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Hypertrophic scarring (HS) is a dermal fibroproliferative disorder charac-

terized by excessive deposition of collagen and other extracellular matrix

components. The aim of this study is to explore crucial long noncoding

RNAs (lncRNAs) and circular RNAs (circRNAs) associated with HS and

provide a better understanding of the molecular mechanism of HS. To

investigate the lncRNA, circRNA and mRNA expression profiles, we per-

formed RNA sequencing of human HS and normal skin tissues. After the

identification of differentially expressed mRNAs (DEmRNAs), lncRNAs

(DElncRNAs) and circRNAs (DEcircRNAs), we performed functional

enrichment of DEmRNAs. Further on, we constructed DElncRNA/

DEcircRNA–DEmRNA coexpression networks and competing endogenous

RNA regulatory networks, and performed functional analyses of the

DEmRNAs in the constructed networks. In total, 487 DEmRNAs, 92

DElncRNAs and 17 DEcircRNAs were identified. DEmRNAs were signifi-

cantly enriched in processes such as collagen fibril organization, extracellu-

lar matrix–receptor interaction and the phosphatidylinositol 3-kinase

(PI3K)–Akt signaling pathway. In addition, we detected 580 DElncRNA–
DEmRNA and 505 DEcircRNA–DEmRNA coexpression pairs. The com-

peting endogenous RNA network contained 18 circRNA–microRNA

(miRNA) pairs, 18 lncRNA–miRNA pairs and 409 miRNA–mRNA pairs,

including 10 circRNAs, 5 lncRNAs, 15 miRNAs and 160 mRNAs. We

concluded that MIR503HG/hsa-miR-204-3p/ACAN, MIR503HG/hsa-miR-

431-5p/TNFRSF9, MEG3/hsa-miR-6884-5p/ADAMTS14, AC000035.1-

ADAMTS14 and hsa_circ_0069865-COMP/ADAM12 interaction pairs may

play a central role in HS.

Scar formation is an inevitable result of wound heal-

ing. Hypertrophic scarring (HS), a type of pathological

scarring, with a protruding surface, irregular shape

and burning and itching sensations on the skin surface,

often significantly affects patients’ quality of life [1].

HS is characterized by excessive deposition and

alterations in morphology of collagen and other extra-

cellular matrix (ECM) proteins [2]. Clinically, it is

identified by excessive dermal fibrosis and scarring

resulting from the imbalance between collagen synthe-

sis and degradation during wound healing [3].

Although numerous interventions for HS, including
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surgical removal, radiotherapy, steroid injection and

cryotherapy, are available, these treatments cannot

achieve a stable curative effect [4]. The etiology and

pathogenesis of HS have been explored for decades,

but the molecular mechanisms of HS remain poorly

understood [5]. Therefore, it is of great importance to

elucidate the mechanisms of HS and explore new tar-

gets for treatment of HS.

Long noncoding RNAs (lncRNAs) and microRNAs

(miRNAs), as novel noncoding RNAs, have been

reported to be involved in HS. For instance, Li et al.

[6] indicated that up-regulated lncRNA8975-1 in HS

fibroblasts inhibited fibroblast proliferation and

reduced collagen expression. Nong et al. [7] demon-

strated that lncRNA COL1A2-AS1 inhibited fibrob-

lasts proliferation to suppress HS formation via

regulating the miR-21–Smad7 pathway. Wu et al. [8]

reported that miR-155 inhibited the formation of HS

fibroblasts by targeting hypoxia induciblefactor 1 sub-

unit alpha (HIF-1a) via the PI3K–AKT pathway.

Shen et al. [9] suggested that miR-145-5p arrested the

development of fibrogenesis and decreased HS forma-

tion by reducing the expression of Smad2/3. Zhang

et al. [10] found that miR-137 inhibited proliferation

and metastasis of HS fibroblasts via targeting pleiotro-

phin. However, to the best of our knowledge, there

was only one study exploring the expression profiles of

circular RNA (circRNA) in HS [11].

