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Applications of advanced signal processing and 
machine learning in the neonatal hypoxic-ischemic 
electroencephalography 

Introduction
Perinatal hypoxia-ischemic encephalopathy (HIE) is a severe 
brain injury that is caused by significant reduction in cere-
bral oxygen (hypoxia) and reduced perfusion (ischemia) due 
to various undesirable events at or around the time of birth 
(i.e., obstruction of the umbilical cord) (Low, 2004; Mwaniki 
et al., 2012; Jonsson et al., 2014). Neonatal encephalopathy 
is reportedly shown to be related to HI insults occurred well 
before or during labor (Takenouchi et al., 2012; Ahearne et 
al., 2016) putting premature babies under much higher risks 
(Back, 2015). Although, the survival rates of babies with 
signs of HIE has been recently improved, neonatal encepha-
lopathy is still shown to significantly contribute to high mor-
bidity rate of 23% of death in newborns, in 2005 worldwide 
(World Health Organization, 2005) and reported to be im-
proved to ~11% (6.7–16.8%) for under 5 years old neonates 
in 2013 (Liu et al., 2015). Surviving infants are known to 
develop neurodevelopmental impairments that is associated 
to impaired neural network and neuronal loss in white and 
gray matter cells (Back et al., 2007). Lack of oxygen prevents 
the energy supply into the cells and disrupts cells function. 
This happens by progressive cellular depolarization through 
allowing potassium out of cells and reversely letting calcium, 
sodium and water into the cells (Kalogeris et al., 2012). This 
excessive cellular depolarization eventually leads to extracel-
lular accumulation of excitatory amino acids causing a pro-
found drop in the cell activity (Burd et al., 2016). Clinically, 

it has been shown that most neuronal cells die post HI insult 
and not during the HI event (Drury et al., 2014; Merchant 
and Azzopardi, 2015). In fact, perinatal and neonatal HIE 
is shown to evolve rapidly providing a very short optimal 
window of opportunity for the neuroprotective hypother-
mic strategies (Thoresen et al., 2013). Recent clinical reports 
from asphyxiated newborns strongly emphasize that an early 
initiation of therapeutic hypothermic protocols within the 
first three hours of birth, extend out through 48–72 hours, 
highly contributes in the improvements of the outcomes 
(Kollmar et al., 2002; Gunn et al., 2005;  Edwards et al., 2010; 
Thoresen et al., 2013; Gunn and Bennet, 2016; Gunn and 
Groenendaal, 2016). 

Conventional electroencephalography (EEG) is a tool 
to directly monitor and collect the brain’s neuronal activi-
ty from the cerebral cortex over scalp. In clinical practice, 
EEG recording is routinely recorded and digitized in small-
er 10–20 minute sections to even longer recordings often 
lengthy as days; while continuous prolonged recordings are 
more commonly used hence allowing to identify real-time 
signatures of various brain disorders such as epilepsy or HIE 
(Halford, 2009). In practice, interpretation of EEG requires 
the experience acquired over many years by a technician/
clinician (Cooper et al., 2014). This method faces inevitable 
difficulties to be used on newborn infants; mostly because 
pediatrics or neonatal EEG specialists are not available at 
many hospitals for a 24-hour support at the neonatal inten-
sive care units (NICUs) and/or accessibility of equipment 
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can be limited. Instead, due to simplicity of interpretation, 
EEG recordings through 2–4 limited electrodes are shown 
to be commonly more practical in newborns (Shah et al., 
2008). An early clinical study demonstrated that the intensity 
of neurological brain injury can be evaluated through anal-
ysis of 12 hours of two-channel continuous EEG recordings 
initiated at 2 hours and 50 minutes, post-birth (Azzopardi 
et al., 1999). Biagioni et al. (1999) addressed that EEG fea-
tures evaluation through differentiation between burst- and 
non-burst suppression EEG intervals could be a potential 
biomarker to grade severity of HIE. Since then, monitoring 
of EEG signals is increasingly recognized as a useful meth-
odology to identify potential biomarkers of HIE (Pavlidis et 
al., 2017). Over the past two decades, a variety of signal pro-
cessing strategies have been developed by researchers across 
the world for automatic analysis and diagnosis of various 
brain disorders through studying of abnormal activity using 
different types of the EEG recordings such as conventional 
EEG, amplitude-integrated EEG (aEEG), quantitative EEG 
and intracranial EEG. Guidelines for neonatal EEG monitor-
ing are comprehensively described in (Tsuchida et al., 2013).

