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Abstract

Cardiomyopathy syndrome (CMS) caused by piscine myocarditis virus is a major disease affecting 
the Norwegian Atlantic salmon industry. Three different populations of Atlantic salmon from the 
Mowi breeding program were used in this study. The first 2 populations (population 1 and 2) were 
naturally infected in a field outbreak, while the third population (population 3)  went through 
a controlled challenged test. The aim of the study was to estimate the heritability, the genetic 
correlation between populations and perform genome-wide association analysis for resistance 
to this disease. Survival data from population 1 and 2 and heart atrium histology score data from 
population 3 was analyzed. A total of 571, 4312, and 901 fish from population 1, 2, and 3, respectively 
were genotyped with a noncommercial 55,735 Affymetrix marker panel. Genomic heritability 
ranged from 0.12 to 0.46 and the highest estimate was obtained from the challenge test dataset. 
The genetic correlation between populations was moderate (0.51–0.61). Two chromosomal regions 
(SSA27 and SSA12) contained single nucleotide polymorphisms associated with resistance to 
CMS. The highest association signal (P = 6.9751 × 10−27) was found on chromosome 27. Four genes 
with functional roles affecting viral resistance (magi1, pi4kb, bnip2, and ha1f) were found to map 
closely to the identified quantitative trait loci (QTLs). In conclusion, genetic variation for resistance 
to CMS was observed in all 3 populations. Two important quantitative trait loci were detected 
which together explain half of the total genetic variance, suggesting strong potential application 
for marker-assisted selection and genomic predictions to improve CMS resistance.

Subject areas:  Quantitative genetics and Mendelian inheritance, Genomics and gene mapping
Keywords:  Atlantic salmon, cardiomyopathy syndrome, field outbreak, genetic correlations, heritability, QTL analysis

One of the major diseases in Norway that affects Atlantic salmon 
during the seawater phase is cardiomyopathy syndrome (CMS). In 
2017, the disease was reported at about 100 farms (out of ~1000 

farms) along the coast of Norway (Garseth et al. 2018; Hjeltnes et al. 
2018). In most cases, no clinical signs are observed until the onset of 
mortality in relatively large fish (~3.6 kg) several months after sea 
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transfer. This leads to very large economic losses and reduced welfare 
of the fish (Løvoll et al. 2010). Moreover, it has also been observed 
that the presence of the disease results in large secondary losses 
(mortality) when the fish undergoes minor stresses like treatment for 
sea lice infestation (Garseth et al. 2018). Cardiomyopathy syndrome 
is caused by the piscine myocarditis virus (PMCV) (Haugland et al. 
2011) and the disease is diagnosed by histopathology of the heart 
which shows moderate to severe inflammation, mostly limited to the 
endocardium and spongy myocardium in the atrium and ventricle 
(Rodger et al. 2014). In addition, real-time PCR analysis of the heart, 
kidney, and spleen can be used to confirm the presence of the virus 
(Timmerhaus et al. 2012).

Because there are no treatments or vaccines against the PMCV 
virus, husbandry practices (such as minimizing stressful manage-
ment routines, e.g., lice and amoebic gill disease treatment) and some 
biosecurity measures are used to try to limit outbreaks and losses 
resulting from CMS (Garseth et al. 2018). An additional strategy is 
to increase the host resistance to the virus through selective breeding. 
Although the expected response per generation may be relatively 
small, the change in the host response is cumulative and permanent. 
In 2012, it was reported that there was variation between families 
for survival to CMS (AquaGen AS, 2015); however, the estimate of 
heritability was not reported. Recently, using survival data from a 
field outbreak of CMS, Vassgård (2017) reported heritability (li-
ability scale) of 0.25 ± 0.04. Several authors have also reported me-
dium to relatively high heritability for other disease resistance traits 
in Atlantic salmon (reviewed by Ødegård et al. 2011; Yáñez et al. 
2014). When additive genetic variance for the trait is significant, it is 
possible to use genetic selection to increase the resistance of Atlantic 
salmon to diseases. For instance, selection for increased resistance 
to IPN in Atlantic salmon has resulted in considerable reduction in 
the number of outbreaks and economic losses (Hjeltnes et al. 2018).

Controlled experimental challenge tests have been commonly 
used to assess disease resistance phenotypes for Atlantic salmon. 
But challenge tests require specialized dedicated facilities and can 
be expensive to perform. Numerous field outbreaks occur for many 
diseases such as CMS in any 1 year. The main challenge with the 
use of field outbreak data for estimating breeding values for disease 
resistance is that outbreak circumstances vary and the usefulness/
quality of data collected will depend on the relationship of affected 
animals to the breeding population, the virulence of the disease 
strain, environmental conditions affecting spread of the disease, and 
susceptibility of the fish and the ability of the farm affected to detect 
the occurrence of the outbreak and to collect appropriate samples. 
Nonetheless, field outbreak data could potentially provide useful 
information about the resistance of the animal to infection under 
grow-out conditions on-farm, which could be quite different to the 
situation in tanks when fish are experimentally challenged using dif-
ferent modes of infection and doses of disease.

