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Abstract

Oestrogens are pivotal in ovarian follicular growth, development and function, with fundamental roles in steroidogenesis, nurturing the

oocyte and ovulation. Infections with bacteria such as Escherichia coli cause infertility in mammals at least in part by perturbing ovarian

follicle function, characterised by suppression of oestradiol production. Ovarian follicle granulosa cells produce oestradiol by

aromatisation of androstenedione from the theca cells, under the regulation of gonadotrophins such as FSH. Many of the effects of E. coli

are mediated by its surface molecule lipopolysaccharide (LPS) binding to the Toll-like receptor-4 (TLR4), CD14, MD-2 receptor complex

on immune cells, but immune cells are not present inside ovarian follicles. The present study tested the hypothesis that granulosa cells

express the TLR4 complex and LPS directly perturbs their secretion of oestradiol. Granulosa cells from recruited or dominant follicles are

exposed to LPS in vivo and when they were cultured in the absence of immune cell contamination in vitro they produced less oestradiol

when challenged with LPS, although theca cell androstenedione production was unchanged. The suppression of oestradiol production by

LPS was associated with down-regulation of transcripts for aromatase in granulosa cells, and did not affect cell survival. Furthermore,

these cells expressed TLR4, CD14 and MD-2 transcripts throughout the key stages of follicle growth and development. It appears that

granulosa cells have an immune capability to detect bacterial infection, which perturbs follicle steroidogenesis, and this is a likely

mechanism by which ovarian follicle growth and function is perturbed during bacterial infection.
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Introduction

Oestrogens are intimately involved in the growth and
development of ovarian follicles from the early antral
stage to ovulation, with fundamental roles in steroido-
genesis, nurturing the oocyte, ovulation and the
subsequent formation of the corpus luteum (CL; Matzuk
et al. 2002, Schams & Berisha 2002). Oestradiol is
produced by granulosa cell aromatisation of androgens
secreted by the theca cells (Fortune 1994). Oestradiol
synergises with the gonadotrophins to regulate the
expression of follicle-stimulating hormone (FSH) and
luteinising hormone (LH) receptors on granulosa cells,
which are important developmental checkpoints in the
lifespan of the follicle at recruitment and selection
respectively (Dierich et al. 1998, Ma et al. 2004).
Towards the end of the ovarian cycle, secretion of
oestradiol by the dominant follicle stimulates the
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pituitary LH surge, which induces ovulation (Moenter
et al. 1990). However, cattle that ovulate a smaller
follicle with lower oestradiol concentrations form a
smaller CL with lower peripheral plasma progesterone
concentrations (Perry et al. 2005, Robinson et al. 2005).
Progesterone is critical for implantation, and the
recognition and maintenance of pregnancy (Spencer
et al. 2004). Hence, perturbation of follicle growth and
oestradiol production has important consequences for
ovulation, conception and pregnancy.

Uterine bacterial infections are commonly acquired
by humans and animals during coitus and after
parturition. Each year 350 million new, mainly bacterial,
sexually transmitted infections occur in adults of
reproductive age (http://www.who.int/topics/sexually_-
transmitted_infections), the majority of which are
initially asymptomatic, but the consequences range
from subfertility to severe pelvic inflammatory disease
DOI: 10.1530/REP-07-0229
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(PID; Quayle 2002, Butler 2004). Mammalian fertility is
also compromised by PID associated with post partum
bacterial infections. Bos taurus is an economically
important species, where considerable infertility is
caused by bacterial contamination of the uterus, which
is ubiquitous after parturition (Dohmen et al. 2000,
Sheldon et al. 2002), with 40% of animals developing
PID and infection persisting O3 weeks in 15% of cows
as endometritis (Sheldon & Dobson 2004). The gram-
negative Eschericia coli is the first and the most common
pathogenic bacteria isolated from the uterus (Dohmen
et al. 2000, Sheldon et al. 2002); and lipopolysaccharide
(LPS), the main pathogenic moiety of E. coli, is
detectable in the plasma of cows with uterine infection
(Mateus et al. 2003). Infertility is not only associated with
uterine damage but also with perturbation of the ovarian
cycle. Disease associated with E. coli or infusion of LPS
suppresses oestradiol production and follicular growth in
a range of mammals (Xiao et al. 1998, Battaglia et al.
2000, Sheldon et al. 2002). However, the availability of
suitable tissue for research is a major constraint to
advancing knowledge of the effects of bacterial infection
on ovarian function in humans. Monovulatory domestic
ruminants such as B. taurus represent a physiologically
relevant model to study these basic mechanisms
(Campbell et al. 2003). Furthermore, organisms infecting
the uterus, such as Escherichia and Tritrichomonas
species, are similar in humans and cattle (Sheldon
et al. 2002, Kamiyama et al. 2004, Singh et al. 2004,
Herath et al. 2006a), making the cow a good model for
studying uterine disease and immunity.