In this review, various strategies (i.e., Google scholar, 
Scopus and other scientific platforms) were used to extract 
the research in the literature, we will firstly introduce the 
reader to HIE EEG seizures then to the automated strategies 
used for the identification of seizure-like events in human 
neonates, developed by different research groups across the 
world. This paper will review manuscripts since 1990–2018 
with an emphasis on the most recent developed techniques 
that use larger datasets which employed better data acquisi-
tion technology at higher sampling resolutions.

Hypoxic Ischemic Epileptiform 
Electroencephalography Seizures
In EEG studies, the deviation from normal activity is known 
as abnormal EEG events/transients (Engel, 2013; Silverstein 
and Jensen, 2007). Epileptiform events, in general, contain 
important neurological information and appear with differ-
ent morphologies which are often very similar to the normal 
background EEG or artifacts. Epileptiform seizures have 
been investigated as EEG signatures for diagnostic of epi-
leptic disorders (Angeles, 1981; Westmoreland, 1996; Binnie 
and Stefan, 1999). Neonatal seizures are generally defined as 
abrupt EEG discharges with different profile characteriza-
tions in durations (less than a minute to a few minutes), fre-
quencies (0.3–2.0 Hz) and amplitudes (25–700 µV) (Bye and 
Flanagan, 1995; Mizrahi, 1998; Patrizi et al., 2003; Shellhaas 
and Clancy, 2007; Greene et al., 2008a). Post-HI neonatal 
EEG recording from 3 hours to days after birth demonstrate 
that perinatal hypoxic-ischemic encephalopathy is asso-
ciated with delayed high amplitude epileptiform seizures 
in a suppressed EEG background (Hill and Volpe, 1981; 
Williams et al., 1990; Glass et al., 2009). Automated analysis 
have also shown that the post-ischemic neonatal seizures 
are strongly correlated to adverse outcomes (Biagioni et al., 
1996; Miller et al., 2002; Shalak and Perlman, 2004; Glass 
et al., 2009; Björkman et al., 2010; Uria-Avellanal et al., 
2013; Kang and Kadam, 2015; Pisani and Spagnoli, 2016). 
Research indicate that recurrent epileptic seizures can be 
potentially predicted through analysis of epileptiform events 

(Litt and Echauz, 2002; Soleimani-B et al., 2012). Current 
clinical attempts around HI seizure detection have mainly 
concentrated on the automatic identification and classifica-
tion of high amplitude neonatal seizures which are shown to 
emerge in the signal only when the neuroprotective window 
of opportunity has passed. In fact, appearance of the high 
amplitude seizures in the EEG, post-HI, debatably indicates 
that the infant has likely progressed well beyond the opti-
mal window of opportunity for treatment (Gluckman et al., 
2005; Gunn and Bennet, 2008). The high amplitude neo-
natal seizures are reported to be delayed in some neonates 
(Lynch et al., 2012) and are not always measured accurately 
since seizures may not always propagate to the cortex (Naim 
et al., 2015). Thus it would be difficult to determine where 
exactly in time a newborn with signs of HIE could be, or 
even if they are still in the optimal window of opportunity 
for treatment. 

In general, to develop an automated strategy, an expert has 
to visually assess many hours of the recordings and initially 
annotate the EEG intervals for the desired type of epilepti-
form event. This difficult and time-consuming but very im-
portant task requires essential skills and experiences as the 
EEG data are usually recorded with lengths up to a few days. 
Definitions of EEG events has been often seen to vary among 
EEG experts/interpreters (Webber et al., 1993). Here, auto-
mated computational strategies can significantly contribute 
in saving time in the analysis of prolonged recordings only if 
they could robustly identify/classify the clinically-important 
epileptiform events with acceptable accuracies close to an 
expert. Current automated epileptiform seizure detection 
algorithms applied to clinical recordings require the iden-
tified events to be reviewed by an expert/clinician due to 
considerable rates of false detections of the algorithms. The 
importance of automated techniques becomes even more 
highlighted in HI studies where the window of opportuni-
ty for treatment is critically short (Gunn and Drury, 2013; 
Thoresen et al., 2013). Attempts around automatic identifica-
tion of HI epileptiform events are detailed in the following.

