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Advantages of meta-total RNA sequencing (MeTRS) over
shotgun metagenomics and amplicon-based sequencing in the
profiling of complex microbial communities
Fabien Cottier 1, Kandhadayar Gopalan Srinivasan1, Marina Yurieva 1,2, Webber Liao 1, Michael Poidinger 1,
Francesca Zolezzi 1,3 and Norman Pavelka 1

Sequencing-based microbiome profiling aims at detecting and quantifying individual members of a microbial community in a
culture-independent manner. While amplicon-based sequencing (ABS) of bacterial or fungal ribosomal DNA is the most widely used
technology due to its low cost, it suffers from PCR amplification biases that hinder accurate representation of microbial population
structures. Shotgun metagenomics (SMG) conversely allows unbiased microbiome profiling but requires high sequencing depth.
Here we report the development of a meta-total RNA sequencing (MeTRS) method based on shotgun sequencing of total RNA and
benchmark it on a human stool sample spiked in with known abundances of bacterial and fungal cells. MeTRS displayed the highest
overall sensitivity and linearity for both bacteria and fungi, the greatest reproducibility compared to SMG and ABS, while requiring a
~20-fold lower sequencing depth than SMG. We therefore present MeTRS as a valuable alternative to existing technologies for
large-scale profiling of complex microbiomes.
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INTRODUCTION
Conceptually, meta-total RNA sequencing (MeTRS) consists of
three critical steps: (i) a protocol to extract total RNA with equal
efficiency from both fungal and bacterial cells, (ii) a protocol to
prepare RNA-sequencing libraries compatible with long paired-
end Illumina reads and (iii) a bioinformatic pipeline to assign
sequences at different taxonomic levels depending on their
specificity. For RNA extraction, we tested several published
protocols and commercial kits, and concluded that the classical
hot-phenol extraction method provided the highest RNA yield
from stool samples (Table S1), with little to no bias against bacteria
or fungi when starting from artificial microbial communities (Table
S2). We noticed that gut microbiome samples contain an
unknown inhibitor that hindered subsequent library preparation
steps (Table S1), but we solved this issue by treating the extracted
RNA with a proprietary buffer from a commercial kit (Power
Microbiome kit, MoBio, buffer PM1 and PM2). For sequencing
library preparation, we found commercially available RNA-
sequencing kits, which are optimized for generating relatively
short fragment libraries and thus short sequencing reads, to yield
sequences that lack sufficient uniqueness for unambiguous
taxonomic assignment of most reads at the genus or species
level. We performed in silico simulations and found that
sequences should be at least 300 bp in length for accurate
taxonomic assignment (Fig. S1), which could be accommodated
by the setup of a customized RNA-sequencing library preparation
protocol and a partially overlapping 2 × 250 bp paired-end
sequencing run (see Methods for details). Finally, for the
bioinformatics pipeline, we realized that existing software for

shotgun metagenomics (SMG) or amplicon-based sequencing
(ABS) data analysis, such as MetaPhlAn1 or QIIME,2 was not
suitable for MeTRS. Specifically, while metagenomics analysis tools
such as MetaPhlAn intentionally ignore ribosomal RNA (rRNA)
sequences that represent the majority of MeTRS reads (Fig. S2),
ABS pipelines such as QIIME implicitly assume that the sequences
are derived from hypervariable rRNA regions and perform a
pseudorandom taxonomic assignment when reads are rather
derived from more conserved rRNA regions (Fig. S3).
To specifically handle the unique aspects of MeTRS data, we

therefore developed a customized analysis pipeline (Fig. S2a) that
first joins read pairs into longer pseudoreads and then maps each
quality-filtered pseudoread based on stringent sequence similarity
thresholds against a full-length, curated rDNA sequence database,
such as SILVA,3 which contains sequences from all domains of life.
Pseudoreads are then assigned to a taxonomy by a Consensus
Taxonomy Tool (ConTxT): reads mapping to a single SILVA entry
are directly assigned to the taxonomy of the corresponding entry;
sequences matching more than one entry are subjected to an
iterative algorithm, in which taxonomies associated to all
matching entries are first compared at the lowest possible
taxonomic level (e.g., species) and the taxonomic term found
above a user-defined frequency threshold (currently defaulting to
60%) is assigned to the read; if no taxonomic term passes this
threshold, the analysis is repeated at the next-highest taxonomic
level (e.g., genus) and so on, until a level is found where a
taxonomic term passes the threshold. Using this algorithm, we
found, as anticipated, that 100% of the pseudoreads that
successfully map to SILVA could be assigned at least at the
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domain level (i.e., one of bacteria, archaea or eukarya). Similarly to
16S sequencing, >80% of these reads could be assigned at the
genus level (Fig. S1b).
Since one of MeTRS’ primary aims was to accurately report