The host response to infection depends on innate
immunity in which intrinsic mechanisms are responsible
for recognising and responding to pathogen challenge
(Janeway et al. 2001). Toll-like receptors (TLRs), which
are usually associated with professional immune cells,
recognise pathogen-associated molecules (Beutler 2004,
Akira et al. 2006) and engagement with TLRs initiates a
signalling cascade that stimulates the production of
immune mediators, which orchestrate the immune
response (Akira & Takeda 2004, Beutler 2004). However,
the presence of physical barriers and the limitation of
antigen at immune privileged sites raise the question
whether cells in isolated areas express TLRs. Granulosa
cells reside within the basement membrane of the
ovarian follicle, separating them from the local vascu-
lature and preventing immune cell transmigration
(Petrovska et al. 1996). However, the basement
membrane of the ovarian follicle is highly porous to
molecules like LPS and the molecular mass cut-off
is calculated to be 100–850 kDa (Rodgers et al. 1999).
Since E. coli infection or LPS perturbs ovarian follicle
development and suppresses oestradiol production
in vivo, the present study tested the hypothesis that
granulosa cells express the TLR4 complex and LPS
directly perturbs their secretion of oestradiol.
Reproduction (2007) 134 683–693
Results

Presence of LPS in ovarian follicular fluid

The concentrations of LPS in follicular fluid collected
from normal postpartum animals were below the limits of
detection in 16 of 19 animals (mean 0.06G0.04 ng/ml;
range 0–0.8 ng/ml). However, concentrations of LPS were
higher in seven cows with clinical endometritis (mean
176.1G112 ng/ml, P!0.05; range 4.3–875.2 ng/ml).
The follicular fluid concentrations in animals with
subclinical endometritis were intermediate between the
normal and clinical cases, with 4 of 8 cows below the
limit of detection for mild cases (mean 0.7G0.3 ng/ml;
range 0–0.8 ng/ml) and 8 of 24 cows below the limit of
detection for moderate cases (mean 4.8G1.8 ng/ml;
range 0–40.0 ng/ml). For follicles soaked in LPS in vitro,
the concentrations of LPS in follicular fluid were higher
than control follicular fluid for medium-sized follicles
(0.5G0.7 ng/ml versus 0; P!0.05) or large follicles
(74.2G31.1 ng/ml versus 0; P!0.01).
LPS does not affect androstenedione production by
theca cells

Production of oestradiol by granulosa cells is dependent
on the aromatisation of theca-derived androstenedione
and the stage of follicle growth or development (Fortune
1994). Hence, cultured theca cells were challenged with
LPS to determine whether E. coli affects androstenedione
production. However, LPS treatment for 48 h did not
affect the production of androstenedione, regardless of
the follicle size from which the cells were isolated
(Fig. 1A–C). In addition, there was no effect of LPS after
96 h treatment (data not shown) and the LPS challenge
did not affect cell numbers (PO0.05; Fig. 1D–F).
Oestradiol production is directly inhibited following
LPS treatment of granulosa cells

Since peripheral plasma oestradiol concentrations are
lower following uterine infection in vivo (Sheldon et al.
2002), and LPS does not modulate the production of
androstenedione by theca cells in vitro, we investigated
whether LPS had a direct effect on oestradiol production by
granulosa cells. In the presence of optimum FSH and
androstenedione concentrations as determined previously
(Gutierrez et al.1997), LPS inhibited oestradiol production
by bovine granulosa cells, with the greatest impact on cells
from dominant (O8 mm diameter) and recruited (4–8 mm)
follicles (Fig. 2A–C). In addition, LPS also inhibited
progesterone production by bovine granulosa cells from
dominant and recruited follicles (Fig. 2D–F). The inhibition
of oestradiol (Fig. 3A–C), but not progesterone (Fig. 3D–F),
was still observed at 96 h after LPS treatment. However,
LPS treatment was not associated with significant changes
in cell numbers (Fig. 3G–I). To determine if granulosa cells
were sensitive to lower concentrations of LPS associated
www.reproduction-online.org



Figure 1 Androstenedione production of theca
cells isolated from (A) small (!4 mm diameter),
(B) medium (4–8 mm diameter) or (C) large
(O8 mm diameter) bovine follicles. Theca cells
were treated with LPS at the concentrations
indicated. After 48 h treatment, supernatants
were harvested and androstenedione production
was measured by RIA. The number of theca
cells (!106/ml) after 96 h culture are indicated (D
to F). Numerical values are presented as the
meanCS.E.M. of three experiments.
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with subclinical uterine disease, cells were treated with
0.1 ng/ml LPS, which reduced oestradiol production by
granulosa cells from dominant follicles (2.6G0.8 vs
4.1G0.8 ng/ml,P!0.05) and tended to reduce oestradiol
production by cells from recruited follicles (1.9G0.5 vs
3.4G0.8 ng/ml, PZ0.09) compared with control. Treat-
ment of granulosa cells with 0.1, 1 and 10 mg/ml of a
detoxified form of LPS had no effect on oestradiol
secretion by cells from dominant follicles (1.4G0.3,
1.4G0.2 and 1.5G0.2 ng/ml) compared with control
cells (1.5G0.2 ng/ml).