Over the last decade, large genomic resources for Atlantic salmon 
have been developed. These resources have been used to map sev-
eral quantitative trait loci (QTL), improve our understanding of 
the underlying genetic basis of economically important traits and 
provide tools for more accurate and efficient selection of fish in 
breeding programs. Intensive efforts have been undertaken to dis-
cover the underlying genetic architecture of disease traits in Atlantic 
salmon such as infectious pancreas necrosis (Houston et al. 2008; 
Moen et al. 2009), pancreas disease (Gonen et al. 2015), amoebic 
gill disease (Robledo et  al. 2018), and sea lice (Tsai et  al. 2016). 
In addition to QTL mapping efforts and marker-assisted selection 
approaches, genomic selection (GS) approaches have been adopted 

to accelerate genetic progress, providing higher selection inten-
sity and accuracy than family pedigree-based breeding programs. 
Although GS in family-based Atlantic salmon breeding programs is 
in its early phase (2 generations of selection), initial results from sev-
eral breeding programs suggests positive gains for the selected traits 
(Ødegard et al. 2014; Tsai et al. 2016, 2015; Bangera et al. 2017; 
Correa et al. 2017; Robledo et al. 2018).

Therefore, the aims of this study were to: 1) estimate and com-
pare the heritability of resistance to CMS in populations of Atlantic 
salmon that were infected by a natural outbreak and by experi-
mental challenge test, 2) detect QTLs that could potentially be util-
ized for marker-assisted selection to improve resistance to CMS, and 
3) identify genes closely mapped to QTL for CMS resistance.

Materials and Methods

Populations
Three different populations of fish were obtained from the Mowi 
breeding program and used in this study. The first population was 
1) a commercial grow-out fish that came from the multiplier popula-
tion and were naturally infected in the field (commercial cages). The 
other 2 populations were full- and half-sibs of the breeding candi-
dates (informant) from the breeding program that were 2) naturally 
infected with the PMVC virus during an outbreak in the field and 
3) challenge tested in a controlled facility with the PMCV virus.

Field Outbreak of a Commercial Population—
Population 1
In a commercial farm with approximately 190,000 fish in a single 
cage at Trøndelag, Norway, veterinarians confirmed an outbreak of 
CMS, through clinical signs and qPCR analysis of dead fish for the 
PMCV virus. The fish started feeding (start-feeding) in March 2016 
and were transferred to sea cages in October 2016 at Lille Tørsoy, 
Trøndelag, Norway. We obtained 320 dead fish during the 6-week 
period of the CMS outbreak which started on January 2017. The 
dead fish were examined by veterinarians and were confirmed to be 
infected with the PMCV virus using quantitative polymerase chain 
reaction (qPCR) analysis. In April 2017, we also sampled 300 sur-
viving fish that were critically examined and not found to be infected 
with the PMCV virus after mortalities had ceased. A binary pheno-
type was analyzed, with dead fish coded as 0 and fish that were sam-
pled and examined to be PMCV virus free coded as 1.

Informant Population (natural infection)—
Population 2
A total of 5115 eyed-eggs generated from 173 sires and 341 dams 
(15 eye-eggs per family) were pooled and reared together until 
hatching. After hatching in April 2014, the fish started feeding (start-
feeding) and were communally reared until tagging. A total of 4667 
(~13 fish per family) fish were pit-tagged at an average weight of 
68  g. After smoltification (a process in which the fish undergoes 
structural and functional transformation to prepare for the transfer 
from fresh water to seawater) in May 2015 (at an average weight 
of 97 g), the fish were transferred to sea cages at Averøy, Norway. 
Examination of the dead fish was performed daily, and when dis-
eases were suspected, veterinarians determined the cause of death 
using clinical signs and qPCR tests. The fish were full- and half sib-
lings of the breeding candidate that were to be raised until harvest 
weight and recorded for slaughter traits (e.g., harvest weight, fillet 
color, fillet fat, etc.), however, they were infected with CMS through 
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a natural outbreak. The PMCV virus was first detected 10 months 
after sea transfer when the fish with the test being tested positive for 
the virus after qPCR analysis. During a routine thermo-lice treat-
ment of the fish, large numbers of mortalities were recorded, and 
each dead fish was collected and examined to ascertain the cause 
of death. Veterinarians checked for signs of edema and fibrin in the 
liver and spleen as well as congestion (filled with blood and fluid) 
and hemorrhage of the atrium. The mortalities in the entire seawater 
phase until slaughter were categorized as 1) unknown causes and 
2) CMS-related mortalities. The total number of fish that died up 
until harvest (4.1 ± 1.1 kg) was 1190 (unknown = 776; CMS = 414). 
When analyzing this dataset, we coded the 414 fish that died with 
symptoms of CMS as 0; the 776 fish with unknown cause of mor-
tality as missing and the 3477 (= 4667–1190) slaughtered fish as 1 
(i.e., survivors to the PMCV virus).