This study investigated the mRNA, lncRNA and

circRNA expression profiles of HS to identify the dif-

ferentially expressed mRNAs (DEmRNAs), lncRNAs

(DElncRNAs) and circRNAs (DEcircRNAs) associ-

ated with HS. In addition, a competing endogenous

RNA (ceRNA) (DEcircRNA/lncRNA–miRNA–
DEmRNA) regulatory network was conducted. This

study sought to make a contribution to elucidating the

potential molecular mechanisms of HS and lay a foun-

dation for the treatment of HS.

Materials and methods

Subjects and samples

HSs and adjacent normal skin tissues were collected from

three male patients in our hospital, aged 6, 21 and

22 years. The site of HS was neck, left arm and right arm.

All samples were collected after obtaining written informed

consent from every participant. This study was approved

by the ethics committee of The 980st Hospital of the PLA

Joint Logistics Support Force (2020-KY-25) and performed

in accordance with the Declaration of Helsinki. Total

RNAs were isolated from HS and normal skin tissues with

TRIzol reagent. Based on the Illumina HiSeq X-ten plat-

form, sequencing was performed.

Quality control of raw sequencing and mapping

of clean reads

To obtain clean reads from RNA sequencing results, we

removed sequences with low quality, including adapter

sequences, sequences with quality score < 20, sequences

with N base rate of raw reads > 10% and sequence

< 25 bp. Hisat2 was used to align clean reads with the

human reference genome Ensemble GRCh38. Expression of

mRNAs and lncRNAs was normalized and outputted with

StringTie. Then, CIRI2 software was used to predict cir-

cRNAs.

Identification of DEmRNAs, DElncRNAs and

DEcircRNAs

Ballgown was applied to identify DEmRNAs, DElncRNAs

and DEcircRNAs in HS with |log2FC| > 1 and P < 0.05.

Hierarchical clustering analysis of DEmRNAs, DElncR-

NAs and DEcircRNAs was performed with R (https://

www.r-project.org/) package ‘pheatmap’. David 6.8 was

used to perform Gene Ontology (GO) and Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) enrichment analysis

for DEmRNAs with P < 0.05.

DElncRNA/DEcircRNA–DEmRNA coexpression

network

The DElncRNA/DEcircRNA–DEmRNA coexpression net-

work was constructed to further investigate the potential

functions of lncRNAs, circRNAs and mRNAs in HS. The

lncRNA–mRNA pairs with |r| > 0.99 and P < 0.05 were

defined as coexpressed DElncRNA–DEmRNA pairs, and

circRNA–mRNA pairs with |r| ≥ 0.95 and P < 0.05 were

defined as coexpressed DEcircRNA–DEmRNA pairs,

respectively. Then, coexpressed networks were visualized by

using CYTOSCAPE. DAVID 6.8 was used to perform GO and

KEGG enrichment analysis for DEmRNAs in the

DElncRNA/DEcircRNA–DEmRNA coexpression network

with P < 0.05.

ceRNA (DEcircRNA/DElncRNA–miRNA–DEmRNA)

regulatory network

Based on the results of the differential expression analysis,

DEcircRNA–miRNA interaction pairs were predicted with

the CircBank (http://www.circbank.cn/index.html) data-

base. The targeted DEmRNAs of miRNAs were predicted

with miRWalk 3.0 (http://mirwalk.umm.uni-heidelberg.de/).

The DElncRNA–miRNA interaction pairs were predicted
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with NPInter v4.0 (http://bigdata.ibp.ac.cn/npinter4/).

Then, the ceRNA (DEcircRNA/DElncRNA–miRNA–
DEmRNA) regulatory network was constructed by com-

bining circRNA/lncRNA–miRNA pairs with miRNA–
mRNA pairs. Ultimately, CYTOSCAPE was used to visualize

the regulatory network. With DAVID 6.8, GO and KEGG

pathway analyses of all DEmRNAs in the ceRNA regula-

tory network were performed. Statistical significance was

defined as P < 0.05.