To determine whether the decrease in oestradiol
production in granulosa cells from medium and large
www.reproduction-online.org
follicles was due to changes in responsiveness to FSH
and/or the down-regulation of the enzyme required for
oestradiol synthesis, expression of mRNA for the FSH
receptor (FSHR) and aromatase were analysed.
Following LPS challenge of granulosa cells isolated
from dominant (O8 mm) follicles, only aromatase
mRNA levels were down-regulated (Fig. 4A and C;
FSHR, PZ0.11). Analysis of oestradiol receptor a (ERa),
ERb and LH receptor (LHR) mRNA expression was
determined to explore the effects of LPS on granulosa cell
function. Granulosa cells isolated from recruited and
dominant follicles expressed ERa mRNA, while only
granulosa cells isolated from dominant follicles
Figure 2 Oestradiol and progesterone production
of granulosa cells isolated from (A and D) small
(!4 mm diameter), (B and E) medium (4–8 mm
diameter) or (C and F) large (O8 mm diameter)
bovine follicles. Granulosa cells were treated with
LPS at the concentrations indicated. After 48 h
treatment, supernatants were harvested and
steroid production was measured by RIA.
*P!0.05 compared with control, within follicle
size. Numerical values are presented as the
meanCS.E.M. of three experiments.
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Figure 3 Oestradiol and progesterone production of
granulosa cells isolated from (A and D) small
(!4 mm diameter), (B and E) medium (4–8 mm
diameter) or (C and F) large (O8 mm diameter)
bovine follicles. Granulosa cells were treated with
LPS at the concentrations indicated. After 96 h
treatment, supernatants were harvested and steroid
production was measured by RIA. The number of
granulosa cells (!106/ml) after 96 h culture are
indicated (G to I). *P!0.05 compared with control,
within follicle size. Numerical values are presented
as the meanCS.E.M. of three experiments.
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expressed LHR mRNA and expression was not affected
by LPS treatment (Fig. 4A). Transcripts for ERb mRNA
were not detectable in control or LPS-treated granulosa
cells at 48 h, but were expressed at 0 h by freshly
isolated granulosa cells (data not shown).
Granulosa cells express immune mediators

Interleukin-1 (IL-1) plays an important role in immunity
as well as in ovarian cell function (Spicer & Alpizar
1994, Janeway et al. 2001, Gerard et al. 2004).
Consequently, the expression of IL-1a and IL-1b mRNA
by granulosa cells was determined following LPS
challenge. Granulosa cells isolated from medium and
large follicles expressed transcripts for IL-1a (Fig. 4B) but
not IL-1b mRNA (data not shown). There was no
significant difference in the IL-1a mRNA expression
following LPS treatment of cells isolated from the large
follicle (PZ0.12, Fig. 4C).

In response to LPS treatment, immune cells produce
TNFa and NO (Janeway et al. 2001, Akira & Takeda
2004, Beutler 2004). Since granulosa cells responded to
LPS, TNFa and NO were measured in the supernatants of
cell cultures treated with LPS, but concentrations were
below the limits of detection. Consequently, granulosa
cells were analysed for the expression of TNFa and NO
Reproduction (2007) 134 683–693
synthase (NOS2, formerly iNOS, inducible NOS)
mRNA. Granulosa cells expressed TNFa but not NOS2
mRNA (Fig. 4B). As observed with IL-1a, TNFa mRNA
was detected in granulosa cells isolated from medium
and large follicles, but there was no significant
regulation of TNFa mRNA following LPS treatment
(PZ0.14, Fig. 4C).
Granulosa cells express TLR4, MD-2 and CD14 mRNA

To ensure that the response to LPS was not mediated via
contaminating immune cells, the expression of the pan-
leukocyte marker, CD45, was determined by PCR.
Granulosa cell cultures were free of contaminating
immune cells (Fig. 5A). As granulosa cells responded
to LPS challenge directly, we analysed the mRNA
expression of the LPS receptor complex: TLR4, CD14
and MD-2. Granulosa cells isolated from medium
and large follicles expressed TLR4, CD14 and MD-2
mRNA (Fig. 5B).
Discussion

Uterine infection with E. coli or infusion of LPS perturbs
ovarian antral follicle growth and function (Xiao et al.
1998, Battaglia et al. 2000, Sheldon et al. 2002). In the
www.reproduction-online.org