Informant Population (challenge tested)—
Population 3
A total of 1095 eyed-eggs were generated from 32 sires and 73 dams 
(15 eye-eggs per full-sibling family) and were challenged with the PMCV 
virus. The mating ratio consisted of 1 male to 2 females (65%) and 1 
male to 3 females (35%). After hatching in April 2016, the fish were 
start fed and communally reared. In April 2017, the fish were smoltified 
before being transported from Mowi facilities at Øyerhamn, Norway 
to VESO Vikan, Namsos, Norway for the challenge test in May 2017. 
After 2 weeks of acclimatization, they were challenged tested through 
an intraperitoneal injection of the PMCV virus that originated from a 
highly virulent field outbreak of CMS, which was confirmed by qPCR 
analysis. At the end of the challenge period (9 weeks), heart tissues were 
obtained from each fish for histopathology analysis was undertaken 
as described under population 2. Histopathology of heart tissues was 
undertaken by the FishVet Group, Norway (http://fishvetgroup.no/en/). 
Both the atrium and ventricular tissue was examined for damage using 
the scoring system described in Table 1, with a score of 0 representing no 
visible lesions to a score of 3 which represented >50% of the heart tissue 
showing confluent lesions. Only histology scores of the atrium were used 
as the phenotype in this population because we obtained similar results 
using ventricular histology scores.

Genotyping and Quality Control
DNA was extracted from fin clips of all the fish using commercial 
kits by IdentiGEN, Ireland.). A  total of 5940 samples (620, 4350, 
and 985 from population 1, 2, and 3, respectively) were genotyped 
with a ThermoFisher Axiom 57K single nucleotide polymorphism 
(SNP) array (NOFSAL03, 55735 markers) that was developed by 
Nofima in collaboration with Mowi and SalmoBreed. Genotyped 
samples were quality checked within population with PLINKv1.9 
(Chang et  al. 2015) using the following procedure: Samples and 
SNPs with a call rate <95% were discarded. SNPs with Hardy 

Weinberg P-value (Fishers exact test) <10–15 and those with minor 
allele frequency <2% were removed. Samples that were <25% and 
>47% heterozygous were discarded. After genotype quality checks 
the total number of samples (markers in bracket) that were used for 
further analysis were 571 (54498), 4312 (53738), and 901 (53678) 
for population 1, 2, and 3, respectively.

Statistical Analysis

(Co)variance Estimations
Variance and covariance components were estimated with genomic 
relationships instead of pedigree information to be able to estimate 
the genetic correlations between the 3 populations. The following 
linear mixed animal model was applied:
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computed following the approach described by Wientjes et al. (2017) as:

K =




W1W
′
1∑

2p1iq1i
W2W

′
1√∑

2p2iq2i
√∑

2p1iq1i
W3W

′
1√∑

2p3iq3i
√∑

2p1iq1i

W1W
′
2√∑

2p1iq1i
√∑

2p2iq2i
W2W

′
2∑

2p2iq2i
W3W

′
2√∑

2p3iq3i
√∑

2p2iq2i

W1W
′
3√∑

2p1iq1i
√∑

2p3iq3i
W2W

′
3√∑

2p2iq2i
√∑

2p3iq3i
W3W

′
3∑

2p3iq3i




where W1, W2, and W3 contains the centered genotypes of popu-
lation 1, 2, and 3. The marker genotypes coded as 0 (AA), 1 (AB |  
BA) and 2 (BB) were centered with the observed allele frequency 
of each population, where p1i (q1i = 1− p1i), p2i (q2i = 1− p2i),  
and p3i (q3i = 1− p3i) are the allele frequencies of marker i for 
population 1, 2, and 3, respectively. Residual effects were assumed 
to be normally distributed but with no residual covariance between 

the populations such that 
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where I  was an identity matrix and σ2
e1, σ

2
e2, and σ2

e3 were the residual 
variances for population 1, 2, and 3. The genetic and residual (co)
variances were estimated in ASREML v4 software (Gilmour et al. 
2009).

Marker Association Analysis
Genome-wide association analysis was performed using a linear 
mixed animal model approach for each of the population separately. 

Table 1.   Scoring scheme for the histology of heart (atrium) tissue 
affected by cardiomyopathy syndrome

Score Description

0 No histopathological findings
1 Few (<7) focal lesions
2 Several distinct lesions and increased  

mononuclear infiltration
3 Multifocal to confluent lesions in >50% of  

tissues + moderate – severe leukocyte infiltration
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To account for genetic stratification (Supplementary Figure 1) within 
each of the populations, the first 5 eigenvectors from a principal 
component analysis (Chang et al. 2015) were used as covariates. The 
following model was used

y = µ+
N=5∑
j=1

eigenvecj +Miαi + Zg+ e

where y are either the binary phenotypes for population 1 and 2 or the 

histology scores for population 3, µ is the overall mean,
N=5∑
j=1

eigenvecj 

are the first 5 eigenvectors, Mi is the incidence matrix for marker i 
containing marker genotypes, αi is the allele substitution effect of 
marker i, Z was the incidence matrix linking phenotypes to their 
genomic breeding values (g) and was assumed to follow normal dis-
tribution ∼ N(0,Gσ2

g ), where, G is the genomic relationship matrix 
constructed for each population and was equivalent to the diagonal 
block of the K matrix, and e is the vector of random residual ef-
fects which followed a normal distribution ∼ N(0, Iσ2

