolic groups (phase II metabolites) and
hydrogenation of the aliphatic double bound. The latter has
been suggested to be produced by intestinal microflora [126,
127, 129] (Figure 2). Up to nearly 20 Resv-derivedmetabolites
have been described in plasma, urine, and some tissues [115,
126, 130–134]. Among these metabolites there are mono- and
diglucuronides; monosulfates, disulfates and trisulfates; and
sulfoglucuronides, as well as equivalent conjugations of the
hydrogenated Resv.

In plasma, the major circulating metabolites of Resv are
phase II conjugates, being the most abundant Resv-3-sulfate
in humans [115, 116, 131]. In contrast, in rats and pigs is Resv-
3-glucuronide the main metabolite. In both cases the plasma
concentrations of Resv metabolites are much higher than the
concentration of the parent molecule [128, 135].

The efficacy of the Resv metabolites is still under debate.
Emerging data suggests that Resv conjugates have anticancer
activity in vitro. The biological effects of those metabolites

appear to be reduced when compared to Resv in some
studies [136, 137] and similar in others [138–140]. However,
although Resv glucuronides have some biological effects,
no cytotoxic activity against cancer cell lines has been
demonstrated. Only one study has reported cytotoxic activity
of glucuronide metabolites but only when administered as a
mixture of them [141]. Nevertheless, a common hypothesis is
that as it has been reported for other compounds [142, 143],
thesemetabolites could undergo deconjugation, releasing the
parent compound (Figure 2). Consequently, the glucuronide
and sulfate conjugates of Resvmay provide a pool fromwhich
active Resv can be released [129]. This hypothesis has been
proved recently for Resv sulfate conjugates in mouse [144]
although it is uncertain (very unlikely in fact) that Resv
deconjugation may release sufficient effective levels, in terms
of real biological activity, under in vivo conditions.

Thebiological activity of theResvmetabolite dihydroResv
is also incompletely understood. In some in vitro studies it
exerts an antiproliferative effect in tumor and normal cell
lines but less potent than Resv [67, 139]. On the other hand, a
recent study in vitro shows potent antiproliferative effects on
hormone-sensitive breast cancer cells [145]. However, since
the dihydroResv metabolite is mainly formed in the colon,
it might be expected that it contributes to chemopreventive
effects at that site [127]. In fact, sulfate and glucuronide
conjugates of dihydroResv have been found in cecum, colon,
and rectum of the pig [130] and in the colon of the rat [129].

Recently, the detection of Resv and its derivedmetabolites
has been reported in colorectal tissue of patients after oral
treatment with Resv [117]. The major metabolites found
in tumor and normal tissue were phase II metabolites
(glucuronides, sulfates, and sulfoglucuronides). The highest
concentration was detected for Resv-sulfoglucuronide. How-
ever, the possible concurrency of dihydroResv and derived
conjugates was not explored [117].

4.2. Pterostilbene. Pter, as a natural occurring dimethoxy
analog of Resv, has amore favorable pharmacokinetics profile
[64, 65, 70]. On one hand, as Pter has less hydroxyl groups
(only one instead of three in Resv), it is less susceptible
to conjugation metabolism and, therefore, is predicted to
have a longer half-life [146, 147]. On the other hand, the
dimethoxy structure enhances its lipophilicity thus increas-
ing membrane permeability and improving its bioavailability
[64, 146, 148].

Similarly to Resv, the major Pter metabolites found in
mouse plasma and urine are phase II conjugates: Pter glu-
curonide, Pter sulfate, monodemethylated Pter glucuronide,
monodemethylated Pter sulfate, monohydroxylated Pter,
monohydroxylated Pter glucuronide, monohydroxylated
Pter sulfate, and monohydroxylated Pter glucuronide sulfate
[64, 70, 149]. Nevertheless, there is no evidence of the
presence of a Pter hydrogenated form or the equivalent
phase II conjugations of this. Those metabolites have been
reported to be recycled by enterohepatic recirculation as it
has previously been reported for Resv (Figure 2) [70]. No
studies are available at the moment on the possible biological
activity of Pter metabolites.
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Figure 2: General metabolic pathways of the major stilbenes.