Results

Identification of DEmRNAs, DElncRNAs and

DEcircRNAs

Compared with adjacent normal skin tissues, 487

DEmRNAs (457 up- and 30 down-regulated), 92

DElncRNAs (83 up- and 9 down-regulated) and 17

DEcircRNAs (6 up- and 11 down-regulated) were

identified in HS. Of these, ACAN and CD1a molecule

(CD1A), AC105105.1 and LINC01189, and hsa_-

circ_0008667 and hsa_circ_0021727 were the most up-

and down-regulated DEmRNA/DElncRNA/DEc-

ircRNA in HS, respectively (Table 1). The heatmap of

the DEmRNAs/DElncRNAs/DEcircRNAs was shown

in Fig. 1.

Functional annotation of DEmRNAs

GO enrichment analysis revealed that biological pro-

cesses such as collagen fibril organization

(P = 5.48E�12), cell adhesion (P = 3.47E�5), pro-

teinaceous ECM (P = 1.11E�18), heparin binding

(P = 2.17E�6) and ECM structural constituent

(P = 3.90E�6) were dysregulated (Fig. 2A–C). KEGG

pathway analysis highlighted that ECM–receptor inter-
action (P = 1.35E�14), focal adhesion

(P = 4.32E�12), PI3K–Akt signaling pathway

(P = 2.53E�5) and protein digestion and absorption

(P = 3.74E�5) were dysregulated (Fig. 2D).

DElncRNA–DEmRNA coexpression network

A total of 580 DElncRNA–DEmRNA coexpression

pairs, including 72 DElncRNAs and 277 DEmRNAs,

were obtained (Fig. 3). Among these lncRNAs,

CASC15 (degree = 33), FAM198B-AS1 (degree = 27)

and LINC02544 (degree = 23) were the top three

DElncRNAs that covered the most DEmRNAs. GO

enrichment analysis revealed that biological processes

such as collagen fibril organization (P = 4.94E�10),

cell adhesion (P = 4.83E�4), proteinaceous ECM

(P = 1.46E�11) and ECM structural constituent

(P = 1.80E�5) were dysregulated (Fig. S1A–C).
KEGG pathway analysis highlighted that focal adhe-

sion (P = 1.75E�7), ECM–receptor interaction

(P = 3.35E�6), glycosaminoglycan biosynthesis-

chondroitin sulfate/dermatan sulfate (P = 2.67E�3)

and the PI3K–Akt signaling pathway (P = 2.79E�3)

were dysregulated (Fig. S1D).

DEcircRNA–DEmRNA coexpression network

A total of 505 DEcircRNA–DEmRNA coexpression

pairs, including 15 DEcircRNAs and 299 DEmRNAs,

were obtained (Fig. 4). Among these circRNAs, hsa_-

circ_0002874 (degree = 168), hsa_circ_0069865 (de-

gree = 98) and hsa_circ_0007755 (degree = 73) were

the top three DEcircRNAs that covered the most

DEmRNAs. GO enrichment analysis revealed that

biological processes, such as cell adhesion

(P = 8.82E�16), ECM organization (P = 1.72E�15),

proteinaceous ECM (P = 3.31E�22), collagen binding

(P = 1.93E�9) and ECM structural constituent

(P = 6.59E�9), were dysregulated (Fig. S2A–C).
KEGG pathway analysis highlighted that ECM–recep-
tor interaction (P = 9.92E�9), focal adhesion

(P = 2.14E�8), hypertrophic cardiomyopathy

(P = 1.47E�3) and PI3K–Akt signaling pathway

(P = 3.26E�3) were dysregulated (Fig. S2D).

ceRNA (DEcircRNA/DElncRNA–miRNA–DEmRNA)

regulatory network

The ceRNA network contained 18 circRNA–miRNA

pairs, 18 lncRNA–miRNA pairs and 409 miRNA–
mRNA pairs, including 10 circRNAs, 5 lncRNAs, 15

miRNAs and 160 mRNAs (Fig. 5). For DEmRNAs

involved in the ceRNA network, collagen fibril organi-

zation (P = 6.18E�6), proteinaceous ECM

(P = 3.41E�06), ECM structural constituent

(P = 2.25E�4), focal adhesion (P = 3.10E�4), ECM–
receptor interaction (P = 6.05E�3) and PI3K–Akt sig-

naling pathway (P = 6.34E�2) were several signifi-

cantly enriched pathways (Fig. S3D).