Methods Used for Hypoxia-Ischemic 
Epileptiform Events Detection
Automatic neonatal seizure detection strategies in the EEG 
have been reported since 1992 (Liu et al., 1992). Consider-
able improvements of the data acquisition tools alongside 
the advances in computer technology have significantly 
enhanced the accuracy of automated seizure detection meth-
ods in the neonatal HI EEG (Korotchikova et al., 2011). In 
reality, an ideal automated neonatal seizure detector must 
result in higher sensitivity measures so that it detects a high-
er number of true events and satisfies lower false detection 
rates so that at risk neonates even with a few seizures are not 
missed. Such objectives are challenging because neonatal 
EEG seizures are observed with intensely various morphol-
ogy and background artefacts can highly affect both manual 
and automatic decision makings. Since early 2000, a valuable 
collection of analytical attempts have been investigated by 
the neonatal brain research groups across the world for the 
automated seizure identification in HI EEG. One important 
thing to consider when automatic seizure detection algo-
rithms are compared is that there is still a lack of generic 
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definitions on performance measures. However, good detec-
tion rates (GDR) and higher sensitivity measures related to 
manual annotations by expert neurophysiologists have been 
sought in most of the automatic seizure detector algorithms. 
False detections are also very important for the validation 
of algorithms which may affect recordings with longer du-
rations if the original algorithm is trained using shorter 
lengths of recordings. Clinically, a reliable seizure detector 
algorithm to be used in NICUs must be able to robustly 
identify the desired events in data with a length of at least 72 
hours (Mathieson et al., 2016).

The rest of the review is now dedicated to describing 
the neonatal seizure detection approaches investigated by 
researchers at different groups throughout the world. Com-
plementary information about the discussed studies such 
as the number and age of subjects, type and total number 
of studied epileptiform event, length of recording, data col-
lection strategy, sampling frequency as well as performance 
measures related to each study are detailed in Tables 1 and 2.

Belgium and the Netherlands
In 2004, researchers from the Netherlands investigated the 
application of a synchronization likelihood approach in raw 
un-filtered EEGs (without removing artefact) from twenty 
neonates (3 preterms and 17 terms) for the identification of 
EEG epochs containing epileptic seizures (Smit et al., 2004). 
Smit et al. (2004) correlated the results of their non-linear 
analysis approach with the visual assessments from 3 experts 
that resulted in sensitivity and specificity measures of 65.9% 
and 89.8% for seizure detection. They have reported a detec-
tion rate of 100% for the longer seizures with lengths of at 
least 100 seconds (Smit et al., 2004). A comprehensive prim-
er to the synchronization likelihood technique can be found 
in (Stam and Van Dijk, 2002).

Two lead aEEG is a widespread conventional tool at 
NICUs that is obtained from highly filtered and rectified 
standard EEG and displayed on a semi-logarithmic scale. 
Using a Cerebral Function Monitor device (CFM Lec-
tromed) over sixty eight asphyxiated term babies, Toet et 
al. (1999) reported that early assessment of aEEG signals 
from term infants at their first 3 and 6 hours of birth, might 
provide useful information to identify HIE at risk neonates. 
Toet et al. (1999) reported positive and negative predictive 
values (PPV and NPV) of 78% and 84%, respectively, at 3 
hours after birth and PPV and NPV measures of 86% and 
91%, respectively, at 6 hours of birth. However, aEEG is not 
suggested to be a suitable framework for time-localization of 
real time EEG events (i.e., seizure activity or fast seizure-like 
events that occur at lower amplitudes) as it can only provide 
limited information on the overall changes of activities (Toet 
et al., 2002). In 2007, Lommen et al. from the Netherlands 
investigated the capability of automated trained algorithms 
for seizure detection with a duration of > 60 seconds in 
aEEG recordings collected using the Olympics CFM6000 
machine. On average their data set was collected at 40.8 
hours of birth from 13 babies (10 diagnosed with asphyxia). 
Their algorithm was trained using recordings from five ba-
bies and tested over the recordings from eight other babies. 
Lommen et al. (2007) reported a sensitivity of ≥ 90% for the 
identification of seizures in the recording sets containing 

clear neonatal seizures resulting in a low false positive rate 
of 1 seizure per hour. Their algorithm was claimed to have 
potentials as an alarm function for the CFM monitor device.