After intravenous administration in mouse of Pter and
Resv, either of them reaches their highest concentrations
within the first 5 minutes. However, while for Resv this
concentration decreased very rapidly to 1 𝜇Mwithin the first
60 minutes, Pter remains longer in plasma reaching the 1 𝜇M
concentration in 480 minutes [69, 124]. From these data, the
calculated half-life for Pter is 6-7 times longer than for Resv
[69, 124]. Similar results have been reported in recent studies
in rats [65, 70].

Regarding oral bioavailability, it has been reported that
in rats it is greater for Pter (80%) than for Resv (20%) [64].
Also in this study, as it has been reported by others [150],
the major metabolite in plasma is Pter sulfate, with its levels
being higher than those of the parent compound. In addition,
plasma levels of Pter and Pter sulfate after oral administration
were greater than Resv and Resv sulfate, respectively, whereas
levels of Resv glucuronide were higher than Pter glucuronide.
Another issue to point out is that after Pter administration
Resv was not detectable, indicating that Pter is not a prodrug
of Resv [64].

Interestingly, a recent study reports that levels of Pter and
its main metabolite, Pter sulfate, are higher in tissues than in
blood, meaning that they accumulate in tissues where Pter
conjugates may act as a source of the natural compound.This
observation has logical implications for the in vivo bioactivity
of Pter because it may explain the paradox of Pter biological
activity despite its low plasma concentrations [150]. Levels of
Pter sulfate were higher than levels of Pter in every organ
except the brain, where levels of the parent compound were
higher. This observation has a particular interest given the

reports of the biological activity of Pter on the central nervous
system [150].

4.3. Piceatannol and Pinosylvin. These stilbenes, after intra-
venous administration in rats, are distributed into tissues
and highly extracted by the liver where they undergo exten-
sive glucuronidation. All are predominantly eliminated via
nonurinary routes and as they have short half-lives, their
estimate oral bioavailability is poor as it is the case for Resv
and Pter [151–155].

The major metabolic pathways for piceatannol are glu-
curonidation and sulfation, as it occurs for Resv and Pter, but
alsomethylation [153]. In contrast to piceatannol, methylated
metabolites have not been found in rat plasma after treatment
with Resv [153, 156]. Piceatannol conjugates could be also
recycled by enterohepatic recirculation as the other stilbenes
(Figure 2) [157].

A remarkable finding is that piceatannol can be metabo-
lized into another stilbene, the isorhapontigenin, suggesting
that piceatannol could exhibit additional biological functions
[153]. Compared to Resv piceatannol may have a higher
metabolic stability and similar beneficial effects [100, 101, 153].
In fact, it has been suggested that anticancer properties of
Resv may be due to its metabolism to piceatannol by the
cytochrome P450 enzyme CYP1B1, suggesting that Resv may
act as a source or prodrug of piceatannol [158].

Glucuronidation has been described as the major con-
jugation pathway of pinosylvin. However, interestingly, two
minor oxidized metabolites of this polyphenol have been
detected: Z- and E-Resv [151, 154]. Structurally, pinosylvin,
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compared to Resv, lacks the 4-hydroxyl groupwhile it retains
the 3-hydroxyl moiety which has been identified as a major
target of phase II conjugation reactions. Furthermore, the
absence of the 4-hydroxyl group in pinosylvin may have
enhanced its binding to first-pass metabolic enzymes. Thus,
due to its extensivemetabolism, compared toResv, pinosylvin
has lower oral bioavailability [155].

5. Analyses of Structure-Activity Relationships
to Improve the Effectiveness of Stilbenes

Generally, themain problem regarding the use of polyphenols
is the partial knowledge of their mechanisms of action
[159] and their low bioavailability [124], which as mentioned
before is determined by their chemical structure [160–162].
These features regulate both absorption and excretion of
phenolic compounds. As an example, 0.3% of the intake
of anthocyanins is excreted by urine, compared to 43% of
isoflavones, thus reflecting the potential importance of the
chemical structure [163].

There are a high number of works in which the structure-
activity relationships (SARs) of polyphenols are studied.
These studies intend to figure out, using structural analogs,
which modifications may confer increased resistance to
oxidation of the polyphenols [164], improving the interaction
with domains of the target proteins [159] and finally increas-
ing the pharmacokinetics properties [165].Theoretically, part
of these changes may help to direct certain polyphenols to
target tissues [166, 167].