e ), where,  
I  was an identity matrix and σ2

e  was the residual variance. The 
analysis was undertaken with GCTA (Yang et al. 2011a) using the 
“--mlma-loco” approach which ensures that the effect of marker i is 
estimated by accounting for the additive genetic variance (σ2

g) and re-
lationships captured by chromosomes other than the one the marker 
is located. Markers were considered significant when they exceeded 
the Bonferroni threshold for multiple testing of 0.05 divided by the 
number of markers that passed the quality check for that popu-
lation. To quantify the level of inflation (lambda) of the observed  
p-values compared to the expected p-values, we computed lambda 
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0.456  (Utsunomiya et  al. 2013) and the results 

were presented in a quantile–quantile (Q–Q) plots. The proportion 
of total genetic and phenotypic variance explained by significant 
markers was computed from the estimated allele substitution ef-
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Bioinformatics and Candidate Genes
SNPs passing a genome-wide significance threshold (−log10P = 6.03) 
were further examined to identify genes potentially involved in CMS 
resistance. Bedtools (v2.26.0) was used to identify the SNP position 
relative to the closest gene or genes. This was conducted by making a 
bed file from the SNP positions and using intersectBed with the Atlantic 
salmon genome version 2.2 (https://www.ncbi.nlm.nih.gov/assembly/
GCF_000233375.1/). Further investigation of the genes involved was 
conducted using NCBI resources (BLAST, Gene, and Pubmed) and 
the potential effect of SNPs within exons was assessed by translating 
each SNP variant using ExPASy Translate tool (https://web.expasy.org/
translate/) and the predicted protein sequences from NCBI.

Results

Phenotypic Distribution
To maximize power to detect possible QTLs associated with resist-
ance to the PMCV virus, we sampled approximately equal numbers 
of dead and surviving fish from population 1, however, after genotype 
quality checks, the percentage of dead fish was slightly higher (55.7%) 
than the surviving fish that were sampled (44.3%, Figure 1A). For 
population 2 (an informant population which encountered a natural 
outbreak of the PMCV virus), only 402 fish (9.3%) out of 4312 died 
from the CMS outbreak, the rest of the population (90.7%, Figure 1B) 
were considered as survivors and used in the analysis. Since the PMCV 
challenge test model did not result in mortalities, we performed hist-
ology of the heart (atrium) for all the challenge tested fish. The mean 
histology score was 1.750 (SD = 0.680), however, 86.2% of all fish 
had either a score of 1 (22.3% with no histopathological findings) or 
a score of 2 (63.9% with few (<7) focal lesions, Figure 1C).

Heritability and Genetic Correlation Between the 
Populations
Heritability estimates for survival to PMCV in population 1 and 2 
were 0.383 ± 0.076 and 0.117 ± 0.018, respectively (Table 2). A higher 
heritability (0.464 ± 0.055) was obtained for histopathological score 
of the atrium in the controlled challenge test of population 3 (Table 2).

Figure 1.  Distribution of traits in the 3 population. (A) Binary phenotype (dead or survived) recorded in population 1, (B) binary phenotype (dead or survived) 
recorded in population 2, and (C) heart tissue (atrium) histology scores (0 to 3) recorded in population 3.
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The estimated genetic correlation (using the genomic relationship 
matrix) between survival to PMCV in population 1 and population 
2 was moderate (0.609 ± 0.225; Table 3). The genetic correlation 
between survival (population 1 and 2) and histology scores (popula-
tion 3) was favorable and ranged from −0.514 ± 0.190 to −0.593 ± 
0.265 (Table 3). The estimates of heritability and genetic correlations 
between the populations were all significantly different from zero 
(P<0.05) based on a likelihood ratio test (results not presented).

Marker Association
We detected 24 and 186 markers on chromosome 12 and 27, re-
spectively that exceeded the genome-wide Bonferroni significance 
level (−log10P = 6.03; Figure 2 and Supplementary File 2). The pu-
tative QTL on chromosome 12 was present in population 1 and 3 
but not in population 2, while the QTL on chromosome 27 was 
present in all 3 populations (Figure 2A–C). The observed P-values 
were inflated (λ of ~1.1 indicates relatively good concordance be-
tween observed and the assumed distributions of the test statistic) 
with lambda values ranging from 1.08 to 1.23 (Figure 3). When the 
most significant SNP was included as a covariate, one at a time for 
each QTL region and population, to investigate the possibility of 
multiple QTLs in any of the regions on chromosome 12 and 27, 
none of the surrounding SNPs showed associations with the trait 
(Figure 4b,d,f,h, and j).

For population 1, 1 marker on chromosome 12 (located at 
67,351,339 bps) and 9 markers on chromosome 27 (spanned 
from 10,023,660 to 16,436,601 bps) exceeded the genome-wide 
threshold (Figures 2 and 4). The most significant marker for popu-
lation 1 on chromosome 27 was located at 11,724,500 bps (Table 
4). The frequency of the favorable allele for the top significant 
marker for chromosome 12 and 27 were 0.531 and 0.253, with each 
marker explaining about 12% and 14% of the total genetic variance, 
respectively.