Discussion

HS, a fibroproliferative disorder, is characterized by

excessive deposition of ECM and invasive growth of

fibroblasts [12]. In this study, a total of 487 DEmR-

NAs, 92 DElncRNAs and 17 DEcircRNAs were iden-

tified in HS. In addition, several pathways were

identified to be closely associated with HS, including

collagen fibril organization, ECM–receptor interaction

and PI3K–Akt signaling pathway. According to the
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Table 1. Top 10 up- and down-regulated DEmRNAs/DElncRNAs/DEcircRNAs in HS. FDR, false discovery rate.

Symbol log2FC P Value FDR Regulation

mRNA

ACAN 7.341256 3.97E�60 6.20E�56 Up

ADAM12 5.949145 2.74E�31 2.15E�27 Up

NEFH 4.289851 5.75E�23 3.00E�19 Up

ADAMTS16 3.971908 1.19E�21 4.64E�18 Up

COMP 4.899795 5.04E�21 1.58E�17 Up

COL11A1 5.500081 1.44E�19 3.76E�16 Up

TNFRSF9 4.622602 3.53E�19 7.87E�16 Up

ADAMTS14 5.942227 4.87E�19 9.52E�16 Up

P4HA3 5.473385 1.61E�18 2.80E�15 Up

ANOS1 2.446834 4.34E�17 6.78E�14 Up

CD1A �2.16518 2.36E�7 5.20E�5 Down

IGFL4 �3.29682 1.68E�6 0.000258 Down

SPRR4 �5.84497 2.31E�6 0.000329 Down

EDA �1.75118 4.91E�6 0.000635 Down

AKAP1 �1.91416 5.39E�6 0.000678 Down

CD207 �2.25162 9.51E�6 0.001039 Down

ECHDC3 �2.19145 1.60E�5 0.001452 Down

ARL2-SNX15 �6.03628 1.60E�5 0.001452 Down

RORA �1.13228 2.16E�5 0.001855 Down

VSIG8 �3.71747 5.54E�5 0.003919 Down

lncRNA

AC105105.1 4.524189 7.20E�16 6.14E�12 Up

MIR503HG 4.492636 1.03E�13 4.40E�10 Up

LINC01614 7.15706 1.39E�11 3.97E�8 Up

LINC01561 4.411686 5.80E�9 1.07E�5 Up

LINC01429 5.853049 6.28E�9 1.07E�5 Up

LINC01711 4.803794 1.28E�8 1.83E�5 Up

LINC02544 5.890596 1.91E�8 2.07E�5 Up

AC090197.1 2.184541 1.94E�8 2.07E�5 Up

AC113383.1 3.404982 8.88E�8 8.31E�5 Up

AC000035.1 12.3098 1.01E�7 8.31E�5 Up

LINC01189 �8.11434 1.31E�6 0.000558 Down

AL031291.1 �11.3124 6.09E�6 0.001584 Down

AC010329.1 �3.44806 5.46E�5 0.008625 Down

LINC01290 �2.22062 9.21E�5 0.012892 Down

BX088651.2 �4.76479 0.000276 0.029441 Down

LINC00842 �2.43539 0.000286 0.030118 Down

LINC02242 �9.60651 0.000316 0.032302 Down

LINC00205 �3.39688 0.000382 0.037073 Down

AC245123.1 �7.85624 0.000434 0.041644 Down

circRNA

hsa_circ_0008667 7.399127 0.033936 0.855118 Up

hsa_circ_0000699 7.325837 0.03786 0.855118 Up

hsa_circ_0006370 3.963574 0.037886 0.855118 Up

hsa_circ_0004751 7.244633 0.039784 0.855118 Up

hsa_circ_0002874 2.802046 0.045302 0.855118 Up

hsa_circ_0007755 7.067075 0.046354 0.855118 Up

hsa_circ_0021727 �8.12769 0.005618 0.855118 Down

hsa_circ_0000826 �8.41942 0.005818 0.855118 Down

hsa_circ_0069865 �7.72155 0.010411 0.855118 Down

hsa_circ_0085173 �7.46746 0.019994 0.855118 Down

hsa_circ_0000650 �7.36772 0.022593 0.855118 Down

hsa_circ_0008172 �7.12402 0.035404 0.855118 Down

hsa_circ_0007108 �7.41823 0.037163 0.855118 Down
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Table 1. (Continued).