Deburchgraeve et al. (2008) demonstrated that the human 
observer-based definition of neonatal seizures character-
istics could be defined for the automatic identification of 
two major neonatal seizure types, namely the spike train 
seizures and oscillatory seizures. Each measurement in their 
dataset of 21 term infants was started within 24 hours from 
birth and continued for 24–48 hours. Deburchgraeve et al. 
(2008) introduced a combination technique based on auto-
correlation, non-linear energy operator (NLEO) and wave-
let decomposition to improve the detection ability of their 
method, resulted in an overall sensitivity of 88% with the 
false positive rate of 0.66 per hour tested over 217 hours of 
EEG recordings. A comprehensive primer to the NLEO and 
the correlation analysis techniques used in Deburchgraeve’s 
study can be found in Kaiser (1990) and van Putten and van 
Putten (2007), respectively.

Deburchgraeve et al. (2009) demonstrated that high-
er-order canonical decomposition or parallel factor analysis 
was beneficial for the localization of the electrical potential 
distribution of neonatal cortical seizures that appear in the 
form of either oscillatory seizures or spike train activity, 
post-HI event. Similar to their previous study in 2008, mea-
surements in their data set were initiated within 24 hours of 
birth of six asphyxiated term neonates. Deburchgraeve et al. 
(2009) demonstrated that their algorithm can be embedded 
within the current seizure detection devices in the NICUs to 
monitor information such as seizure burden, length, seizure 
quantification and spread to contralateral hemisphere. A 
comprehensive primer to the parallel factor analysis decom-
position analysis can be found in (Miwakeichi et al., 2004).

Researchers from the Netherlands have also investigated 
the superiority of two-channel aEEG recordings over sin-
gle-channel recordings for automated seizure activity detec-
tion using a wave-sequence analysis technique (van Rooij et 
al., 2010). Using 15 full-term neonates of age 37–41 weeks, 
Rooij et al. (2010) demonstrated that two channel aEEG 
recordings will be superior to one-channel aEEG analysis, 
providing better detailed information for the identification 
of seizures that are associated to the affected side of the 
brain. To do so, Rooij et al. (2010) employed Navakatikyan’s 
wave-sequence analysis algorithm for the automatic detec-
tion of neonatal seizures that resulted in a sensitivity of 65% 
tested over 2150 hours of aEEG recordings (Navakatikyan et 
al., 2006). 

Cherian et al. (2011) from the Netherlands validated the 
performance of an improved version of Deburchgraeve et al‘s 
automated seizure detector in 2008 (called NeoGuard) over 
an independent EEG dataset of 756 hours collected from 24 
neonates (22 terms and 2 preterm/near-term) at 30–35 weeks 
of age in NICU (Cherian et al., 2011). Two parallel running 
detectors were designed in the NeoGuard for simultaneous 
identification of spike-trains containing high energy EEG 
segments as well as intervals containing oscillatory seizure 
activity resulting in a total sensitivity of 61.9% and false pos-
itive rate of 0.28 per hour. Cherian reported that alteration of 
EEG characteristics such as amplitude, rhythmicity and du-
ration in relation to EEG background deterioration reduces 
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the performance of the automated seizure detector.
 Ansari et al. (2016) introduced a multi-stage support vec-