The main changes in structural analogs affect the num-
ber and position of hydroxylated and methylated groups,
which also influence their metabolism. In fact, polyphenols
metabolized to their secondary metabolites may even have
more activity. However, there are critical residues for the
functional groups that are directly linked to the activity; for
example, hydroxylation at C4 in Resv analogues is critical to
its function in in vitro studies [165]. Structure-activity studies
have revealed that increasing the number of OH groups at
their ortho position on the phenol ring of stilbenes could
increase the free radical scavenging capacity, the cytotoxic
activity, and the anti-inflammatory effects of these com-
pounds [100, 168]. In fact, polyhydroxylated analogs of Resv
as hexahydroxystilbene turned out to be more potent and
specific inhibitors of COX-2 activity than Resv both in vivo
and in vitro [168, 169]. Moreover, this analog, showing higher
antiradical activity, also induces apoptosis at concentrations
than the parent compound [168].

Nevertheless, in animal studies, the 3,4,5,4-tetramethox-
ystilbene (DMU-212), wherein the C4-OH is blocked by
methylation, possesses stronger antiproliferative properties
in human colon cancer cells than Resv, possibly, because
these methylated groups, by slowing excretion, could provide
better plasma levels [159]. Another example is pinosylvin.
Pinosylvin differs from Resv in lacking one hydroxyl at C4,
which makes it more lipophilic but losing its antioxidant
activity. Nevertheless, once inside the cell, it recovers the
antioxidant activity [170]. The methoxylated analogs have
higher lipophilicity, which may favor their entry into cells
and confer more resistance to degradation, thus improving

pharmacokinetics [54, 171]. However, the number ofmethoxy
and hydroxyl groups must be under equilibrium. The
hydroxyl groups confer more solubility, which allows a better
interaction with proteins [166], whereas the methoxylated
group confer resistance to degradation although an excessive
number of methoxylated groups may impair the interaction
with the target protein [165]. Pter, with two methyl groups, a
trans-3,4-dihydroxy-2,3,5-trimethoxystilbene with higher
anticancer effects than Resv both in vitro and in vivo [54, 172].

Polyphenols exhibit excellent healthy and therapeutic
properties to treat various diseases, including a broad spec-
trum of actions involved in a large number of targets and very
low toxicity properties. Manipulation of the polyphenolic
structure can improve its bioavailability and activity. DMU-
212 is an example of a more lipophilic structural analog of
Resv capable of crossing the blood-brain barrier [173]. These
successes show that modifying the polyphenolic structures
we may be able to exploit their properties improving its
activity and action.

6. Clinical Trials

Natural stilbenes have been used in traditional medicine.
Resv, piceatannol, and Pter are examples of stilbenes synthe-
sized by several types of plants in response to a variety of
stress conditions [79]. Starting on their implication on the
known “French paradox” (which associates red wine con-
sumption and lower coronary heart disease), several clinical
and pharmacometric studies on Resv have been performed
in the last years. Even though most pharmacometric studies
of Resv in humans show that its plasma concentrations are
below the effectiveness range indicated by in vitro assays,
it may show interesting effects in vivo. Boocock et al. [115]
found out that administration of a single dose of Resv (5.0 g)
rendered a peak plasma concentration of 2.4 nmol/mL,which
is only slightly below the required concentration in vitro to
show chemopreventive properties. Most clinical studies on
Resv and cancer have been performed in colorectal cancer
patients, possibly because oral administration may facilitate
reaching higher concentrations of this stilbene in tumors
located along the gastrointestinal tract. For example, a clinical
assay by Patel et al. showed that 0.5 g and 1.0 g doses of Resv
were able to significantly reduce colorectal cell proliferation
[117]. Howells et al. [174] assayed micronized Resv SRT501
in colorectal cancer patients with hepatic metastases, who
had not received therapeutic intervention for their cancer
within 6 weeks of study commencement and had a life
expectancy of less than 3 months. They concluded that
SRT501 administration during 21 days was safe, although
some individuals suffered some adverse effects like nausea
or diarrhea. The study accomplished by Noguer et al. [175]
showed that alcohol-free red wine consumption can increase
our antioxidant enzyme activities (SOD, catalase, and GSH
reductase). This assay demonstrated that alcohol-free red
wine may improve the health of people suffering oxidative
stress related diseases.