Figure 4 Analysis of gene expression by granulosa cells associated with
reproductive function. Granulosa cells isolated from medium (4–8 mm
diameter) or large (O8 mm diameter) follicles were stimulated with
10 mg/ml LPS for 48 h and harvested, RNA was isolated and reverse
transcribed as described in Materials and Methods. cDNAwas analysed
for the presence of (A) aromatase, FSHR, LHR, ERa, and (B) NOS2,
IL-1a and TNFa transcripts using the indicated primer pairs (Table 1). A
representative result is shown (nZ3). (C) PCR bands were analysed and
are represented as LPS treatment (open bar) relative to nil control
(closed bar) for granulosa cells isolated from large (O8 mm diameter)
follicles. Results are presented as the meanCS.E.M. of three experi-
ments. *P!0.05 compared with control.
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present study, we found LPS in follicular fluid from
animals with uterine disease and treatment of granulosa
cells with LPS in vitro suppressed oestradiol production
in cells from recruited and dominant follicles. Further-
more, the pure populations of granulosa cells from the
different stages of follicle growth expressed TLR4, CD14
and MD-2 mRNA transcripts, which constitute the
specific receptor complex for LPS. The observations
that theca cell androstenedione production was unaf-
fected by LPS treatment but that granulosa cell
aromatase transcripts were regulated provides an insight
into a mechanism by which LPS may mediate its effect on
www.reproduction-online.org
follicle growth, development and function in the
mammalian ovary.

In the whole animal, the effects of bacteria or LPS are
most evident in large or pre-ovulatory antral follicles of
several species (Xiao et al. 1998, Battaglia et al. 2000,
Sheldon et al. 2002). In cattle with uterine infection,
ovarian follicle growth is suppressed from 8 mm
diameter, around the time of dominant follicle selection
(Sheldon et al. 2002, Campbell et al. 2003). The lower
peripheral plasma oestradiol concentrations are evident
in the days before ovulation, but as oestradiol concen-
trations are in the pg/ml range, it would be difficult to
detect subtle differences in the whole animal before this
(Sheldon et al. 2002). However, infusion of LPS
suppresses plasma oestradiol concentrations within
24 h, delaying the LH surge and ovulation (Suzuki
et al. 2001).

To substantiate the concept that LPS is present in the
follicular fluid of animals with uterine disease, ovarian
follicular fluid was aspirated in vivo from animals in
which the severity of uterine disease had been
characterised (Moussavi et al. 2007). Animals with
clinical disease had concentrations of LPS that ranged
up to 0.8 mg/ml and normal animals did not have
measurable concentrations of LPS in their ovarian
follicular fluid, while animals with subclinical disease
had intermediate concentrations. The high concen-
trations of LPS in ovarian follicular fluid in disease
animals is lower than LPS concentrations reported in the
uterus but higher than those reported in peripheral
plasma (Dohmen et al. 2000, Mateus et al. 2003,
Williams et al. 2007). This suggests that there may be
some localised transfer of LPS by the intimate vascu-
lature that links the uterus and ovary, as is the case for
prostaglandin F2a (Ginther 1974, Ford et al. 1979). To
support further the concept that LPS can cross the
basement membrane of the ovarian follicle, dissected
follicles were maintained in culture media containing
10 mg/ml LPS for 18 h in vitro. Despite the lack of active
vasculature, LPS was found in the follicular fluid of
medium and particularly large follicles, probably
reflecting the surface area available for diffusion of
LPS. Taken together these data support the in vivo
observations that LPS has a localised effect in the ovarian
follicle of cattle and sheep (Battaglia et al. 2000, Sheldon
et al. 2002).

Oestradiol is produced by granulosa cell aromatisa-
tion of theca-derived androgens under the stimulation of
gonadotrophins (Fortune 1994). In the present study,
treatment of theca cells with LPS did not affect
androstenedione production or cell survival, whereas
oestradiol secretion was suppressed by LPS treatment of
granulosa cells, and the effect was most marked in cells
from medium and large follicles, concurring with the
whole animal observations. Androstenedione and oes-
tradiol secretion from the theca and granulosa cells
respectively were maintained for 96 h under serum-free
Reproduction (2007) 134 683–693



Figure 5 Analysis of LPS receptor complex and immune mediator gene
expression by granulosa cells. Granulosa cells isolated from medium
(4–8 mm diameter) or large (O8 mm diameter) follicles were
stimulated with 10 mg/ml LPS for 48 h and harvested, RNA was isolated
and reverse transcribed as described in Materials and Methods. cDNA
was analysed for the presence of (A) CD45, (B) TLR4, CD14, MD-2,
GAPDH, using the indicated primer pairs (Table 1). A representative
result is shown (nZ3).
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culture conditions, as previously described (Gutierrez
et al. 1997, Glister et al. 2005); and the LPS suppression
of granulosa cell oestradiol secretion was also main-
tained in the present study. This would appear to be a
direct effect of LPS on granulosa cells as they were
cultured in the presence of previously determined
optimal concentrations of androstenedione and FSH
and no further addition of androstenedione or FSH was
made to the treatment cultures (Gutierrez et al. 1997);
furthermore, cell survival was unaffected even after 96 h
LPS treatment. The sensitivity of granulosa cells was
confirmed further by the reduced oestradiol secretion
when cells were treated with 0.1 ng/ml LPS and the
specificity of the LPS response confirmed by treatment
with detoxified LPS, which did not affect oestradiol
secretion. The present bovine data contrast somewhat
with the rat where LPS suppressed theca cell androste-
nedione production, although LPS also perturbed
LH-stimulated oestradiol production from rat granulosa
cells without affecting cell viability, similar to the present
study (Taylor & Terranova 1995, 1996). However, there
are likely to be differences between species and different
stages of follicular development. The strength of the
present study is that granulosa cells were derived from
follicles reflecting the physiological stages of develop-
ment in a biologically relevant species where disease
causes infertility.