fungal in addition to bacterial composition in complex micro-
biome samples, we benchmarked the MeTRS method against the
current standard for sequencing-based mycobiome profiling.
While several different internal transcribed spacer (ITS) primers
have been reported for this purpose, we used improved
sequences of published ITS primers,4 which displayed a higher
sensitivity of detection to a wide variety of fungi (Table S3 and Fig.
S4).

RESULTS
To compare the different methods, we prepared a benchmarking
sample set consisting of a healthy human donor stool homo-
genate, which was spiked in with six microbial species (three
bacteria and three fungi) at six different concentrations (ranging
from 104 to 109 cells per gram of stool) according to a Latin square
design (Fig. S5). Total genomic DNA (gDNA) and RNA were then
extracted in parallel from each sample, and while gDNA was
analyzed by SMG, 16S or ITS ABS, total RNA was analyzed by
MeTRS. This allowed us to rigorously assess the accuracy,
sensitivity, linearity and reproducibility of each method with
respect to profiling the microbiome composition of a well-defined
complex microbial community.
As expected, 16S and ITS ABS displayed high sensitivity towards

four of the six species even at the lowest spiked-in concentrations
of 104 cells per gram of stool (Fig. 1a–d). Propionibacterium acnes
was not detected in any 16S sample, and S. pombe was only
detected in the ITS sample with the highest spiked-in concentra-
tion of 109 cells per gram of stool, demonstrating clear polymerase
chain reaction (PCR) biases that are attributable to primer
sequence specificities. Moreover, ABS did not return a linear
relationship between the spiked-in concentrations and the
recovered relative abundances. This was especially the case
during ITS sequencing, where relative abundances of Candida
albicans and Saccharomyces cerevisiae displayed an all-or-nothing
response, depending on which of the two species was spiked in at
the higher concentration in the sample (Fig. 1c–d). As expected,
SMG provided a more linear response in comparison to ABS, but
suffered from a lack of sensitivity. With the exception of E. coli and
Lactobacillus rhamnosus (which were already detected in the
background sample), bacteria and fungi could only be detected
when spiked-in at ≥107 cells per gram of stool (Fig. 1e–f). MeTRS,
on the other hand, was the only technology that detected in all
samples all five species that are expected to be present in human
stool (Fig. 1g–h). P. acnes, which is a skin and not a gut
commensal, could be detected at spiked-in concentrations as low
as 106 cells per gram of stool, i.e., an order of magnitude lower
than the detection limit of most species in SMG samples. This
suggests that MeTRS exhibits a linear response over a wider
dynamic range in comparison to the other methods.
Interestingly, we noticed MeTRS is superior to SMG with regards

to detection of fungi. While SMG was unable to report any fungi in
the background sample, MeTRS reported relative abundances of
fungal species summing up to ~0.2% (Fig. 1e, g). Even at the
highest spike-in concentrations, SMG consistently underrepre-
sented fungal relative abundances (Fig. 1e–f), while in the case of
MeTRS fungal relative abundances were at least as high as those
of bacterial species (Fig. 1g–h). We confirmed by qRT-PCR that, in
comparison to ribosomal DNA, fungal rRNA is relatively more
abundant than bacterial rRNA on a per cell basis (Fig. S6), which is
consistent with a larger cell size and higher ribosome content of
fungi over bacteria.5,6