At present, despite the promising anticancer properties
elicited by Pter, there is only a clinical trial performed at
the University of Mississippi. In this clinical trial researchers
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assessed the effects of Pter in cholesterol, blood pressure, and
oxidative stress. They showed that Pter is able to improve
these aforementioned parameters under safe conditions
(ClinicalTrials.gov Identifier NCT01267227). Clinical trials
on specific anticancer effects are expected to be performed
in the next future.

7. Conclusions

The identification of protectivemolecules without side effects
should be a main objective in the fight against cancer.
Experimental in vitro and in vivo studies, and a few clinical
trials, show evidences about the effectivity of stilbenes as anti-
cancer agents, both in the form of nutritional supplements
or functional foods and as potential anticancer drugs. This
group of polyphenols show a very low toxicity and, although
having multiple molecular targets, act on different protective
and common pathways usually altered in a great number
of tumors. This is important since it suggests that natural
stilbenes may be more prone for their use as anticarcinogens.
The capability to prevent carcinogenesis includes inhibition
of inflammation, oxidative stress, and cancer cell proliferation
and using tightly regulated cell deathmechanisms. Due to the
complexity and number of cellular processes involved more
studies must be done to fully understand how stilbenes may
be used to avoid the development of cancer. Moreover, due to
their low concentration in food and their rapid metabolism
and excretion in the body mammals, improvements in deliv-
ery systems, stability, and solubility are necessary in order to
make their use in clinical settings as chemopreventive drugs
possible.

Disclosure

The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the paper.

Conflict of Interests

The authors have no conflict of interests to declare.

Acknowledgment

This work was supported by grant from the MICINN
(SAF2012-31565).

References

[1] J. Ferlay, E. Steliarova-Foucher, J. Lortet-Tieulent et al., “Cancer
incidence and mortality patterns in Europe: estimates for 40
countries in 2012,” European Journal of Cancer, vol. 49, no. 6,
pp. 1374–1403, 2013.

[2] M. Malvezzi, P. Bertuccio, F. Levi, C. La Vecchia, and E. Negri,
“European cancer mortality predictions for the year 2014,”
Annals of Oncology, vol. 25, no. 8, pp. 1650–1656, 2014.

[3] R. Siegel, J. Ma, Z. Zou, and A. Jemal, “Cancer statistics, 2014,”
CA Cancer Journal for Clinicians, vol. 64, no. 1, pp. 9–29, 2014.

[4] S. B. Jones, “Cancer in the developing world: a call to action,”
British Medical Journal, vol. 319, no. 7208, pp. 505–508, 1999.

[5] M. Pereira, B. Peleteiro, S. Capewell, K. Bennett, A. Azevedo,
and N. Lunet, “Changing patterns of cardiovascular diseases
and cancer mortality in Portugal, 1980–2010.,” BMC Public
Health, vol. 12, article 1126, 2012.

[6] R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics for
Hispanics/Latinos, 2012,” CA Cancer Journal for Clinicians, vol.
62, no. 5, pp. 283–298, 2012.

[7] N. J. Kang, S. H. Shin, H. J. Lee, and K. W. Lee, “Polyphenols as
small molecular inhibitors of signaling cascades in carcinogen-
esis,” Pharmacology &Therapeutics, vol. 130, no. 3, pp. 310–324,
2011.

[8] S. Mena, A. Ortega, and J. M. Estrela, “Oxidative stress in
environmental-induced carcinogenesis,” Mutation Research—
Genetic Toxicology and EnvironmentalMutagenesis, vol. 674, no.
1-2, pp. 36–44, 2009.

[9] B. N. Ames, M. K. Shigenaga, and T. M. Hagen, “Oxidants,
antioxidants, and the degenerative diseases of aging,” Proceed-
ings of the National Academy of Sciences of the United States of
America, vol. 90, no. 17, pp. 7915–7922, 1993.

[10] S. Quideau, D. Deffieux, C. Douat-Casassus, and L. Pouységu,
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