Symbol log2FC P Value FDR Regulation

hsa_circ_0006956 �7.03894 0.042358 0.855118 Down

hsa_circ_0005239 �3.63413 0.04609 0.855118 Down

hsa_circ_0006987 �6.83046 0.049686 0.855118 Down

Fig. 1. Unsupervised hierarchical clustering analysis of the DEmRNAs (A), DElncRNAs (B) and DEcircRNAs (C) between HS and adjacent

normal skin tissues. Row and column represented DEmRNAs/DElncRNAs/DEcircRNAs and tissue samples, respectively. The color scale

represented the expression levels. n = 3.
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results of functional annotation analysis, ADAMTS14,

ACAN and COL11A1 were enriched in collagen fibril

organization; COMP was enriched in ECM–receptor
interaction; and COMP and COL11A1 were enriched

in the PI3K–Akt signaling pathway.

Collagen is the main component of interstitial ECM,

which is involved in the regulation of various biologi-

cal processes, such as cell morphology, proliferation,

migration, differentiation, apoptosis and carcinogenesis

[13]. As a member of minor fibrillar collagens,

COL11A1 can be produced by cartilage and a variety

of noncartilaginous tissues, including skin [14]. Recent

studies have found that COL11A1 is associated with

various cancers, such as gastric cancer, ovarian cancer

and non-small cell lung cancer [15–17]. It has been

concluded that COL11A1 expression is a biomarker of

human carcinoma-associated stromal cells and carci-

noma progression [18]. COL11A1 has been found to

be overexpressed in human keloid fibroblasts related

to normal skin fibroblasts [19]. Elevated COL11A1

was also observed in scleroderma skin, another

condition with extensive fibroblast activation [20].

P4HA3 encodes a component of prolyl 4-hydroxylase,

a key enzyme in collagen synthesis. In general, the

expression of P4HA3 is very low in normal fetal and

adult tissues [21]. In poorly differentiated gastric ade-

nocarcinoma cancer cell line MKN-45 and AGS cells,

up-regulated P4HA3 could enhance cell motility and

invasiveness [22]. Highly expressed P4HA3 was associ-

ated with poor prognosis in gastric cancer [23]. There

were no previous reports of the function of P4HA3 in

HS. Here, significantly up-regulated COL11A1 and

P4HA3 were observed in HS, adding evidence that

COL11A1 and P4HA3 may play an important role in

HS.

CD1A encodes a member of the CD1 family of

transmembrane glycoproteins, which are structurally

related to the major histocompatibility complex pro-

teins and form heterodimers with b2-microglobulin.

The amount of CD1As of the positive dendritic cell

was significantly higher in HS than the controlled nor-

mal skin [24]. However, CD1A was identified to be the

Fig. 2. Significantly enriched GO terms and KEGG pathways of DEmRNAs in HS. (A) BP, biological process; (B) CC, cellular component; (C)

MF, molecular function; (D) KEGG pathways. The x axis shows P value of GO terms or KEGG pathways, and the y axis shows GO terms or