Assessing the 39 genera commonly detected in the un-spiked
(background) stool sample by SMG, 16S and MeTRS, we noted that

the MeTRS microbiome profile displayed significant similarity with
both 16S and SMG approaches (Fig. S7). This confirms MeTRS as an
appropriate method to profile microbiome communities. Focusing
on genera detected at a relative abundance of ≥0.01%, we next
analyzed the reproducibility of the relative abundances obtained
for the non-spiked-in genera that were consistently detected in all
seven samples by each method (30 for SMG, 58 for 16S
sequencing and 64 for MeTRS). Surprisingly, relative abundances
returned by MeTRS were significantly more reproducible than
either SMG or 16S sequencing across the entire dynamic range of
abundances (Fig. 2).
Finally, we evaluated the cost of each method in terms of depth

of sequencing required to achieve close-to-saturation diversity
and richness, by performing a rarefaction analysis of the non-
spiked-in background sample. For this analysis, we focused on
genera detected by ≥2 reads and associated with a relative
abundance of ≥0.01%. With ~104 mapped reads, MeTRS achieved
a similar or higher α-diversity compared with SMG, and with ~2 ×
104 mapped reads it detected a similar or higher number of
genera as 16S sequencing (Fig. 3a, b). Factoring in the vastly
different mapping rates associated with each method (0.5% for
SMG, 38.8% for 16S, 1.8% for ITS and 10.6% for MeTRS) (Table S4),
MeTRS consistently outperformed SMG in terms of the estimated
number of raw sequenced reads required to obtain the above-
mentioned results (Fig. 3c, d). With the exception of ITS
sequencing, all methods reached saturation in both diversity
and richness, confirming that samples were indeed sequenced at
a higher-than-required depth. Based on rarefaction analysis, we
estimate that, in order to reach 95% saturation in genera richness
(normalized to each method’s own estimated saturation level), at
least ~3 × 106 reads would be required for SMG, whereas ~50,000
would be sufficient for 16S sequencing. In comparison, ~150,000
reads would be needed for MeTRS to achieve the same endpoint,
which is only ~3-fold higher than 16S sequencing but ~20 times
lower than SMG. This could be explained by the fact that, in spite
of the absence of any enrichment, depletion or PCR amplification
step, MeTRS reads preferentially map to ribosomal small subunit
(SSU, i.e., 16S or 18S) and large subunit (i.e., 23S or 25–28S) regions
(Fig. S3), which are well known for their high taxonomic value.
Bioinformatic tools have been developed to extract SSU-rRNA
reads from SMG data,7,8 but these represent only a small fraction
of a typical SMG sequencing run and are usually ignored by other
software (e.g., MetaPhlAn).

DISCUSSION
All microbiome sequencing methods present advantages and
downfalls.9–14 Metagenomics provides high accuracy but at a high
cost and low sensitivity. Oppositely, amplicon sequencing does
not allow comparison of different kingdoms simultaneously but is
cost-effective and requires limited amount of starting material.
Unfortunately, this method is also very sensitive to PCR biases and
rRNA copy numbers. MeTRS has general limitations associated
with working with RNA (RNA instability; cost and complexity of
reverse transcription reaction; etc.), but these are not unlike
standard RNA-sequencing for transcriptomics. The appropriate-
ness of using RNA for the characterization of microbial commu-
nities has been debated as it is assumed that RNA content is
linked more to cell physiology than to cell number, but no
consensus on this question has been reached so far.15 Moreover,
while MeTRS could potentially face problems in determining the
exact relative abundance of species in a complex sample, it could
be useful for the differentiation between live and dead cells or
between metabolically more active and less active cells. Pre-
liminary experiments seem to support this hypothesis (Table S2
and unpublished observation). Finally, MeTRS allows direct
comparison of organisms from all kingdoms of life, albeit at a
greater sensitivity and a lower cost than SMG.
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Fig. 1 Performance comparison of microbiome profiling methods on Latin square spike-in data set. Relative abundances of yeast (C. albicans,
S. cerevisiae, S. pombe) and bacteria (E. coli, L. rhamnosus, P. acnes) species are plotted as a function of the number of cells that were spiked into
the background stool homogenate prior to DNA or RNA extraction (a, c, e and g). Relative abundances in the background sample were then
subtracted from all other samples (b, d, f and h)
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In conclusion, we demonstrate that MeTRS (i) simultaneously
detects both bacteria and fungi (ii) is overall more sensitive than
SMG with a particular advantage in terms of fungal detection, (iii)
achieves higher reproducibility than SMG or ABS, and (iv) requires
significantly lower sequencing depth than SMG. For these reasons,
we recommend MeTRS for profiling complex communities that
consists of bacteria, fungi and possibly other microbes. We
envisage that MeTRS will be a valuable tool for population-wide
association studies in humans and possibly other large-scale
environmental microbiome profiling studies. Moreover, the data
sets generated in this study, namely, the Latin square stool spike-
in and the 16-fungal-species mock community, will enable the
development and benchmarking of bioinformatic pipelines for a
variety of microbiome analysis applications.