For population 2, 4 markers on chromosome 27 were signifi-
cant, while none of the markers on chromosome 12 was significant 
(Figures 2 and 4). Three of these markers spanned from 10,160,666 
to 10,781,998 bps (a region of 621,332 bps), while the other 

marker was located at 29,548,089 bps. The most significant marker 
(P = 1.322 × 10−8) was located at 10,160,666 bps and it explained 
7.9% of the total genetic variance.

For population 3, the QTL peaks on chromosome 12 and 27 
were very strong (Figures 2 and 4), with 175 markers exceeding the 
Bonferroni threshold. Out of the 175 significant markers, 11 and 
164 markers were on chromosome 12 and 27, respectively. The most 
significant marker (P = 6.9751 × 10−27) for this population was also 
on chromosome 27 and was located at 11,723,738 bps. The fre-
quency of the favorable allele was 0.397 and it explained 31.7% 
and 14.5% of the total genetic and phenotypic variance. The entire 
region on chromosome 27 spanned from 6,292,857 to 35,401,496 
bps. Six out of the 11 markers on chromosome 12 spanned a region 
of 236,290 bps (between 62,592,358 and 62,828,648 bps) and the 
most significant marker (P = 1.7943 × 10−8 and at 62,828,648 bps) 
was located within this region. This marker explained 10.1% of the 
total genetic variance (Table 4).

Comparing the most significant marker from one population to 
the other, we observed a consistent direction (positive or negative) of 
the allele substitution effect in all the populations, although in some 
cases the marker was not significant (−log10P = 6.03) (Table 5).

Most of the significant SNPs were located within genes, including 
UTRs, introns, exons, and intergenic regions (Supplementary File 2). 
Thirty-six of the SNP markers resided within exons and 18 of them 
would cause amino acid changes. Genes located within ± 50 kbs of 
the top significant markers obtained from the association analysis 
of the 3 populations were investigated. In all, 4 distinct 50 kb re-
gions around the most significant markers were investigated (Table 
6). On chromosome 12, 2 QTL regions (region 12_1: 62,778,648 to 
62,878,648 bps and region 12_2: 67,301,339 to 67,401,339 bps) 
were defined based on the top significant SNP that was obtained 
in population 1 and 3.  Two QTL regions were also defined for 
chromosome 27; region 27_1 and 27_2 spanned from 10,110,666 
to 10,210,666 bps (population 2)  and 11,674,500 to 11,774,500 
bps (population 1 and 3), respectively.

Several interesting genes with functions known to affect viral re-
sistance were found to map to the QTL regions (Table 6). The magi1 
gene (membrane-associated guanylate kinase, WW, and PDZ domain 
containing 1) was the only gene in region 12_2. The class  I histo-
compatibility antigen, F10 alpha chain-like (ha1f) gene was found 
in region 27_1. Genes in region 27_2 included the transcript for 
phosphatidylinositol 4-kinase beta (pi4kb) and BCL2/adenovirus 
E1B 19 kDa protein-interacting protein 2-like (bnip2).

Discussion

The main aim of this study was to estimate heritability and to de-
tect QTLs for CMS resistance in 3 different year-class populations 

Table 2.   Variance components and heritability estimate (standard error; in bracket) for the 3 populations

Parameters Field outbreak Challenge test Population 3

 Productiown population 1 Informant population 2  

σ2
g 0.097 (0.023) 0.010 (0.002) 0.226 (0.038)

σ2
e 0.157 (0.017) 0.076 (0.002) 0.262 (0.020)

σ2
p 0.254 (0.017) 0.086 (0.002) 0.488 (0.031)
h2 0.383 (0.076) 0.117 (0.018) 0.464 (0.055)

σ2
g, genetic variance; σ2

e , residual variance; σ2
p, phenotypic variance; h2, heritability; binary phenotype (dead = 0 and survived = 1) was used in population 1 and 

2, histology score of the heart (atrium) was the recorded phenotype in population 3.

Table 3.    Genetic correlations (standard error) between the bin-
ary survival traits (Production and Informant populations) and the 
atrium-score trait (Challenge test population)

Populations 1 
Production

2 
Informant

1 Production   
2 Informant 0.611 (0.225)  
3 Challenge test −0.593 (0.262) −0.514 (0.190)
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of Atlantic salmon. The recorded data used was binary survival data 
from field outbreaks (2 of the populations) and atrium-score data 
from a challenge test (the third population). In addition, we estimated 
the magnitude of the genetic correlations between the 3 mentioned 
traits in these populations. We obtained low to high heritability esti-
mates (0.12–0.46) with survival data from field outbreaks and chal-
lenge test experiments. A moderate and favorable genetic correlation 
was obtained between the traits from the 3 populations. The genome-
wide association study identified a putative QTL on chromosome 
27 in all 3 populations and on chromosome 12 in 2 of the popula-
tions. Both QTLs explained about 7.6% to 31.7% of the total gen-
etic variance and about 1% to 14.5% of the phenotypic variance. 
Functionally interesting candidate causative genes (hfa1 and bnip2) 
were found to map near to the SNPs that were most significant.

Heritability of Resistance to CMS Infection
Low to moderate heritability was estimated for survival (0.38 ± 0.08 
for population 1 and 0.12  ± 0.02 for population 2)  while higher 
heritability was estimated for the atrium-score trait (0.46  ± 0.06). 