KEGG pathways. The color scale represented �log P value.
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Fig. 3. DElncRNA–DEmRNA coexpression network. The rhombuses and ellipses represent DElncRNAs and DEmRNAs, respectively. Red

and blue colors represent up- and down-regulation, respectively. Nodes with black border were DElncRNAs/DEmRNAs derived from top 10

up- and down-regulated DElncRNAs/DEmRNAs in HS.
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most significantly down-regulated DEmRNA in this

study, indicating that its exact role in HS needs further

study to determine. A recent study indicated that

LINC01189 was significantly altered in peripheral

blood mononuclear cells of patients with rheumatoid

arthritis, suggesting that LINC01189 may be a poten-

tial biomarker for rheumatoid arthritis [25]. Besides,

Yao et al. [26] demonstrated that LINC01189 was

down-regulated in hepatitis C virus-infected hepatocel-

lular carcinoma (HCC) tumors and cell lines and may

confer a suppression effect on the development of

HCC. Other than that, the expression pattern or regu-

latory effects of LINC01189 in other human diseases

have never been elucidated. In other words,

LINC01189, the most significantly down-regulated

DElncRNA, was first reported to be associated with

HS in this study.

Aggrecan, encoded by ACAN, is a major proteogly-

can component in the ECM of the growth plate and

articular cartilage [27]. Mutations in ACAN were

reported to be associated with growth defects ranging

from mild idiopathic short stature to severe skeletal

dysplasias [28]. TNFRSF9, also termed 4-1BB and

CD137, is a member of the tumor necrosis factor

receptor superfamily, which contributes to the clonal

expansion, survival, and development of T cells. It has

been suggested that TNFRFS9 expression was a bio-

marker for tumor-infiltrating lymphocytes in ovarian

cancer and melanoma [29]. In addition, TNFRSF9

methylation has been reported to serve as a biomarker

in the context of immunotherapies in melanoma [30].

Recently, lncRNA MIR503HG has been suggested to

be dysregulated and involved in a variety of human

cancers. Qiu et al. [31] suggested that MIR503HG

exhibited significant antiproliferation and antimigra-

tion/invasion effects on bladder cancer cells. Chuo

et al. [32] demonstrated that MIR503HG overexpres-

sion inhibits colorectal cancer cell migration and inva-

sion mediated by transforming growth factor-b2. Lin

et al. [33] revealed that MIR503HG suppressed non-

small cell lung cancer progression via negatively regu-

lating Wnt1 expression. ACAN, TNFRSF9 and

MIR503HG were identified to be dysregulated in this

study, although no previous study linked ACAN,

TNFRSF9 and MIR503HG with HS. In addition,

ACAN and TNFRSF9 were targets of MIR503HG

(MIR503HG/hsa-miR-204-3p/ACAN and MIR503HG/

hsa-miR-431-5p/TNFRSF9) in the ceRNA network,

which indicated that MIR503HG may act as a ceRNA

to regulate the expression of ACAN and TNFRSF9

in HS.

ADAMTS14, located on chromosome 10q22.1, is a

member of the ADAMTS metalloproteinase family,

comprised of 19 members, which are known as prote-

olytic enzymes to catalyze a great variety of substrates

in the ECM [34]. The activation of ADAMTS pro-

teinases can exhibit both inhibitory and promotive

effects on angiogenesis because the mechanism

Fig. 4. DEcircRNA–DEmRNA coexpression network. The rectangles and ellipses represent DEcircRNAs and DEmRNAs, respectively. Red

and blue color represent up- and down-regulation, respectively. Nodes with black border were DEcircRNAs/DEmRNAs derived from top 10

up- and down-regulated DEcircRNAs/DEmRNAs in HS.
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involved in their regulation of cancer development var-

ies among different members [35]. Sheu et al. [36]

implicated the ADAMTS14 gene polymorphism as a

predictive factor of HCC. Low cytoplasmic expression

of ADAMTS14 has been associated with poor overall

survival of patients with oral squamous cell carcinoma,

which may be used as a novel biomarker for oral

squamous cell carcinoma diagnosis [37]. MEG3,

located on chromosome 14q32.3, has been associated

with various tumors and regarded as a putative cancer

biomarker and treatment target [38]. In the ceRNA

network, ADAMTS14 was a target of MEG3 (MEG3/

hsa-miR-6884-5p/ADAMTS14). In the DElncRNA–
DEmRNA coexpression network, ADAMTS14 was

coexpressed with AC000035.1 (one of the top 10 sig-

nificantly up-regulated DElncRNAs). Hence we specu-

lated that MEG3 and AC000035.1 may participate in

HS via regulating ADAMTS14.

