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Hypothesis: We have proposed that VEG/PF acts by transforming the cytoskele-
tal architecture of microvascular endothelial cells.

Background: Evidence supporting a pivotal role for vascular endothelial
growth/permeability factor (VEG/PF) in tumor angiogenesis and edemagenesis
is compelling. VEG/PF exhibits specific endothelial cell mitogenicity and is
expressed by brain tumors exhibiting increased vascularity and microvascular
extravasation. The mechanistic cascade that follows VEG/PF-tyrosine kinase
receptor binding remains uncertain, however. Actin is a cytoskeletal protein that
regulates cellular motility, shape and vesicular transport. Regulation of actin
stress fibers, cell-surface focal adhesions and plasmalemmal "ruffles" is medi-
ated by tyrosine kinase activation of GTP-binding proteins that are in turn
linked to intracellular calcium flux. As VEG/PF is known to induce cytosolic
calcium ion transients in endothelial cells, actin microfilaments would appear
to be logical candidates for study of a cytocontractile response mediated by cal-
cium signal transduction.

Methods: VEG/PF-induced endothelial actin cytoskeletal changes were studied
using rhodamine phalloidin staining and fluorescence photomicrography.

Results: When exposed to VEG/PF, cultured endothelial cells from human
umbilical veins and rat brain microvessels exhibited a reversible, dose-related
reorganization of actin stress fibers, cell contraction and rounding, and widen-
ing of the intercellular spaces. VEG/PF perturbation also induced plasmalem-
mal "ruffling." All VEG/PF-induced cytoskeletal changes were inhibited by
preincubating endothelial cells with dexamethasone or anti-VEG/PF IgG anti-
body.

Conclusion: The findings support a role for VEG/PF-induced cytoskeletal alter-
ations in the pathophysiology of brain tumor angiogenesis and edemagenesis.
These observations are likely to be directly linked to VEG/PF-induced endothe-
lial cytosolic calcium flux. Insight into the mechanism of dexamethasone's clin-
ical efficacy is also provided.

aTo whom all correspondence should be addressed: Gregory R. Criscuolo, M.D., 7 Mountain Crest
Drive, Cheshire, Connecticut. Tel: (203) 250-1469.
bAbbreviations: VEG/PF, vascular endothelial growth/permeability factor; GTP, gaunosine triphos-
phate; mRNA, messenger ribonucleic acid; IgG, immunoglobulin G; G-actin, globular or monomer-
ic actin, F-actin, fibrous or polymerized actin; HUVEC, human umbilical vein endothelial cell;
RBMVEC, rat brain microvessel endothelial cell; HBSS, Hanks balanced salt solution; BSA, bovine
serum albumin; DNase, deoxyribonuclease; GFAP, glial fibrillary acidic protein; SMA, smooth mus-
cle actin; GGT, gamma-glutamyl transpeptidase; ras, rac, rho and rab, GTP-binding proteins; PLC,
phospholipase-C; IP3, inositol 1,4,5-triphosphate; DAG, diacylglycerol; LSCEM, laser scanning
confocal epifluorescence microscopy.
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INTRODUCTION

A number of common mediators of inflammation and microvascular extravasation
have previously been implicated in tumor edemagenesis [1-6]. Studies demonstrating vas-
cular endothelial growth/permeability factor (VEG/PF)b mRNA expression, and VEG/PF
protein expression and secretion, support VEG/PF's role in the genesis of malignant effu-
sions such as ascites, pleural effusions, tissue edema, and the edema accompanying many
systemic and central nervous system neoplasms [7-30]. VEG/PF is expressed by benign
and malignant tumors alike, and its presence correlates closely with the presence and
extent of microvascular extravasation in the form of peritumoral edema or tumor cyst for-
mation [6, 14, 28, 29]. VEG/PF acts specifically on vascular endothelial cells and has
recently been implicated in the pathogenesis of aneurysms and vascular malformations
arising in the central nervous system [15, 19, 20, 24, 31-35, 55]. Its pluralistic actions are
essential for tumor growth, as it facilitates both the rapid proliferation of blood vessels
(angiogenesis), and a means of developing the extracellular fibrin matrix (microvascular
extravasation or edemagenesis) requisite for the ingrowth of new tumor elements.