The higher heritability estimates for survival in population 1 may 
be due to the much higher mortality (55.7%) than in population 2 
(9.3%). When the 2 binary heritability estimates were transformed 
to the underlying liability scale according to Dempster and Lerner 
(1950), heritability estimate were 0.61 for population 1 and 0.36 for 
population 2. The lower heritability estimates in population 2 may be 
due to a relatively higher number of noninformative (zero mortality) 
families (Ødegård et al. 2007) as well as the different sampling pro-
cedures used to collect data from the 2 populations. While those of 
population 2 were the survivors of the entire seawater period, the 300 
survivors of population 1 were sampled and critically examined not 
to be infected with the PMCV virus after an equal number of dead 
fish had been recorded during a 6 weeks CMS outbreak. The herit-
ability estimates for survival in population 1 are likely to be more 
specific estimates of the susceptibility to CMS than those for sur-
vival in population 2. In addition, some of the mortalities recorded 
in population 2 could have been due to causes other than CMS. This 
might be part of the reason for the relatively moderate genetic cor-
relation (0.61  ± 0.23) detected between survival to CMS in the 2 

Figure 2.  Manhattan plot of resistance to cardiomyopathy syndrome (CMS). (A) Binary phenotype recorded from field outbreak on the commercial farm 
population 1. (B) Binary phenotype recorded from field outbreak of the informant pedigreed population 2. (C) Histology score of heart tissue (atrium) based on 
challenge test information of the informant pedigreed population 3. Red and blue horizontal line represent genome-wide significant threshold (−log10P = 6.03) 
and chromosomal-wide significant threshold for the population (−log10P = 4.56), respectively. See online version for full colors.
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populations. For this reason, the sampling strategy and the survival 
data from population 1 probably yields more power for mapping 
QTL affecting the susceptibility to CMS than the survival data from 
population 2. Nonetheless, the magnitude of the heritability estimates 
in all 3 populations confirm that there is substantial genetic variation 

in susceptibility to CMS and that genomic or marker-assisted selec-
tion could be effectively used to improve the resistance of Atlantic 
salmon to the PMCV virus. Moreover, the heritability estimates in 
this study are of a similar level to those detected for several other 
disease traits in Atlantic salmon (see the review by Yáñez et al. 2014).

Figure 3.  Quantile–quantile plot of −log10P  values for each of the 3 populations. See online version for full colors.

Figure 4.  Manhattan plots of chromosome 12 and 27 for the 3 populations; (a), (b), (c), and (d) are plots from population 1; (e) and (f) are plots from population 
2; and (g), (h), (i), and (j) are plots from population 3. Plots (b), (d), (f), (h), and (j) were obtained by fitting the top most significant marker as covariate in the 
genome-wide association analysis. Red and blue horizontal line represent the genome-wide significant threshold (−log10P = 6.03) and the chromosomal-wide 
significant threshold for the population (−log10P = 4.56), respectively. See online version for full colors.
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There are challenges with using field outbreak information from 
commercial populations for heritability estimation and mapping 
QTLs. First, it can be difficult to identify cause-specific mortalities 
(exact cause of death). Furthermore, without genomic information, 
it would not be possible to estimate heritability from commercial 
populations with unknown pedigree. The fish in commercial cages 
might have been produced from a few sires and dams, and therefore 
even with known pedigree, the estimate of heritability might not be 
very reliable. However, with genomic information, it is possible to 
estimate heritability from nonpedigreed populations as well as from 
populations with very few families and large number of offspring per 
family (Ødegård and Meuwissen, 2012). Although estimate of her-
itability from genome-wide identity-by-state markers can be biased 
upwards (Fernando et al. 2017). Finally, field outbreaks might not 
provide regular mortality information and could therefore be unreli-
able for routine selection of breeding candidates (Bishop et al. 2012; 
Yáñez et al. 2014).

Genetic Correlations Between Traits from the 
Different Populations
At first glance, the favorable but moderate genetic correlation 
of atrium histology scores with survival due to CMS outbreak in 
the field (population 1 and 2) indicates that the histology score of 
the atrium is not a good predictor of survival to CMS in the field. 
However, to better estimate the genetic correlation between survival 
and atrium histology score, these 2 traits should be measured on the 
same individuals or siblings, so that the magnitude of the correlation 

is not influenced by relatedness between independent populations 
which was the case in this study.

The moderate genetic correlation observed between populations 
may also be because the populations are different year-classes of 
Atlantic salmon established from different genetic bases during the 
late 1960’s and early 1970’s with little flow of genetic material and 
relatively low genetic connectedness between the 2 populations. This 
explains the population stratification that was evident from the prin-
cipal component analysis (Supplementary File 1). Furthermore, a 
moderate genetic correlation between populations may be obtained 
because 1) linkage disequilibrium between markers and QTL could 
be different between populations and 2)  markers associated with 
the QTL could differ in allele frequency between the populations. 
The magnitude of the genetic correlations between populations for a 
specific trait also reflects the expected genomic prediction potential 
across populations. (Raymond et al. 2018) reported that accuracies 
were 50% less when the genetic correlation between 2 breeds was 
0.5 instead of 1. In this study, we computed the genetic correlations 
using all markers, however, since the LD phase between QTL and 
markers could be more persistent at causal loci (i.e., estimated al-
lele substitution effect are similar and in the same direction) than 
at noncasual loci (Wientjes et al. 2017; Raymond et al. 2018), we 
also investigated the effect of using only markers on chromosome 
27 to construct the genomic relationship matrix and compute the 
genetic correlations between populations. This approach will esti-
mate the genetic correlation between the marker effect of the 2 QTL 
region/chromosome between the population. The estimated genetic 
correlation using these 2 chromosomal regions was ~1.0 between 