Oestradiol secretion by granulosa cells is dependent
on gonadotrophins binding to G-protein-coupled
receptors driving aromatisation of androstenedione
(Dierich et al. 1998, Ma et al. 2004). In the whole
animal, LPS can perturb ovarian follicle function by
disruption of pituitary LH secretion directly or by
suppressing peripheral plasma oestradiol concentrations
(Battaglia et al. 2000, Suzuki et al. 2001, Karsch et al.
2002). However, effects on the pituitary are only part of
the explanation as peripheral plasma oestradiol
Reproduction (2007) 134 683–693
concentrations are lower in the face of normal LH
concentrations (Battaglia et al. 2000); and plasma
FSH concentrations are unaffected by uterine infection
(Sheldon et al. 2002). In the present study, FSHR mRNA
was expressed in granulosa cells from medium and large
follicles but LHR was only present in cells from large
follicles, in agreement with previous observations
(Bao et al. 1997). However, the expression of FSHR
and LHR was unaffected by LPS in granulosa cells. On
the other hand, aromatase transcript expression in
granulosa cells was down-regulated in the cells from
the dominant follicles following incubation with LPS,
which may affect steroidogenesis (Fortune 1994,
Richards 1994). In the rat, LPS similarly inhibits
gonadotrophin-induced aromatisation of androgens
(Taylor & Terranova 1996). However, it is not clear why
the expression of aromatase was not affected in cells
from the recruited follicles. Freshly isolated granulosa
cells expressed ERa and ERb, in agreement with previous
observations (Berisha et al. 2002). Transcripts for ERa
were unchanged by LPS treatment and ERb was not
detected in control or treated granulosa cells, appearing
to be down-regulated by culture. Thus, the effect of LPS
on oestradiol biosynthesis was not due to the inability of
the cells to respond to oestradiol.

The present study used CD45 expression to demon-
strate the absence of contaminating leukocytes in the
granulosa cell cultures, suggesting a direct response
of granulosa cells to LPS. This is important because the
granulosa cell compartment within the basement
membrane of the ovarian follicle is devoid of immune
cells in vivo (Petrovska et al. 1996). The TLR4, CD14 and
MD-2 complex is required for binding LPS to leukocytes,
leading to signal transduction and activation of the
innate immune response (Akira & Takeda 2004, Beutler
2004, Akira et al. 2006). However, TLR4 has been
identified on cells other than leukocytes, including
uterine epithelial and stromal cells (Hirata et al. 2005,
Herath et al. 2006b). Indeed, analysis of mRNA
transcripts in the present study indicated that granulosa
cells from medium and large ovarian follicles expressed
mRNA for TLR4 and the accessory molecules, CD14 and
MD-2. Regulation of these genes in granulosa cells
following LPS stimulation requires further validation and
was beyond the scope of the present study. Interestingly,
a recent study showed that murine granulosa cells
around the time of ovulation increased the expression
of TLR4 transcripts in response to LPS challenge
(Shimada et al. 2006). Thus, it appears that granulosa
cells have immune capabilities.

Recognition of LPS by immune cells results in the
production of pro-inflammatory molecules such as
IL-1b, TNFa and NO (Janeway et al. 2001, Akira &
Takeda 2004, Beutler 2004). Although these pro-
inflammatory molecules play an important role in
ovulation in many species (Machelon & Emilie 1997,
Bornstein et al. 2004, Gerard et al. 2004), they also
www.reproduction-online.org
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suppress granulosa cell aromatase expression and
oestrogen biosynthesis (Adashi et al. 1989, Spicer &
Alpizar 1994, Ghersevich et al. 2001). Since granulosa
cell oestradiol production was impaired following LPS
challenge in the present study, we investigated whether
LPS enhanced the production of inflammatory mediators
that could compromise steroidogenesis. However, LPS
did not increase IL-1a or TNF transcripts in granulosa
cells isolated from dominant follicles. Thus, the pertur-
bation of granulosa cell steroidogenesis appears to be a
direct effect of LPS.

In conclusion, bovine granulosa cells express the LPS
innate immune receptor gene complex, comprising
TLR4, MD-2 and CD14, throughout follicle recruitment
and dominance. The treatment of granulosa cells with
LPS in vitro suppressed the secretion of oestradiol but did
not affect the secretion of androstenedione from theca
cells or the survival of either granulosa or theca cells.
This impairment of granulosa cell function may in part be
mediated via the down-regulation of aromatase gene
expression. As granulosa cell oestradiol production is
pivotal during follicle development and these cells
nurture the oocyte until ovulation, the immune capa-
bility of these granulosa cells and their response to
patho-physiological concentrations of LPS in vivo is
likely to be an important mechanism underlying the
infertility associated with bacterial infection.
Materials and Methods