tor machine (SVM)-based heuristic neonatal seizure classi-
fier that is equipped with a data-driven post processing unit 
that uses a novel set of seizure-relevant features for final de-
cision making. Ansari et al. (2016) reported improved per-
formances when the post-processing technique was used in 
their heuristic algorithm by obtaining lower false alarm rates 
(FAR) tested over 1023 hours of EEG-polygraphy record-
ings containing 3493 seizures from 71 neonates. Ansari et 
al’s seizure detector resulted in a GDR of 88% with a FAR of 
3.81/h. A comprehensive primer to the SVM technique can 
be found in (Scholkopf and Smola, 2001). Continuing their 
work, in 2016, Ansari et al. (2017) developed a third stage to 
their automated seizure recognition algorithm that receives 
a neurologist’s feedback and adaptively retunes a threshold 
parameter that was shown to improve the performance cri-
teria of their detector (i.e., FAR and PPV) especially in the 
identification of brief seizures. Using 977 hours of recordings 
from 17 neonates Ansari et al. (2018b) demonstrated that 
the good detection measure of their improved algorithm re-
mained unchanged while the FAR was decreased to 2.48/h. 
Later, Ansari et al. (2018b) addressed the limitations of cur-
rent metrics such as FAR and GDR when seizure events are 
rated based on the majority of votes from multiple experts. 
Using bootstrapping test, Ansari et al. (2018b) suggest that a 
multi-scoring strategy on the manually identified event can 
be taken into account in order to consider the agreements of 
the expert for the detected event by the automated seizure 
identifier. Ansari et al. (2018b) demonstrated that more 
realistic results can be obtained through bootstrapping for 
the commonly used metrics such as FAR, GDR, and PPV, se-
lectivity, sensitivity and specificity when such a strategy had 
been considered. Assessing 353 hours data including 4980 
seizures from 81 neonates, Ansari et al‘s heuristic algorithm 
contains two parallel algorithm which the first algorithm 
identifies spike trains by comparing the maximums of non-
linear energy to the background activity in the signal and de-
cides if sufficient amount of spikes are found in a sequence. 
The second algorithm uses discrete wavelet transform to 
decompose the EEG and uses the delta and theta frequency 
bands to mark potential intervals that the energy of the sig-
nal peaks allowing to identify oscillatory type seizures. An-
sari et al. (2018a) reported a sensitivity, specificity, selectivity, 
and overall GDR of 78.1%, 90.5%, 59.2%, and 95%, respec-
tively, for their heuristic detector with a FAR of 3.14/h. In a 
very recent work, Ansari et al. (2018a) introduced a heuristic 
method based on the combination of convolutional neural 
networks and random forest to identify neonatal seizures in 
74 hours of recordings from 22 neonates of age greater than 
36 weeks. It is claimed that the classification ability of the 
purposed algorithm is improved through substitution of the 
final classifying layers by a random forest block compared 
to other conventional classifiers such as linear discriminant 
analysis and SVM. Ansari’s seizure detector is suggested to 
minimize the manual interaction of an expert by automati-
cally extracting the required features of the data to be used in 
training of the network resulting in a total accuracy of 77% 
with a FDR of 0.63 per hour. A comprehensive primer to the  
convolutional neural network and random forest techniques 

can be found in (LeCun and Bengio, 1995) and (Liaw and 
Wiener, 2002), respectively.

Ireland
Greene et al. (2008) from the University College Cork in Ire-
land initially reported best performing features from quan-
titative EEG to be used in a linear discriminant classifier for 
neonatal seizure detection. A linear discriminant classifier 
discriminates between classes by finding the optimized lin-
ear combination of the defined features. A comprehensive 
primer to the linear discriminant classifier technique can be 
found in (Kuncheva, 2004). Using a cohort of 17 full term 
infants at the age of 39–42 weeks, Greene et al. (2008) have 
reported that the RMS amplitude, the line length and the 
number of local extremums are the most useful features to 
be used to differentiate between seizure and non-seizure 
segments. However, they claimed optimum sensitivity and 
specificity results of 81.08% and 82.23%, respectively, when 
all features were combined and fed together into their devel-
oped classifier. 

Also, Greene et al. (2008) demonstrated that an optimized 
early-integration configuration of parameters across all EEG 
channels in an automated regularized discriminant classifier 
architecture outperforms for patient-independent neonatal 
seizure detection compared to their two other developed 
models based on linear discriminants and quadratic discrim-
inants. Greene et al. (2008) validated their automated regu-
larized discriminant classifier using 14.8 hours of recordings 
from 17 full term infants at the age of 39–42 weeks which 
resulted in sensitivity and specificity measures of 33.17% and 
95.99%, respectively.

In 2010, Thomas et al. (2010) from the same team investi-
gated the performance of a Gaussian Mixture Model (GM-
M)-based algorithm for seizure detection in post-HI 256 
Hz neonatal EEG of 20 full-term babies. Thomas analysed 
the choice of parameters for an optimal performance that 
could maximize the receiver operating characteristic (ROC) 
area which their designed neonatal seizure detector could 
provide. Thomas et al’s GMM-based algorithm resulted in 
an ROC area and GDR of 95.6 ± 2.9% and 79%, respectively, 
with a FDR of 0.5 per hour. They have also provided a de-
tailed primer to the Gaussian mixture model technique used 
in their study.