Table 5.   Summary statistics of the 5 significant markers in all the 3 population

Chromo-
some

SNP Position(bps) A1 A2 Freq 
(A1)

beta (A1) P-value Population1 Population marker 
was significant

27 AX-86985828 10160666 A B 0.157 −0.055 1.32E−08 Informant informant
27 AX-86985828 10160666 A B 0.383 −0.145 1.26E−05 Production informant
27 AX-86985828 10160666 A B 0.141 0.110 2.28E−02 Challenge test informant
12 AX-96382208 67351339 B A 0.542 −0.003 6.82E−01 Informant Production
12 AX-96382208 67351339 B A 0.469 −0.159 2.81E−07 Production Production
12 AX-96382208 67351339 B A 0.263 0.213 7.69E-07 Challenge test Production
27 AX-96420652 11724500 A B 0.382 −0.009 2.28E−01 Informant Production
27 AX-96420652 11724500 A B 0.747 −0.197 2.15E−08 Production Production
27 AX-96420652 11724500 A B 0.329 0.293 1.26E−16 Challenge test Production
12 AX-96152485 62828648 A B 0.289 0.006 3.98E−01 Informant Challenge test
12 AX-96152485 62828648 A B 0.359 0.045 1.59E−01 Production Challenge test
12 AX-96152485 62828648 A B 0.587 −0.216 1.79E−08 Challenge test Challenge test
27 AX-97886034 11723738 A B 0.310 0.021 1.06E−02 Informant Challenge test
27 AX-97886034 11723738 A B 0.132 0.235 4.29E−08 Production Challenge test
27 AX-97886034 11723738 A B 0.397 −0.384 6.98E−27 Challenge test Challenge test

1Binary phenotype (dead = 0 and survived = 1) was used in population 1 (Production) and 2 (informant), histology score of the heart (atrium) was the recorded 
phenotype in population 3 (Challenge test).

Table 4.   Summary statistics of the most significant markers for the 3 populations

Populations CHR Position (bp) SNP A1 A2 Freq (A1) Beta (A1) P-value Vg1 Vp2

1 Production 12 67351339 AX-96382208 B A 0.469 −0.159 2.81E−07 0.120 0.049
  27 11724500 AX-96420652 B A 0.253 0.197 2.15E−08 0.140 0.057

2 Informant 27 10160666 AX-86985828 A B 0.157 −0.055 1.32E−08 0.079 0.009
3 Challenge test 12 62828648 AX-96152485 B A 0.412 0.216 1.79E−08 0.101 0.046
  27 11723738 AX-97886034 A B 0.397 −0.384 6.98E−27 0.317 0.145

1Proportion of the genetic (Vg) and 2phenotypic (Vp) variance explained by the most significant markers.
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population 1 and 2, −0.79 between population 1 and 3 and −0.59 
between population 2 and 3.  An increase in the estimate of gen-
etic correlations between populations when casual variants are used 
compared to all loci have previously been observed in other studies 
(Raymond et al. 2018).

Putative QTL Positions
P-values in this study were inflated (λ > 1.1 for population 1 and 2), 
however, this is to be expected for structured populations with large 
full- and half-sib families (Yang et al. 2011b).

We observed 2 regions on chromosome 27 that were highly as-
sociated with resistance to CMS, however, since the power to detect 
QTLs for resistance to CMS was much larger in population 1 and 3 
than in population 2, it is more likely that the causal mutation is lo-
cated close to the 11.72 Mbps region than the 10.16 Mbp region. For 
chromosome 12, 2 regions were identified in population 1 (62828648 
bps) and 3 (67351339 bps), and these 2 regions were 4.5 Mbps apart. 
The reasons for the discrepancies in the location of the top significant 
markers on chromosomes 12 and 27 are difficult to explain. For ex-
ample, the top significant marker of population 1 (AX-86985828, with 
frequency of allele B equal to 0.16), was equally frequent in population 
3 (frequency of allele B equal to 0.14), but this marker was not signifi-
cant in population 3. We speculate that, the reason for these discrep-
ancies is because the markers on this SNP array are not in complete 
linkage disequilibrium with the QTL. Therefore, fine mapping of these 

regions with sequence information should be undertaken to narrow 
down the QTL region and possibly identify the causative gene and the 
quantitative trait nucleotides.

There was consistency in the direction of the allele substitution 
effects in the 3 populations and this suggests that, the LD phase be-
tween the markers and the causative mutation is in the same dir-
ection in the 3 populations, however, since allele frequencies differ, 
the magnitude of the allele substitution effect and the proportion of 
variance explained by the QTL region is expected to be different in 
the 3 populations.