Actin is one of the three major constituents of the cytoskeleton. The actin cytoskele-
ton of endothelial cells plays essential roles in cellular function. Whereas its participation
in cellular motility, chemotaxis, and cell division appears most relevant to angiogenesis,
its role in cellular secretion, endocytosis and permeability more likely relate to edemage-
nesis. Actin fibers play an essential role in cell dynamics and the maintenance of cell
shape. Any change in cellular shape can therefore be expected to be accompanied, if not
dictated, by a structural and functional change in actin protein conformation. Regulation
of actin's repertoire of cellular functions is only partially understood. It involves interac-
tions with a variety of specific actin binding or regulatory proteins which modulate intra-
cellular calcium flux, protein phosphorylation, and ultimately, the balance between the
monomeric (G-actin) and polymerized (F-actin) forms. The studies described herein were
designed to ascertain and characterize the effects ofVEG/PF perturbation on the endothe-
lial actin cytoskeleton, and to explore this cytocontractile mechanism as a plausible target
for dexamethasone's clinical efficacy.

MATERIALS AND METHODS

Working hypothesis, rationale and objectives
We hypothesized thatVEG/PF acts by changing endothelial cellular shape by an actin

cytoskeletal contractile mechanism [14-16]. Actin fibers are crucial components of the
cytoskeleton in living cells. By altering their three-dimensional structural conformation,
actin molecules can regulate motility, shape, and vesicular transport in vascular endothe-
lial cells [4, 23, 36-40]. VEG/PF is capable of inducing cytosolic calcium transients in
endothelial cells [16]. Actin, in turn, interacts with a variety of calcium-activated proteins.
The actin state of polymerization is readily studied by rhodamine phalloidin fluorescence
staining [39, 41-43]. Highly polymerized filamentous actin (F-actin) forms a structural
network of stress fibers throughout the endothelial plasmalemma, whereas actin depoly-
merization into the monomeric or globular (G-actin) form results in a bright diffuse
"ground glass" staining pattern without apparent structural integrity.

Our experimental objectives were: (1) to examine and define histamine-induced
effects on endothelial actin stress fibers, in order to serve as positive controls, (2) to estab-
lish, define, and interpret VEG/PF-induced effects on endothelial F-actin stress fibers, and
(3) to determine whether dexamethasone exhibited any inhibitory action on VEG/PF-
induced actin changes.
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Endothelial cell isolation, culture and characterization
Human umbilical vein endothelial cells (HUVEC) were obtained commercially as

primary or low passage (#1-3) cryopreserved inoculums (Clonetics Corporation, San
Diego, CA) that were reconstituted and cultured in T75 flasks coated with two percent
gelatin. Culture medium consisted of E-199 basal medium, supplemented with 20 percent
fetal bovine serum (Gibco, Grand Island, NY), 2 mM glutamine, 100 U/ml penicillin, 100
pg/ml streptomycin, 75 pg/ml endothelial cell growth supplement (Collaborative
Biomedical, Bedford, MA) and 150 pg/ml heparin (Sigma, St. Louis, MO). When the cells
were confluent as judged by phase contrast microscopy, they were propagated by 1:3 in
new flasks. Sterile 35 mm diameter plastic tissue culture wells were coated with
fibronectin by incubating the wells with a 0.1 mg/ml fibronectin solution in Hank's bal-
anced salt solution (HBSS) for 30 min. The solution was removed and the wells washed
once with HBSS. At passage two or three the cells were plated onto the wells at a densi-
ty of 1.2 x 105 cells per well. One or two days were allowed for the cells to grow into a
confluent monolayer.

Rat brain microvascular endothelial cells (RBMVEC) were isolated and characterized
in our laboratory employing a previously described method [44]. Four 3-month-old
female white Lewis rats were anesthetized with Nembutal and thereafter decapitated. The
rat brains were extracted using sterile surgical instruments and immediately immersed in
an oxygenated sterile buffer solution consisting of HBSS with 10 mM HEPES buffer, 100
U/ml Penicillin, 100 pg/ml Streptomycin and 0.5 percent bovine serum albumin (BSA).
Rat brains were isolated in a sterile environment and minced into 2 to 3 mm pieces in a
separate beaker containing buffer solution. The resultant mixture was transfered into a
sterile tube and centrifuged 5 min at 1500 rpm. The buffer was poured off and the cortex
tissue placed in an oxygenated enzyme solution consisting of HBSS containing 1 mg/100
ml collagenase/dispase (Boerhinger Mannheim, Indianapolis, IN), 10 mM HEPES buffer,
100 U/ml Penicillin, 100 pg/ml Streptomycin, 0.147 pg/ml TLCK (Sigma, St. Louis, MO)
and 20 U/ml DNase (Boerhinger Mannheim, Indianapolis, IN) at 37°C for 1 hr. The resul-
tant solution was aspirated up and down a Pasteur pipet to produce a suspension that was
centrifuged again at 1500 rpm for 5 min. The supernatant was poured off and the pellet
mixed with a 25 percent BSA solution after which this mixture was centrifuged again for
15 min at 2900 rpm. The latter step resulted in the separation of myelin from a capillary
pellet at the bottom of the tube. The myelin-rich supernatant was poured off and the cap-
illary pellet resuspended in buffer solution that was centrifuged for five min at 1500 rpm.
The buffer was poured off and the pellet was incubated with the enzyme solution at 37°C
for 3 hr.