Temko et al. (2011a) from Neonatal Brain Research Group 
at University College Cork demonstrated that machine 
learning-based approaches such as SVM provided consid-
erable performance improvement for the classification be-
tween seizure and non-seizure EEG epochs that can be used 
for reliable interpretation of events in the hypoxic-ischemic 
EEG in in NICUs. Temko et al‘s SVM-based algorithm was 
tested over 267 hours of recordings from 17 full term neo-
nates at the age of 39–42 weeks resulting in an ROC area of 
96.3%, sensitivity and specificity of 90% and an average GDR 
of 89% with an average FDR of 1 per hour.

Low et al. (2011) from the same affiliation investigated the 
performance validation of Temko’s neonatal seizure detector 
algorithm (trained over 17 term neonates) for the interpre-
tation of EEG recordings using a new dataset collected at 
the NICU from 41 term babies with signs of HIE. Low et 
al. (2011) claimed that the accuracy level of their neonatal 
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seizure detector algorithm is approaching to the clinical 
acceptable values in the NICUs resulting in an ROC area of 
95.4% with a seizure detection rate of 60% and a FDR of 0.1/h. 
However, they report that the FARs still needs to be reduced 
in order to improve the performance.

Temko et al. (2012) aimed to implement the novel clinical 
understanding of the evolution of post HI neonatal seizures 
to amend the performance of their previously designed 
seizure detector algorithms. They investigated this through 
using probabilistic weights associated to temporal locations 
of seizures corresponding to time of birth that was fed into 
their previously developed SVM-based seizure detector us-
ing 816.7 hours of data from 18 full term new-borns at the 
age of 39–42 weeks. Temko et al. (2011a) reported that the 
ROC area of the improved seizure detector was increased to 
96.74% with a correct seizure detection rate of 70% while the 
FDR was significantly decreased to 0.25/h by adding a “prior” 
block to the detector’s structure compared to their previous 
work. In 2013, researchers from the same group demon-
strated that the performance of their developed SVM-based 
seizure detector was increased when an adaptive probabi-
listic EEG background modelling was embedded into their 
suggested algorithm in 2011 (Temko et al., 2011a), resulting 
in an ROC area of 96.1% and a correct seizure detection rate 
of 70% at the cost of 0.24 false detections per hour (Temko 
et al., 2013). Their study in 2013 used a dataset of 2540 hour 
recordings from 51 full-term neonates at the age of 39–42 
weeks. Temko et al. (2015) compared the performances of 
three different strategies namely 1, a binary output; 2, a prob-
abilistic trace; and 3, seizure’s spatio-temporal colormap for 
neonatal seizure detection and advantages and disadvantages 
of each method was discussed. They suggested that a com-
bination of a binary output and a probabilistic trace method 
provides a suitable framework to determine the output of 
their suggested seizure detector at the clinical acceptable 
range. Mathieson et al. (2016) from Neonatal Brain Research 
Group in Ireland investigated the performance validation of 
Temko’s seizure detection algorithms, developed in 2011 and 
2013, on a larger unseen clinical dataset from 70 term babies 
and collected at Cork University Maternity Hospital (Temko 
et al., 2011b) and University College London Hospital. From 
the 70 near-term and term neonates at the age of  ≥ 37 weeks, 
35 babies were selected from a sham control group without 
seizures and 35 babies with seizures totalling 4060 hours of 
recordings. Mathieson reported an overall performance of 
52.6–75.0% and FDRs of 0.04–0.36/h for the purposed sei-
zure detection algorithms. In 2016, Mathieson et al. (2016) 
reported performance enhancements to Temko’s original 
alpha version of automated neonatal seizure classifier (Temko 
et al., 2011b) when the algorithm was equipped with a novel 
neurophysiology-based technique for further comprehensive 
analysis. Mathieson et al. (2016) demonstrated that the extra 
rigorous analysis allows for better estimation of key seizure 
features that significantly improves the performance of AN-
SeR algorithm which led to a beta version of “Algorithm for 
Neonatal Seizure Recognition” (ANSeR). The ANSeR algo-
rithm is currently being clinically validated across NICUs in 
Europe. ANSeR was tested using a dataset of 1263 hours of 
recordings from 20 term neonates (10 from sham group with 
no seizure and 10 with seizure) resulting in a seizure detec-

tion rate of 60.64% at threshold 0.4 with a FDR of 0.52/h. 
Mathieson et al addressed that the majority of wrong detec-
tions of the ANSeR algorithm occurs at the place of artefacts 
and the extremely rhythmic EEG background.