The QTL region on chromosome 27 explained ~30% of the total 
genetic variance (results from the challenge test). Several medium to 
large QTLs have also been found for several disease traits in Atlantic 
salmon such as pancreas disease (Gonen et al. 2015) and infectious 
pancreatic necrosis (Houston et al. 2008; Moen et al. 2009). Using 
the top marker as a covariate before computing the allele substitu-
tion effect of all other markers on chromosome 27 removed the QTL 
peak (Figure 4). This is an indication that, the top significant marker 
can be used to tag the QTL and can be used for marker-assisted se-
lection (MAS). Therefore, classical family-based selective breeding, 
supplemented with MAS to capitalize on the genetic variation within 
families, can be used as one of the strategies to combat this disease. 
Application of marker-assisted selection to selective breeding util-
izing marker genotypes for these large QTLs have led to substantial 
increases in genetic gain in some Atlantic salmon breeding programs 
(Storset et al. 2007).

Table 6.   Genes located close to the top significant markers of chromosome 12 and 27 for the 3 population

Chromosome QTL region1 Population Gene Gene name

Left pos-
ition (bp)

Right pos-
ition (bp)

12 SSA12_1 62,778,648 62,878,648 Challenge 
test

LOC106565906 Draxin-A
LOC106565953 Uncharacterized LOC106565953
LOC106565907 Pantothenate kinase 4-like (PANK4)
LOC100353126 Angiotensin II receptor associated 

protein (AGTRAP)
SSA12_2 67,301,339 67,401,339 Informant LOC106565841 Membrane-associated guanylate kin-

ase, WW and PDZ domain-containing 
protein 1-like ((MAGI1)

27 SSA27_1 10,110,666 10,210,666 Informant LOC100136924 Transport-associated protein 2b (TAP2B) 
LOC106588399 Proteasome subunit beta type-6-a like 

protein-like (PSMB6-A)
LOC100136936 Proteasome subunit beta type-9a 

(PSMB9-A)
LOC106588263 Uncharacterized LOC106588263
LOC106588398 Proteasome subunit beta type-7-like
LOC106455085 Transfer RNA valine (anticodon GAC) 

(TRNAV-GAC)
LOC106588400 Proteasome subunit beta type-8-like
LOC106588401 Class I histocompatibility antigen, F10 

alpha chain-like (HFA1)
SSA27_2 11,674,500 11,774,500 Challenge 

test and 
Production

LOC106588340 Phosphatidylinositol 4-kinase beta 
(PI4KB)

LOC106588342 Protein prune homolog
LOC106588341 Protein FAM63A-like
LOC106588344 Guanine nucleotide-binding protein G(s) 

subunit alpha pseudogene (GNAS)
LOC106588343 BCL2/adenovirus E1B 19 kDa protein-

interacting protein 2-like (BNIP2)
LOC106588345 CDC42 small effector protein 1-like

1QTL region was defined as ± 50 kbs to the left and right of the most significant SNP in each population.
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Genes Located in the QTL Region
Several genes with functions potentially affecting viral resistance 
were found to map to the regions identified. In mammals, the PDZ1 
and PDZ3 domains of the magi1 gene have been shown to regu-
late the amount of coxsackievirus and adenovirus receptor (car), 
which directly impacts pathogenicity of these viruses (Kolawole 
et al. 2012). The ha1f gene is part of the major histocompatibility 
complex class 1 (mr1) family of genes. The mr1 (LOC106588402) 
gene was only 109 kbs away from the top significant marker of 
population 1. Specific alleles of mhc I and II have been found to be 
associated with resistance to infectious salmon anemia in Atlantic 
salmon (Kjøglum et al. 2006; Grimholt et al. 2003). The product 
of pi4kb has been found to be important in viral replication for 
several types of viruses (Delang et al. 2012). One particular virus, 
Coxsackievirus, produces a similar phenotype, myocarditis, in 
humans, and pi4kb is associated with resistance/susceptibility to 
Coxsackievirus infection in humans (Dorobantu et al. 2014). The 
bcl2/adenovirus E1B 19  kDa protein-interacting protein 2-like 
(bnip2) interacts with a protein responsible for the protection of 
virally induced cell death, and with cdc42, a gene which was also 
found to map in close proximity to QTL 27_2 (Boyd et al. 1994). 
In the absence of E1B-19k, cellular and viral DNA degradation oc-
curs, and the death of viral host cells is promoted, and both these 
actions inhibit viral replication (White, 2001). All these genes war-
rant further attention as potential candidates affecting viral im-
mune function.

Conclusion

Our results from field outbreaks and challenge tests show that resist-
ance to CMS in Atlantic salmon is heritable (0.12–0.46), and that 
breeding populations could be selected for improved CMS resistance 
to help reduce outbreaks of the disease. We also identified 2 QTL 
regions on chromosome 27 and 12 across all 3 populations which 
explained 7.6% to 31.7% of the total genetic variance. Interesting 
genes mapping to these QTL regions that could play a role in resist-
ance to CMS included magi1, pi4kb, bnip2, and ha1f. These results 
also highlight the potential of using field outbreak information from 
nonpedigreed populations to estimate heritability and map QTLs in 
Atlantic salmon populations.
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