Two sterile ultracentrifuge tubes were then.coated with protein by filling them with
buffered BSA solution and gently shaking them for 20 min. Both were filled with a 50 per-
cent isotonic percoll (Sigma, St. Louis, MO) mixture that was centrifuged for 1 hr at
16500 rpm. The cell-containing enzyme digest was centrifuged again for -5 min at 1500
rpm and thereafter the enzyme mix was poured off the resulting pellet. The pellet was
resuspended in 2 ml of buffer, of which each half was gently dribbled on to the percoll
gradients. These gradients were centrifuged again for 15 min at 2900 rpm. A Pasteur pipet
was used to extract the capillary pellet bands from the tubes. These were mixed with
buffer solution again and centrifuged for 5 min at 1500 rpm. The buffer solution was
poured of and the cells mixed with culture medium consisting of HAMS nutrient mixture
(Gibco, Grand island, NY) with 20 percent lymphocyte culture serum (Hyclone Labs,
Logan, UT), 100 U/ml Penicillin, 100 pg/ml Streptomycin and 2 mM glutamine. The cells
were plated on fibronectin-coated plastic tissue culture dishes and left to grow in an incu-
bator with frequent changes of the culture medium for 1 to 2 weeks.
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The identity of the endothelial cell cultures was confirmed by the typical "cobble-
stone" (HUVEC) or "spindle" (RBMVEC) morphology, the F-actin distribution pattern of
individual cells, and specific staining for both Factor VIII and di-acetylated-LDL.
Contaminating cells (astroglia, smooth muscle, pericytes) were identified by specific
staining for glial fibrillary acidic protein (GFAP), HAM-56, alpha-smooth muscle actin
(alpha-SMA), and gamma-glutamyl transpeptidase (GGT). Cultures were randomly
selected at regular intervals and screened for cellular homogeneity. Experiments were rou-
tinely performed on cultures exhibiting over 95 percent purity for vascular endothelial
cells.

Rhodamine phalloidin fluorescence staining
Rhodamine-phalloidin, a fluorescent derivative of the phallotoxin from Amantia phal-

loides, binds with high affinity to F-actin fibers. Ten microliters of rhodamine phalloidin
(Molecular Probes, Eugene, OR) was evaporated in a small test tube and redissolved in
200 ul of PBS. Slides with fixed endothelial cells were covered with the rhodamine phal-
loidin solution for 20 minutes in a dark environment. Then, a 1:1 volume glycerol/PBS
antifade reagent was placed on the cells, and a coverslip mounted on top. The cells were
examined by fluorescence microscopy using an Olympus BH-2 fluorescence microscopy
system matched to an Olympus PM-lOAD photomicrographic system (Olympus
Corporation, Lake Success, NY).

Experimental design and data analysis
VEG/PF165, the most biologically potent and abundant VEG/PF isoform

(Genentech, San Francisco, CA), has been used for all experiments described herein.
Several different concentrations ofVEG/PF (10-9 to 10-7 M) or histamine (10-8 to 10-6 M)
were added to the endothelial cell containing wells and incubated for varying intervals (1,
2, 5, and 10 min), after which they w-re fixed in a 4 percent paraformaldehyde (PFH)
solution in full medium and left in tht incubator for 15 min. After removing the PFH, the
fixed cells were washed extensively with HBSS. Negative control groups were exposed to
a volume ofHBSS equal to that of the experimental treatment groups. Treatment with dex-
amethasone was achieved by preincubating the cells in media containing 10 p.M dexam-
ethasone for 2 hr prior to aVEG/PF perturbation. Histamine-induced cytoskeletal changes
have previously been defined and therefore served as a positive control. Preincubation of
the cells with a previosly defined rabbit polyclonal anti-VEG/PF IgG antibody (Monsanto,
St. Louis, MO) in a dilution of 1:800 completely inhibited the VEG/PF-actin response and
served as an additional control.