METHODS
Preparation of artificial fungal community
Sixteen different fungal species were grown in media specified in Table S3
until stationary phase was reached. Cells were collected and gDNA
extracted as described below. Individual DNA concentrations were
measured by Quant-iT PicoGreen dsDNA Assay Kit (ThermoFisher). An
equimolar mixture of gDNA molecules from each species was prepared
taking into account the respective genome sizes.

Latin square stool spike-in sample preparation
Human stool sample was obtained with informed consent according to
protocols approved by the National University of Singapore (NUS)
Institutional Review Board (IRB) filed under NUS-IRB Reference Code 12-
208 (Approval Number: NUS 1615). Thirteen grams of feces from a single
donor was homogenized in cold PBS and filtered through a 70 μm filter.
Aliquots equivalent to 0.5 g of feces per tube were prepared and stored at
−80 °C.

Candida albicans (SC5314) was grown in yeast extract peptone dextrose
(YPD) medium (1% w/v yeast extract, 2% w/v peptone and 2% w/v D-
glucose, supplemented with 1.5% w/v agar for solid media only) at 37 °C,
Saccharomyces cerevisiae (BY4741) in YPD medium at 30 °C and Schizo-
saccharomyces pombe (972 h) in Yeast extract-Malt extract medium (0.3%
yeast extract, 0.3% malt extract, 1% dextrose, 0.5% peptone) at 30 °C.
Escherishia coli (MG1655) was grown in Lysogeny Broth (1% tryptone, 0.5%
yeast extract, 1% NaCl) at 37 °C, Lactobacilus rhamnosus GG in De Man,
Rogosa and Sharpe medium16 (Sigma) at 37 °C, and Propionibacterium
acnes was grown in BBL Schaedler Broth (BD) in a fermentor (New
Brunswick) under anaerobic conditions (10% CO2, 90% N2) at 37 °C
agitated at 50 rpm. Otherwise specified cells were cultured in a shaking
incubator at 150 rpm. Once logarithmic growth phase was reached, cells
were centrifuged at 3,500 rpm for 5 min and re-suspended in PBS. Cell
concentrations were determined with a hemocytometer, adjusted to 1 ×
1010 cells/ml and kept at −80 °C. Spike-ins were performed according to
Fig. S3. Stool homogenate aliquots were spiked in with the appropriate
number of cells, then half of the solution was used for DNA extraction, the
other half for RNA extraction.

DNA and RNA extraction
DNA was extracted according to the protocol described by Rancati et al.17

RNA extraction was performed according to manufacturer’s protocol
(RNeasy and RNeasy PowerSoil from Qiagen; and Soil/Fecal RNA Kit from
Zymoresearch; Power Microbiome Kit from MoBio) and as described by
Pavelka et al.,18 with the following modifications. From the final 500 μl of
total RNA suspension, 50 μl were treated with DNase (New England
Biolabs) for 30min at 37 °C. This was followed by treatment with buffer
PM1 and PM2 from the Power Microbiome kit (MoBio) according to the
manufacturer’s protocol. After this step of RNA cleaning, RNA precipitation
was performed in a similar manner as the protocol from Pavelka et al.18