LPS measurement in follicular fluid

Follicular fluid was aspirated using a sterile needle guided by
transrectal ultrasonography, from postpartum (40–60 days)
dairy cows (nZ58) in which the uterine disease had been
evaluated as part of an independent study (Moussavi et al.
2007). Briefly, the uterine disease cytology evaluates the level
of inflammation from 0 (normal; no inflammation), 1
(subclinical; mild inflammation), 2 (subclinical; moderate
inflammation) to 3 (clinical endometritis). Samples were
stored in endotoxin-free glass or polystyrene tubes (Lonza,
Basel, Switzerland) at K20 8C until analysed. Concentrations
of bacterial LPS were measured in samples using the QCL-
1000 Chromogenic Limulus Amebocyte Lysate (LAL) Endpoint
Assay Kit (Lonza) following the manufacturer’s guidelines.
Samples were thawed, diluted in endotoxin-free 0.05 M Tris
and tested for non-specific LAL inhibition by comparing
samples spiked with a known concentration of LPS with
unspiked samples. Samples with evidence of LAL inhibition
were heated in a water bath at 75 8C for 30 min using
temperatures and times validated in our laboratory to remove
non-specific inhibitors of the LAL reaction (Williams et al.
2007). Samples were then mixed with the LAL substrate
reagent and assayed in duplicate in 96-well endotoxin-free
microplates (Corning, Lowell, MA, USA) alongside standard
curve LPS concentrations of 0.01, 0.25, 0.5, 1.0 and 5
endotoxin units/ml (10 euZ1 ng LPS) in serum. Serial
dilutions were made in 50 mM Tris until concentrations
www.reproduction-online.org
were measurable in the linear part of the standard curve.
Internal recovery as determined using positively spiked serum
samples was O80% and the intra- and inter-assay coefficients
of variation were 4.0 and 7.2% respectively and the limit of
detection was 0.01 ng/ml. To establish further that LPS crosses
the ovarian follicle basement membrane, bovine ovaries were
obtained from a slaughterhouse and eight medium (4–8 mm
diameter) and large follicles (O8 mm diameter) dissected and
maintained in 6 ml Dulbecco’s modified Eagle’s medium
(DMEM)/F12 (Sigma) containing 10 mg/ml LPS (Sigma: E. coli
serotype 055:B5) for 18 h at 37 8C. Ovaries were washed six
times in water and endotoxin-free Tris, and follicular fluid
aspirated using a sterile needle (25 G) and syringe. Concen-
trations of LPS were measured as previously described.
Cell cultures

Granulosa and theca cells were obtained and cultured
separately in serum-free media as previously described
(Gutierrez et al. 1997, Glister et al. 2005). Briefly, bovine
ovaries were collected at a local abattoir immediately after
slaughter and returned to the laboratory within 1 h. Follicles
were isolated manually by dissection and selected for isolation
of cells if they had a translucent appearance, a well-
vascularised theca and clear follicular fluid with no visible
debris or blood. Follicles were measured using a grid or
callipers and classed by external diameter as small (!4 mm
diameter), medium (4–8 mm diameter) or large (O8 mm
diameter), reflecting their gonadotrophin dependence and
changes in the expression of steroidogenic enzymes and LH
receptors (Fortune 1994, Campbell et al. 2003). At 4 mm
diameter, follicles are recruited into follicle waves in cattle and
become responsive to FSH, with increased expression of
aromatase (Xu et al. 1995). From 8 mm diameter, granulosa
cells express LH receptors and these selected dominant follicles
require pulsatile LH stimulation to continue growing (Xu et al.
1995). Follicles were hemisected and granulosa cells obtained
by flushing the hemisected shells and collecting the cell-rich
supernatant (Gutierrez et al. 1997). Theca cells were then
obtained by manually peeling the basal lamina from the
hemisected follicular shells and digesting for 45 min at 37 8C in
digestion medium containing 1 mg/ml collagenase (Sigma) and
3 mg/ml trypsin inhibitor (Sigma) in a moving water bath, and
then collecting the cell-rich supernatant as previously
described (Glister et al. 2005). Cells were O80% viable as
determined by Trypan blue exclusion. Both granulosa and theca
cells were plated at a density of 1.5!106 cells/ml in 96-well
plates (Nunc, Lutterworth, UK) using serum-free media, with
10K7 M androstenedione for granulosa cells, and maintained at
37 8C, 5% CO2 in air, in a humidified incubator (Gutierrez et al.
1997, Glister et al. 2005). Oestradiol and androstenedione
production by granulosa and theca cells respectively were
induced and maintained in response to physiological concen-
trations of FSH (1 ng/ml) or LH (160 pg/ml) respectively as
previously described (Gutierrez et al. 1997, Glister et al. 2005).