Microscopic examination of all slides was conducted by the two investigators who
simultaneously viewed each slide and made comparisons between negative controls
(HBSS), positive controls (histamine), and three experimental groups consisting of (1)
VEG/PF treated, (2) dexamethasone-VEG/PF treated, and (3) anti-VEG/PF IgG-VEG/PF
treated cells. All slides were examined under 200x, 400x and I000x magnification. Results
were tabulated by randomly choosing three to six fields from each fluorescent slide prep
for photomicrography. Kodak Elite ISO 400 high-definition film (Eastman Kodak,
Rochester, NY) was push-processed (2-2.5 x Iso) in order to optimize image exposure and
resolution. The latter served to create a permanent image archive that would facilitate
ongoing data interpretation without having to bleach the original fluorescent slide prepa-
rations. Representative transparency images were converted to 5 x 7 inch Cibachrome
prints. Experiments were run simultaneously in quadruplicate on the same day. Each
experiment and its relevant control was repeated at least 10 times. The database therefore
consists of several hundred original glass fluorescent slide preps (more than 50 slides for
each of four experimental groups) and well over two thousand photomicrographic slides
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and prints. All VEG/PF-induced actin cytoskeletal changes were interpreted and described
in accordance with discussions in the existing pertinent literature [37-40, 45-48].

RESULTS

Control and histamine studies
A series of subconfluent and confluent endothelial cell (HUVEC and RBMVEC)

monolayer cultures were established as controls for the study of the normal actin
cytoskeletal architecture. Unperturbed specimens exhibited a high degree of actin micro-
filament organization. Extensive arrays of actin filament bundles were often oriented par-
allel to one another and to the long axis of spindle-shaped cells. Cells displaying a poly-
hedral architecture had a more radial alignment of actin fibers around a central or para-
central nucleus (Figures IA and 4A). Confluent monolayers exhibited minimal or no gaps
between juxtapposed endothelial cells. A dense peripheral band of actin filaments encir-
cled the perimeter of cells in confluent cultures and was sometimes more prominent than
the coexisting stress fibers (Figures lB and IC). Histamine stimulation was-used to estab-
lish positive controls for comparison with VEG/PF studies. Histamine-perturbed cells
showed evidence of cytoplasmic retraction in association with a reorganization of actin fil-
aments characterized by a near complete dissolution or depolymerization. Diffusely fluo-
rescent material in the perinuclear region imparted a characteristic "ground glass" appear-
ance to the cytoplasm and served to accentuate the relatively dark nuclear profile. No evi-
dence of plasmalemmal ruffling was detected, and the histamine-induced changes were
not inhibited by preincubation with dexamethasone (Figure 2).

VEG/PF studies
After addition of nanomolar concentrations of VEG/PF, previously confluent

endothelial cell monolayers responded with an extensive reorganization of actin stress
fibers and cell retraction, with shrinkage and "rounding up" of their cell profile, and a
marked widening of the interendothelial spaces. This response was rapid, with maximal
actin changes occurring within 1 min of VEG/PF perturbation and complete reversal of
the actin changes within 5 min). Diffusely fluorescent "ground glass" perinuclear staining
and cellular clumping occurred typically (Figures 3A-C). In several instances, the
endothelial cell plasmalemma exhibited a thickened, intensely staining peripheral band
with a characteristic "ruffled" appearance (Figure 3D). Despite extensive cellular shrink-
age and distortion, cell-to-cell contacts in the form of actin plasmalemmal microspikes
were sometinmes maintained, except in the most severely contracted cells (Figures 3B-D).
There were no major qualitative or quantitative differences between the HUVEC and
RBMVEC groups in their response to VEG/PF perturbation, except for the more spindle-
like appearance of the RBMVEC both before and after perturbation (Figures IC and 3C).
In cells that showed a partial response, the actin dissolution was most obvious around the
cell nucleus, thereby suggesting that depolymerization of actin fibers is initiated in this
area. Dose-response experiments revealed progressively higher VEG/PF concentrations
(10-9 to 10-6 M) to increase the extent of actin reorganization (pictorial data not shown).
Overall, the endothelial actin changes induced by VEG/PF exhibited a structural similar-
ity to those evoked by histamine treatment.