16S and ITS ABS
For amplification of the 16S variable regions (V4-V5), PCR was performed
using 10 ng of gDNA with LongAmp Taq DNA polymerase (New England
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Biolabs) according to manufacturer’s instructions. Identification of fungal
populations was carried out by amplifying the ITS2 region from 10 ng of
gDNA template using Phusion High-Fidelity DNA Polymerase (Thermo-
Fisher Scientific) as recommended by manufacturers. Primer sequences
and other details can be found in Table S3.
The library preparation steps for both 16S and ITS2 regions were as

follows. The reaction mix for 16S primary PCR contains a specific forward
primer (V4 F) and reverse primer (V5 R) binding to V4–V5 regions. Similarly,
another set of primers binding to the 5.8S (fITS7 or ITSf) and 25-28S rDNA
regions (ITS4) was used for amplifying the ITS2 fragment. Primary PCR
cycling parameters for amplifying 16S consisted of initial denaturation step
for 30 s at 94 °C, followed by 15 cycles of 15 s at 94 °C, 30 s at 45 °C, and 30

s at 65 °C with a final extension for 10min at 65 °C for the primary PCR
reaction. ITS2 sequences were amplified by initial denaturation for 30 s at
98 °C, followed by 15 cycles of 15 s at 98 °C, 30 s at 55 °C, and 30 s at 72 °C
with a final extension for 10min at 72 °C. For secondary PCR, the cycling
parameters were the same as described above for 16S and ITS primary PCR,
respectively, except that amplification was carried out for 25 cycles for 16S
and 30 cycles for ITS2 regions, respectively. During the secondary PCR
reaction, barcodes for identifying and de-multiplexing individual samples,
and Illumina adapter sequences, were added to the template using
communal primers (Table S5).
Equimolar concentrations of secondary PCR products were pooled and

electrophoresed using 1% agarose gel. Pooled amplicon libraries were gel-
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purified using the Qiaquick Gel Extraction Kit (Qiagen). Concentrations of
gel-purified libraries were estimated using the DNA 1000 kit (Agilent
Technologies).

SMG sequencing
Genomic DNA (1 µg) was sheared using Covaris S2 sonicator in 52.5 μl
volume using the following parameters: 10% duty cycle, intensity 4 and
200 cycles per burst for 120 s. Sequencing libraries were prepared
according to a modified version of a previously published protocol.19

Briefly, instead of performing a clean-up step after enzymatic treatment of
the DNA sample, we performed heat inactivation after end-repair, dA-
tailing, and ligation. For processing, 350 ng of fragmented gDNA in a
volume of 17 µl were used for the library preparation. NEXTflex DNA
barcodes (Bioo Scientific) were added for multiplexing and sequencing the
libraries.
Adapter-ligated DNA was purified and size-selected using Agencourt

AMPure XP beads (Beckman Coulter). Clean-up was performed after
adjusting the volume of reaction mix after adapter ligation to 55 µl.
AMPure beads were added at 1:1 ratio and the cleaned-up DNA was eluted
in 50 µl of re-suspension buffer. Eluted DNA was repurified using AMPure
beads added at 1:1 ratio. Finally the double cleaned-up, adapter-ligated
DNA was eluted in 20 µl of re-suspension buffer.
Using 20 µl of eluted library, PCR was performed in a 50 µl volume

containing 1× Phusion Master Mix with HF Buffer (ThermoFisher Scientific)
and Illumina PE 1.0 and 2.0 primers (Bioo Scientific). PCR conditions
consisted of initial denaturation of 1 min at 98 °C followed by ten cycles of
30 s at 98 °C, 30 s at 65 °C, 30 s at 72 °C, followed by an extension of 10min
at 72 °C. Post-PCR clean-up of library was performed using 1:1 ratio of
AMPure XP beads (Beckman Coulter). The libraries were re-suspended in
30 µl of re-suspension buffer. Concentrations of the purified libraries were
estimated using the DNA 1000 kit (Agilent Technologies).

Total RNA sequencing
Double-stranded cDNA was prepared from 2 µg of total RNA extracted
from stool samples using Superscript® double stranded cDNA synthesis kit
(ThermoFisher Scientific) according to manufacturer’s instructions, except
that the first strand cDNA synthesis was primed using random hexamers
(Promega). Double stranded cDNA (200 ng) was sheared using Covaris
S2 sonicator in 52.5 μl volume with the following parameters: 10% duty
cycle, intensity 4 and 200 cycles per burst for 70 s. Subsequently, 17 µl of
sheared cDNA (65 ng) was end-repaired, A-tailed, adapter-ligated, Ampure
XP beads-purified and libraries were PCR-enriched as described above for
metagenome library preparation. PCR-enriched libraries were cleaned up
and size-selected to remove unused dNTPs, primers and short RNA
fragments, using a 0.65 × ratio of AMPure XP beads (Beckman Coulter).