Macrophages were isolated from peripheral blood mono-
nuclear cells (PBMC) using blood collected from the local
abattoir. PBMCs were separated by density gradient centri-
fugation on 1.083 g/ml Histopaque (Sigma) and cell viability
Reproduction (2007) 134 683–693
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was O95%, as determined by Trypan blue exclusion. Cells were
plated in six-well plates at a density of 5!106 cells/ml in DMEM
(low glucose; Sigma) supplemented with 10% FBS (PAA
Laboratories GmbH, Pasching, Austria), 50 IU/ml penicillin,
50 mg/ml streptomycin, 2.5 mg/ml amphotericin B and 240 U/ml
Nystatin (Sigma). After 2 h, non-adherent cells were removed and
adherent cells (monocytes) were differentiated in culture for a
further 3 days to yield macrophages. Macrophages, which were
used as positive controls for PCR, were cultured in the presence or
absence of 1 mg/ml LPS (Sigma: E. coli serotype 055:B5) for 24 h,
at which time cells were collected for RNA extraction.
Cell culture challenge

After an initial 48-h establishment period, the ovarian cell
culture media were removed and replaced with fresh media
containing 0, 0.1, 1 or 10 mg/ml LPS (Sigma: E. coli serotype
055:B5). These concentrations are similar to those in follicular
fluid of animals with clinical disease and LPS concentrations
used for immune cell work (Poltorak et al. 1998, Shell et al.
2005, Tsatsanis et al. 2006), and preliminary studies with
bovine cells covering the range from 1 ng/ml to 10 mg/ml where
clear effects were seen with concentrations O0.1 mg/ml.
Indeed, in the original descriptions of the role of TLR4,
maximal responses were obtained at 10 mg/ml E. coli O55:B5
LPS (Hoshino et al. 1999). After 48 h treatment, media were
carefully removed and stored at K20 8C until assayed and fresh
media containing 0, 0.1, 1 or 10 mg/ml LPS (Sigma: E. coli
serotype 055:B5) were added for a further 48-h treatment
Table 1 Primer sequences for Toll-like receptor-4 (TLR4), CD14, MD-2, CD
hormone receptor (FSHR), luteinising hormone receptor (LHR), interleukin-1
tumour necrosis factor a (TNFa) and GAPDH.

Gene Primer Sequence (5 0–3 0)

TLR4 Sense CTT GCG TAC AGG TTG TTC CTA A
Antisense CTG GGA AGC TGG AGA AGT TAT G

CD14 Sense GGG TAC TCT CTG CTC AAG GAA C
Antisense CTT GGG CAA TGT TCA GCA C

MD-2 Sense GGG AAG CCG TGG AAT ACT CTA T
Antisense CCC CTG AAG GAG AAT TGT ATT G

CD45 Sense CTC GAT GTT AAG CGA GAG GAA T
Antisense TCT TCA TCT TCC ACG CAG TCT A

ERa Sense TCA GGC TAC CAT TAC GGA GTT T
Antisense CCA CTT CAT AGC ACT TGC GTA G

ERb Sense CTT CGT GGA GCT CAG CCT GT
Antisense GAG ATA TTC TTT GTG TTG GAG TT

Aromatase Sense CGC AAA GCC TTA GAG GAT GA
Antisense ACC ATG GCG ATG TAC TTT CC

FSHR Sense GCC AAG TCA ACT TAC CGC TT
Antisense TGA CCC CTA GCC TGA GTC AT

LHR Sense TGT TCT CCT GAC CAG TCG TTA CA
Antisense AAT GCC TTT GTG AAA ATT GCG TA

IL-1a Sense AGA GGA TTC TCA GCT TCC TGT G
Antisense ATT TTT CTT GCT TTG TGG CAA T

IL-1b Sense GAG GAG CAT CCT TTC ATT CAT C
Antisense TTC CTC TCC TTG TAC GAA GCT C

NOS2 Sense GGA CAG TAA AGA CGT CTC CAG A
Antisense TAT GGT CAA ACT TTT GGG GTT C

TNFa Sense ACT CAG GTC CTC TTC TCA AGC C
Antisense ATG ATC CCA AAG TAG ACC TGC C

GAPDH Sense GGG GTG AAC CAC GAG AAG TAT A
Antisense CCC TCC ACG ATG CCA AAG T

Reproduction (2007) 134 683–693
period (termed 96 h) to confirm that the granulosa cells
maintained physiological function under serum-free conditions
and determine if any effects of LPS on granulosa cells also
persisted. At 96 h, media were removed and stored at K20 8C
until assayed, the number of viable cells determined by neutral
red dye uptake as previously described (Campbell et al. 1996),
and where the maximum responses were observed (10 mg/ml
LPS), cells were collected for RNA isolation. To explore if
granulosa cells responded to concentrations of LPS in follicular
fluid of animals with subclinical uterine disease in vivo, the
experiments were repeated using 0.1 ng/ml LPS (Sigma: E. coli
serotype 055:B5) for a 48-h treatment period. To confirm
further that the effects of treatments were associated with LPS,
granulosa cells from dominant follicles were treated with 0.1, 1
and 10 mg/ml of a detoxified form of LPS (Sigma: detoxified
from E. coli serotype 055:B5), media alone as a negative
control, and 0.1 mg/ml LPS (Sigma: E. coli serotype 055.B5) as a
positive control.
Hormone assays