Preincubation of endothelial cells with a 10 micromolar concentration of dexametha-
sone for at least 2 hr rendered them unresponsive to VEG/PF perturbation, an affect not
reproduced in the histamine perturbed group (Figures IA, IC, 4A, 4B and 4C). The 2 hr
temporal contingency suggests dexamethasone is acting either through receptor-mediated
de novo synthesis of a VEG/PF inhibitory protein, or by down-regulation of VEG/PF
receptor expression. A rapid and non-specific steroid-induced stabilization.of the endothe-
lial cell membrane would appear less plausible as dexamethasone's inhibitory action was
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Figure 1A. Control HUV endothelial cell. Fluorescence photomicrograph (lOOOx) of a single
human umbilical vein endothelial cell from a subconfluent monolayer stained with rhodamine phal-
loidin. This image illustrates the intricate actin microfilament (F-actin) network responsible for
endothelial cytoskeletal integrity.

Figure 1B. Control HUV endothelial cells. Fluorescence photomicrograph (400x) of a confluent
human umbilical vein endothelial cell (HUVEC) monolayer stained with rhodamine phalloidin.
Note that in addition to an extensive organization of cytoplasmic actin stress fibers, there exists a
well-defined peripheral F-actin band outlining the individual endothelial cell margins.
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Figure IC. Control RBM endothelial cells. Fluorescence photomicrograph (200x) of a conflu-
ent rat brain microvessel endothelial cell (RBMVEC) monolayer stained with rhodamine
phalloidin. Note the extensive organization of actin stress fibers and the well-defined endothelial
cell margins.

_ _ i s :hf _tv

Figure 2. Histamine-treated HUV endothelial cells. Fluorescence photomicrograph (400x) of
HUV endothelial cells after exposure to histamine (10-7 M) for 1 min. This resulted in a general dis-
solution of actin stress fibers that was most apparent in the cytoplasm surrounding the endothelial
cell nucleus. The diffuse dissolution of actin microfilaments into monomeric G-actin is responsible
for the characteristic "ground glass" appearance imparted to the cytoplasm. The cellular margins are
contracted and more rounded resulting in significant enlargement of the interendothelial spaces.
This is known to result from histamine-induced calcium transients which in turn induce a reversible
depolymerization of F-actin to the monomeric G-actin form. Intercellular cross-linking actin fila-
ments or microspikes are clearly visible.

Criscuolo and Balledux: 343



344 Criscuolo and Balledux: VEG/PF actions on the endothelial cytoskeleton

Figure 3A. VEG/PF-treated HUV endothelial cell. Fluorescence photomicrograph (lOOOx) of
VEG/PF-treated HUV endothelial cells 1 min after exposure (8 x 10- M). Diffuse depolymeriza-
tion of actin fibers has resulted in a characteristic "ground glass" appearance to the cytoplasm with
accentuation of the nuclear outline, cell contraction, and rounding.

Figure 3B. VEG/PF-treated HUV endothelial cells. Fluorescence photomicrograph (400x) of
VEG/PF-treated HUV endothelial cells 1 min after exposure (8 x 10-9 M). Groups of cells have
reacted with depolymerization of actin fibers and cell contraction. Some cells appear to be held
together by cross linking actin filaments or microspikes. Widening of interendothelial spaces is
clearly evident.
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Figure 3C. VEG/PF-treated RBM endothelial cells. Fluorescence photomicrograph (400x) of
VEG/PF-treated RBM endothelial cells 1 min after exposure (8 x 10- M). Groups of cells have
reacted with varying degrees of depolymerizatiqn of actin fibers and cell contraction.
Interendothelial gaps are very evident.

Figure 3D: VEG/PF-treated HUV endothelial cells. Fluorescence photomicrograph (400x) of
VEG/PF-treated HUV endothelial cells 1 min after exposure (8 x 10-9 M). The entire field of cells
has responded with depolymerization of actin. In addition, most of the endothelial cell plasmalem-
ma are intensely stained at their periphery and exhibit a characteristic "ruffled" appearance.
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Figure 4A. Dexamethasone-VEG/PF-treated RBM endothelial cell. Fluorescence photomicro-
graph (lOOx) of a single rat brain microvessel endothelial cell from a subconfluent monolayer
stained with rhodamine phalloidin. Preincubation with a 10 micromolar concentration of dexam-
ethasone in media for 2 hr rendered the cells unresponsive to VEG/PF treatment. This image illus-
trates complete preservation of the intricate actin microfilament network. A similar lack of respon-
siveness to VEG/PF was demonstrated in cells coincubated with polyclonal anti-VEG/PF IgG anti-
body prior to VEG/PF exposure.