High-throughput sequencing
All libraries were quantified using KAPA Library Quantification Kit (Kapa
Biosystems) to ascertain the loading concentration and sequenced on a
HiSeq 2500 System (Illumina) operated in Rapid Run Mode to generate 2 ×
250 bp paired-end reads. Sequencing depths are listed in Table S2. All
sequencing results have been deposited at NCBI Sequence Read Archive
(SRA) under accession number SRP103706.

Data analysis
The bioinformatics pipeline can be divided into two steps, consisting of the
read pre-processing step and the OTU picking/taxonomy assignment step
(Fig. S2a). During the read pre-processing step, sequencing adapters and
PCR primers were first removed using the ILLUMINACLIP step in
Trimmomatic20 (v0.35) run in paired-end mode. Paired-end reads were
then joined using FLASh21 (v1.2.11) with a maximum overlap of 250 bp,
before quality trimming (qtrim = rl; trimq = 30) using BBDuk of BBTools
(v35.85) and finally filtered for at least 50 bp using the MINLEN step in
Trimmomatic run in single-end mode. After preprocessing, 16S and ITS
samples were mapped against the SILVA3 (v.123) and UNITE22 databases,
respectively. For both pipelines, the pick_closed_reference_otus.py script
in QIIME2 (v1.8.0), implementing the usearch23 (v7.0.1090) algorithm, was
used for OTU picking, enabling reverse strand matching and requiring a
minimum similarity of 99%. SMG samples were analyzed using MetaPh-
lAn224 (v2.5.0) with default parameters. MeTRS samples were analyzed
using the following in-house built pipeline.

The MeTRS pipeline is composed of two steps, the mapping step and
the taxonomy assignment step. In the first step, the sample is mapped
against the SILVA database (v.123) using Bowtie25 (v1.1.2) and the
following parameters: -a -v1 --best --strata. Reads are then assigned to a
consensus taxonomy of the mapped hits using an in-house built Python
(v2.7) script, called Consensus Taxonomy Tool (ConTxT). Starting at the
species level, if >60% of the mapped hits of a read agrees on the same
taxonomic term, then that taxonomic term is assigned to the read. If no
agreement is reached, information from the next highest taxonomic level
is iteratively interrogated until a consensus is found. If no consensus is
achieved even at the highest taxonomic level (i.e., domain), the read is
assigned to the “unknown” domain. All relevant code is available at https://
github.com/normanpavelka/MeTRS.
Within-sample microbial diversity (α-diversity) was estimated with the

Shannon–Wiener diversity index26 as implemented in QIIME. To examine
the effect of subsampling and to estimate the minimal required
sequencing depth for each sequencing technology, rarefactions were
performed on the mapped reads of all the background samples using
QIIME with five iterations. The samples were rarefied at the same depths
and, for the last rarefaction depth, all of the samples’ mapped reads
rounding down to two significant digits (Table S6). A mean α-diversity
index and an average number of OTUs across the five independent
iterations were calculated for each sample at each depth. The estimated
sequencing depth was calculated as a factor of the rarefaction depth and
the ratio of the number of mapped reads to the number of sequenced
reads.

Quantitative RT-PCR
Double-stranded cDNA was synthesized starting from ~100 ng of total RNA
using the Superscript III kit (Invitrogen) in 20 μl reaction volumes as per
manufacturers’ protocol. Quantitative PCR reactions were then set up in
384-well plates and cycled using an ABI 7900HT (Applied Biosystems) in 10
μl reaction volumes using the following primers: FungiQuant-F and
FungiQuant-R,27 or BactQuant-F and BactQuant-R.28 Fold changes were
then computed according to the standard ΔCt method.29

Data availability
All data that support the findings of this study are available from the
corresponding author upon request. Raw sequencing data has been
deposited at NCBI under SRA accession number SRP103706.

Code availability
The code required for parsing the SILVA taxonomy and for running the
Consensus Taxonomy Tool (ConTxT) can be found at https://github.com/
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