Culture supernatants were analysed by RIA as previously
described (Abayasekara et al. 1993), adapted for androstene-
dione, oestradiol or progesterone. Samples were diluted in
0.05 M Tris buffer containing 0.1% gelatin and 0.01% sodium
azide. Standards, antiserum and tritiated tracer were purchased
from Sigma, Biogenesis (Biogenesis, Kidlington, UK) and
Amersham International PLC (Amersham) respectively. The
limit of detection for oestradiol, progesterone and
45, oestradiol receptor a (ERa), ERb, aromatase, follicle-stimulating
a (IL-1a), IL-1b, nitric oxide synthase (NOS2, formerly inducible NOS),

Size Tm (8C) Accession no.

153 56 NM174198

199 56 NM174008

204 54 DQ319076

185 56 AJ400864

169 60 AY538775

262 60 NM174051
T

211 53 U18447

193 56 NM174061

A 743 56 BTU20504
C

224 54 NM174092

229 56 X54796

A 197 54 AF340236

774 56 BTTNFG

A 120 56 BC102589
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androstenedione was 80 pg/ml. The respective intra- and inter-
assay coefficients of variation were 8.8 and 9.9% for oestradiol,
3.1 and 12.6% for progesterone, and 3.6 and 16.5% for
androstenedione.
Determination of immune mediators

Concentrations of bioactive tumournecrosis factora (TNFa) were
measured as previously described (Herath et al. 2006b). Briefly,
rat fibroblast L929 cells were cultured in DMEM supplemented
with 12.5% FBS, 50 IU/ml penicillin and 50 mg/ml streptomycin.
Cells were plated at a density of 2.5!104 cells per 100 ml
medium in 96-well plates (Nunc). Cytotoxicity was determined
by the colorimetric MTTassay involving the addition of 0.1 mg/ml
MTT dye (Sigma–Aldrich) to each well and incubating for 2–4 h at
37 8C in a 5% CO2 atmosphere. The cells were lysed using 100 ml
DMSO (Sigma–Aldrich) per well and colour development read at
560 nm on a Spectra Max 250 (Molecular Devices, Wokingham,
UK). The limit of detection was 10 pg/ml; standards were made
using recombinant human TNFa (Sigma) and cross-reactivity was
confirmed using recombinant bovine TNFa (kindly provided by
Prof. C Howard, Institute for Animal Health, Compton, UK).

Concentrations of nitric oxide (NO) were measured using the
Greiss Reagent System (Promega) according to the manufac-
turer’s instructions. The limit of detection was 2.5 mM.
PCR

Total RNA was isolated from cell cultures using the RNeasy
Mini Kit (Qiagen) and quantitated using a NanoDrop
spectrophotometer (ND-1000 Spectrophotometer, NanoDrop
Technologies Inc., Wilmington, DE, USA). Following DNase
treatment (Promega), RNA was reverse transcribed into first-
strand cDNA using SuperScript II RNase HK Reverse
Transcriptase (Invitrogen, Life Technologies) according to the
manufacturer’s protocols. Amplification of 50 ng cDNA used
the following conditions, denaturation for 5 min at 94 8C,
followed by 94 8C for 30 s, 54–56 8C (Table 1) for 30 s and
72 8C for 30 s, followed by a final extension of 5 min at 72 8C.
Each primer was optimised for Tm and cycle number to ensure
that semi-quantitative differences in expression could be
detected. A control reaction, omitting cDNA template, was
performed to confirm the absence of contamination and
macrophage cDNA was used as an external control to ensure
optimal PCR conditions. Primer combinations were designed
using the Primer 3 software package (http://frodo.wi.mit.edu/),
and were chosen on the criteria that the amplified product
would traverse an exon/intron boundary and that the product
was short enough to ensure optimum amplification. Primers
were purchased from MWG (https://ecom.mwgdna.com) and
were analysed for primer set-specific gene amplification using
the nucleotide BLAST database (http://www.ncbi.nlm.nih.gov/
blast). Primer sequences are presented in Table 1 and
housekeeping gene primer conditions were optimised as
previously described (Fenwick et al. 2006). PCR bands were
analysed by densitometry using Quantity One 1-D Analysis
Software version 4.6.2 (Bio-Rad). Products were sequenced
using an ABI 3100 genetic analyzer and Bigdye Terminator 3.1
www.reproduction-online.org
from ABI (Foster City, CA, USA) and were verified using the
BLAST database.
Statistical analysis

Results are reported as the arithmetic meanGS.E.M., and
significance ascribed when P!0.05. Hormone data were log
transformed to yield variance homogeneity and the effects of
treatments were explored using General Linear Model
Univariate analysis in SPSS version 14.0 (SPSS Inc., Chicago,
IL, USA), where treatment was the fixed variable and animal
was fitted as a random variable. Post hoc comparisons between
treatment and control were made using the Dunnett’s t-test.
Densitometry and LPS values were compared using indepen-
dent t-test.
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