Figure 4B. Dexamethasone-VEG/PF-treated RBM endothelial cells. Fluorescence photomicro-
graph (400x) of VEG/PF-treated RBM endothelial cells 1 min after exposure (8 x 10-9 M).
Preincubation with a 10 micromolar concentration of dexamethasone in media for 2 hours rendered
the cells unresponsive to VEG/PF treatment. There is preservation of both the confluent monolayer
and the individual cellular microfilament network.
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Figure 4C. Dexamethasone-VEG/PF-treated HUV endothelial cells. Fluorescence photomi-
crograph (400x) of VEG/PF-treated HUV endothelial cells 1 min after exposure (8 x 10-9
M). Preincubation with a 10 micromolar concentration of dexamethasone in media for 2
hr rendered the cells unresponsive to VEG/PF treatment. There is preservation of both the
confluent monolayer and the individual cellular microfilament network.

not conferred by incubation periods less than 1 hr. Preincubation of the cells with a poly-
clonal anti-VEG/PF IgG antibody completely inhibited the VEG/PF-actin response
(Figure 5). Similar responses to VEG/PF perturbation and dexamethasone treatment
occurred in both human umbilical vein and rat brain microvessel endothelial cells. We
believe the results are noteworthy both for the extent and reproducibility of the actin
changes.

DISCUSSION

Morphology of brain tumor microvessels
Implicit in the current discussion, as in prior discussions by the author, is the premise

that VEG/PF-induced edemagenesis and angiogenesis have already been defined as not
taking place in microvessels with homotypical blood-brain barrier features. The patho-
genesis of peritumoral vasogenic edema is a only partially understood. Extravasated plas-
ma fluid, electrolytes and proteins originate exclusively from the brain tumor microvas-
culature which differs both morphologically and physiologically from normal blood-brain
barrier microvessels [47-53]. VEG/PF and other permeability mediators appear only to
affect capillaries that do not exhibit homotypical blood-brain barrier features [14]. It has
been hypothesized that their action on the normal brain microvasculature is mechanisti-
cally inhibited by the physical expression of pentalaminar tight-junctions between brain
endothelial cells [14, 15]. Although phenotypic differences in brain tumor microvessels
likely contribute to the increased permeability seen in the setting of peritumoral vasogenic
edema, the mechanisms by which these vascular alterations either occur, or are sustained
have hitherto been elusive. Phenotypic expression of tight junctions and other barrier fea-
tures is contextual, and requires the establishment of physical contacts between brain
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Figure 5. Anti-VEG/PF IgG-treated RBM endothelial cells. Fluorescence photomicrograph
(400x) of VEG/PF-treated RBM endothelial cells 1 min after exposure (8 x 10-9 M). Preincubation
with polyclonal anti-VEG/PF IgG antibody rendered the cells unresponsive to VEG/PF treatment.
There is preservation of both the confluent monolayer and the individual cellular microfilament net-
work.

endothelial cells and normal astroglial cells. Divergence from the typical barrier endothe-
lial phenotype, as seen in brain tumors, appears to correlate with the extent of malignant
astrocytic degeneration. Microvessels in low-grade gliomas exhibit more typical, albeit
altered blood-brain barrier features, while those associated with highly malignant anaplas-
tic astrocytomas and glioblastoma multiforme bear no semblance to normal blood-brain
barrier microvessels and maintain many functional and phenotypic similarities to systemic
microvessels [14, 15]. It is based upon our existing knowledge of these functional and
phenotypic differences that we feel justified studying the action ofVEG/PF action in other
"unspecialized" endothelial cells such as HUVECs, or RBMECs that have not been co-
cultured with normal astroglial cells. Hence, despite their different sites of origin, cultured
HUVEC and RBMVEC likely share much in common both with each other and with brain
tumor microvessels. The tissue culture environ essentially allows them to revert to a more
generic phenotype lacking specialized "barrier" features. It follows, that experiments
using endothelial cells with preserved homotypical blood-brain barrier features, would not
acurately depict the actual neoangiogenic milieu that has been previously well-described
in central nervous system neoplasms.