COMP is a fibrillar collagen assembly regulator,

which is involved in the assembly and stabilization of

the ECM via its interactions with type I and type II

collagen and modulates the cellular phenotype during

tissue genesis and remodeling [39,40]. Zachou et al.

[41] suggested COMP as a biomarker of liver fibrosis

in patients with chronic viral hepatitis. Li et al. [39]

reported that hepatic stellate cell-derived COMP

drives HCC progression by activating mitogen-

activated protein kinase kinase 7 (MEK)/mitogen-

activated protein kinase (ERK) and PI3K/AKT

signaling pathways. Vuga et al. [42] demonstrated that

COMP may serve as a biomarker for idiopathic

pulmonary fibrosis. Agarwal et al. [43] indicated that

COMP is also a constitutive component present in

human skin that is deposited by fibroblasts into the

ECM of human skin. Agarwal et al. [44] recently

demonstrated that COMP deposition is enhanced in

Fig. 5. ceRNA (DEcircRNA/DElncRNA–miRNA–DEmRNA) regulatory network. The rectangles, rhombuses, inverted triangles, and ellipses

indicate DEcircRNAs, DElncRNAs, miRNAs and DEmRNAs, respectively. Red and blue colors represent up-regulation and down-regulation,

respectively. Nodes with black border were DEcircRNAs/DElncRNAs/DEmRNAs derived from top 10 up- and down-regulated DEcircRNAs/

DElncRNAs/DEmRNAs in HS.
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the dermis in various fibrotic conditions. ADAM12

encodes a member of the a disintegrin and metallopro-

tease (ADAM) protein family and is restrictively

expressed in normal tissues [45]. It was reported that

up-regulated ADAM12 in the central part of keloids

may be involved in processes leading to clinical regres-

sion [19]. In the DEcircRNA–DEmRNA coexpression

network, hsa_circ_0069865, one of the top three down-

regulated DEcircRNAs that covered the most DEmR-

NAs, was coexpressed with COMP and ADAM12,

which may suggest hsa_circ_0069865 was involved in

HS mediated by COMP and ADAM12.

Conclusion

We highlighted the roles of several DEmRNAs

(COL11A1, P4HA3, CD1A, ACAN, TNFRSF9,

ADAMTS14, ADAM12 and COMP) and six interaction

pairs (MIR503HG/hsa-miR-204-3p/ACAN, MIR503HG/

hsa-miR-431-5p/TNFRSF9, MEG3/hsa-miR-6884-5p/

ADAMTS14, AC000035.1–ADAMTS14 and hsa_circ_

0069865-COMP/ADAM12) in HS. This work may aid

identification of prospective clinical markers and is

expected to contribute to understanding the pathophysiol-

ogy of HS, and further studies with larger sample size are

warranted to confirm these results.
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Fig. S1. Significantly enriched GO terms and KEGG

pathways of DEmRNAs in DElncRNA–DEmRNA

coexpression network. (A) BP, biological process; (B)

CC, cellular component; (C) MF, molecular function;

(D) KEGG pathways. The x axis shows P value of

GO terms or KEGG pathways and the y axis shows

GO terms or KEGG pathways. The color scale repre-

sented �log P value.

Fig. S2. Significantly enriched GO terms and KEGG

pathways of DEmRNAs in DEcircRNA–DEmRNA

coexpression network. (A) BP, biological process; (B)

CC, cellular component; (C) MF, molecular function;

(D) KEGG pathways. The x axis shows P value of

GO terms or KEGG pathways, and the y axis shows

GO terms or KEGG pathways. The color scale repre-

sented �log P value.

Fig. S3. Significantly enriched GO terms and KEGG

pathways of DEmRNAs in the ceRNA network. (A)

BP, biological process; (B) CC, cellular component;

(C) MF, molecular function; (D) KEGG pathways.

The x axis shows P value of GO terms or KEGG

pathways, and the y axis shows GO terms or KEGG

pathways. The color scale represented �log P value.
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