Regulation of the endothelial cell actin cytoskeleton
Actin is a 375 amino acid protein which polymerizes into alpha-helical microfila-

ments. Six actin isoforms exist with beta-actin occurring most commonly in endothelial
cells, pericytes and fibroblasts, and alpha-actin occurring in vascular smooth muscle cells,
cardiac and skeletal muscle. Actin is known to exist in a variety of structures and forms in
many different cell types. In vascular endothelial cells, actin is compiled into several mor-
phologically and functionally distinctive structures including: (1) short bundles in
microvilli and stereocilia, (2) cortical actin stress fibers, (3) focal cell-matrix adhesion
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sites, (4) contractile rings, (5) cellular leading edge, (6) cell surface invaginations, (7)
filopodia, (8) microspikes protruding from the cell surface, (9) cellular membrane ruffles
and lamellipodia, and (10) networks of highly organized filaments traversing the cortical
cytoplasm [4, 36-43]. Cellular actin in its filamentous form (F-actin) is a dynamic protein
that is continually shortening or depolymerizing at one end, while simultaneously grow-
ing (repolymerizing) at the other by a process called "treadmilling." The equilibrium
between the F- and G-actin pools is a complex process involving several regulatory pro-
teins.

Actin stress fibers are important in maintaining cellular shape and structural integri-
ty. In tissue culture, they have been shown to run horizontally, in parallel with the cell
membrane attached to the culture disk suface. In situ, actin stress fibers run parallel to the
direction of blood flow, thus protecting the cell from flow-related shearing forces.
Dissolution of actin stress fiber networks in response to environmental stimuli causes cells
to contract in volume and "round up" in shape. Specific actin cytoskeletal .changes have
now been defined for perturbations involving histamine exposure, oxidant injury, oxyhe-
moglobin exposure, and ATP depletion [45-48, 54-58]. In addition, recent studies have
shown that assembly of actin stress fibers, cortical networks and focal adhesions occurs
rapidly in the presence of a ras-related GTP-binding protein designated rho [38]. Rac, a
related GTP-binding protein, has been shown to increase actin accumulation in membrane
"ruffles." cell surface microspikes, and increased micropinocytotic activity [39]. The G-
protein Rab is believed to serve as a regulatory factor in the endocytotic pathway [55].
Severing of actin filaments into short fragments is accomplished in the presence of spe-
cialized actin binding proteins such as gelsolin and villin. Both proteins are activated in
response to transient increases in endothelial cytosolic calcium ions [23, 36, 40, 42, 54-
58]. It would therefore appear plausible for VEG/PF-induced actin changes to be mediat-
ed by the same calcium-linked G-protein cascade.

Calcium signalling and the endothelial cytoskeleton
Calcium ions act as intracellular messengers that control cellular functions in many

living systems [4, 16, 35-37, 39, 56, 58]. The calcium signalling motif postulated for elec-
trically inexcitable vascular endothelial cells is initiated by agonist binding to a specific
surface membrane receptor (VEG/PF-tyrosine kinase). A G-protein intermediate (rho, rac
or rab) then activates phospholipase C (PLC) resulting in the release of the soluble mes-
sengers, inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 activates a spe-
cific receptor and releases calcium from the endoplasmic reticulum into the cytoplasm.
DAG increases actin nucleation and influences cytoskeletal assembly [56]. Transient ele-
vations in cytosolic Ca++ therefore result in alterations in cytocontractile proteins and con-
sequent cellular deformation [12-15, 23, 32, 36, 57].

We previously hypothesized that a VEG/PF-induced increase in intracellular calcium
concentration could lead to endothelial cytoskeletal reorganization, resulting in cellular
contraction and distortion, opening of interendothelial clefts, and subsequent extravasa-
tion of plasma fluid and proteins into the tumor interstitium (edemagenesis) [13-17,28,
29]. This direct calcium-cytocontractile relationship was recently observed using real-
time laser scanning confocal epifluorescence microscopy (LSCEM) employing a calcium
probe (fluo-3), and optical disc image aquisition and storage. VEG/PF-induced cytosolic
calcium release was readily visualized, and correlated with a dynamic change in endothe-
lial cell shape including cellular shrinkage and "rounding up" reminiscent of that observed
in the static rhodamine-phalloidin images (Figures 6A-C). Similar mechanisms may be
responsible for the synchronous membrane alterations requisite for endothelial cytokine-
sis and microvascular growth (angiogenesis).
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Figures 6A. VEG/PF-induced calcium flux in endothelial monolayers. Fluorescence photomi-
crograph (200x) of the direct VEG/PF-induced calcium-cytocontractile response was recently
observed using real-time laser scanning confocal epifluorescence microscopy (LSCEM).
Employing a calcium probe (fluo-3), and optical disc image aquisition and storage, VEG/PF-
induced cytosolic calcium release was readily visualized and immediate in onset. These images
were captured sequentially over 30 sec at 10 sec intervals. This image captured at 10 sec. Calcium
flux correlated with a dynamic change in endothelial cell shape including cellular shrinkage and
"rounding up" reminiscent of that observed in the static rhodamine-phalloidin images.

Figures 6B. VEG/PF-induced calcium flux in endothelial monolayers. Fluorescence photomi-
crograph (200x) of the direct VEG/PF-induced calcium-cytocontractile response was recently
observed using real-time laser scanning confocal epifluorescence microscopy (LSCEM).
Employing a calcium probe (fluo-3), and optical disc image aquisition and storage, VEG/PF-
induced cytosolic calcium release was readily visualized and immediate in onset. These images
were captured sequentially over 30 sec at 10 sec intervals. This image captured at 20 sec. Calcium
flux correlated with a dynamic change in endothelial cell shape including cellular shrinkage and
"rounding up" reminiscent of that observed in the static rhodamine-phalloidin images.
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Figures 6C. VEG/PF-induced calcium flux in endothelial monolayers. Fluorescence photomi-
crograph (200x) of the direct VEG/PF-induced caldium-cytocontractile response was recently
observed using real-time laser scanning confocal epifluorescence microscopy (LSCEM).
Employing a calcium probe (fluo-3), and optical disc image aquisition and storage, VEG/PF-
induced cytosolic calcium release was readily visualized and immediate in onset. These images
were captured sequentially over 30 sec at 10 sec intervals. This image captured at 30 sec. Calcium
flux correlated with a dynamic change in endothelial cell shape including cellular shrinkage and
"rounding up" reminiscent of that observed in the static rhodamine-phalloidin images.

The efficacy of dexamethasone in the treatment of peritumoral vasogenic edema is
widely recognized [59-65]. Clinical improvement is associated with a resolution of edema
on CT images, and tumor enhancement related to increased microvascular permeability
diminishes considerably after dexamethasone treatment. Despite its wide usage, the mech-
anism dexamethasone's beneficial effects has remained uncertain. Given the causal role
proposed for VEG/PF in the pathogenesis of vasogenic edema, it is reasonable to consid-
er whether dexamethasone's efficacy relates to an influence on VEG/PF expression by
tumor cells, or VEG/PF receptor expression and other related VEG/PF-induced endothe-
lial cell events. Dexamethasone inhibition of. VEG/PF expression in cultured human
malignant glioma cells has previously been reported [11]. Indeed, preincubation of
endothelial cells with dexamethasone for two hours completely abolishes VEG/PF-
induced cytosolic calcium transients [ 16]. The latter observation led us to hypothesize that
dexamethasone is able to close the blood-tumor barrier by preventing VEG/PF-induced
cytoskeletal contraction [14, 15]. The data collected thus far appear to support that
hypothesis.

SUMMARY

These observations newly describe a rapid change in endothelial actin cytoskeletal con-
formation in response to VEG/PG perturbation. The resultant induction of endothelial cell
contraction and widening of the interendothelial spaces is reminiscent of changes induced by
other potent mediators of microvascular permeability. VEG/PF-induced changes could be
prevented by preincubation of endothelial cells with a polyclonal anti-VEG/PF IgG antibody,
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and by pretreatment with dexamethasone. These findings support a specific permeability-
inducing effect ofVEG/PF on endothelial cell barriers. Rapidly proliferating endothelial cells
responded more dramatically to VEG/PF perturbation than did slowly growing cells. Tumor
endothelial cells, perhaps in response to VEG/PF stimulation, would be expected to show an
enhanced proliferation rate. It is compelling to consider a relationship between active
endothelial cell proliferation and VEG/PF receptor up-regulation. We have briefly reviewed
the literature regarding the most relevant signal transducing pathways linking VEG/PF bind-
ing to its tyrosine kinase receptor, the induction of cytosolic calcium ion transients, and ulti-
mately, to our hypothesized action for VEG/PF upon the endothelial actin cytoskeleton.
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