Finland
Tapani et al. (2017) demonstrated that incorporating EEG 
features, adapted from spike correlations, using a smoothed 
non-linear energy operator in conjunction with EEG fea-
tures from the Temko’s original seizure classifier (Temko et 
al., 2011b), into an SVM-based neonatal seizure detector 
results in clinically acceptable performances. Tapani et al’s 
seizure detector resulted in a median area under curve (AUC) 
of 98.1% tested on 112 hours of recordings from 79 full-term 
neonates. Following their work in 2017, Tapani et al. (2018) 
incorporated combination of adapted estimations of spike 
correlations (in both time and time-frequency domains) 
for non-stationary periodic feature extraction to be fed into 
their SVM-based neonatal seizure detector for the classifica-
tion between seizure and non-seizure intervals. From a data-
set of 79 full term babies, they calculated the performance 
measures for their seizure detector only for 39 patients with 
consensus seizures of at least 10 seconds long resulting in an 
AUC of 98.8% with seizure detection rate of 86.6% at a cost 
of 1 false detection per hour. 

Other groups
In 2003, researchers at the hospital for sick children in To-
ronto in collaborations with researchers in Japan and Iran 
demonstrated that wavelet transform can be a suitable spec-
tral analysis tool for the detection of neonatal seizures and 
characterization of their epileptic component (Kitayama et 
al., 2003). Using a group of 15 preterm to term new-borns 
aged 37.1 ± 4.6 weeks, they reported that the Wavelet Trans-
form was able to detect sustained dominant spectral com-
ponents within 40 EEG seizures out of a total of 69 neonatal 
EEG seizures with lengths of longer than 10 seconds resulted 
in a detection rate of 58%. Kitayama et al. (2003) suggest that 
sustained dominant spectral components can help to predict 
post-neonatal epileptic seizures with an onset that could 
vary from birth to many days.

In 2004, researchers from Queensland University of Tech-
nology in Australia introduced a time-frequency method 
based on spectral feature extraction to identify neonatal EEG 
seizures in both low (< 10 Hz) and high frequency (> 70 Hz) 
bands in a cohort of 5 neonates (Hassanpour et al., 2004). 
Their algorithm resulted in a GDR of 92.6% at the cost of 3.8 
false detections per hour.

In 2006, researchers from BrainZ instrument Ltd. and Lig-
gins Institute of New Zealand in collaboration with perinatal 
researchers and paediatricians from Australia and the United 
states introduced a wave-sequence analysis based automated 
technique for real-time neonatal seizure detection using a 
parallel EEG fragmentation strategy (Navakatikyan et al., 
2006). The ‘Recognize’ algorithm by Navakatikyan used by 
the Brainz aEEG monitor (Natus Medical Inc., USA) em-
ploys a 2 channel EEG technology. Navakatikyan et al. (2006)
reported sensitivity, specificity and selectivity performance 
measures of 94.5%, 93.7% and 76.6%, respectively, with an 
FDR of 2 examined over ~5 hours of recordings contain-
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ing seizures from 17 full term neonates at the age of 39–42 
weeks. In a recent work in 2017, researchers from Australia 
examined the accuracy of neonatal seizure detection be-
tween 2-channel amplitude-integrated EEG and the conven-
tional video EEG using at risk infants (35 near to full term 
infants of age ≥ 35 weeks - only 7 with seizures), suggesting 
that amplitude-integrated electroencephalography is a poor 
screening tool for seizure detection (Rakshasbhuvankar 
et al., 2017). In their study, amplitude-integrated EEG was 
performed using BrainZ monitor (BRM2; BrainZ Instru-
ments, Auckland, Wellington, New Zealand) equipped with 
embedded neonatal seizure detector software (RecogniZe, 
Natus Medical Incorporated, Pleasanton, CA), while video 
EEG was recorded through Compumedics equipment and 
analysed using PSG software (Compumedics, Abbotsford, 
Victoria, Australia). Rakshasbhuvankar et al. (2017) reported 
a very weak detection rates of 33.7% and 53.2% for sensitiv-
ity and selectivity measures, respectively (only 57 out of 169 
seizures) using amplitude-integrated EEG. 

In 2007, researchers from France demonstrated that a 
combination technique using a rule-based decision-making 
system and a multilayer back-propagation artificial neural 
network classifier could be beneficial for seizure recogni-
tion with a promising low false detection rate (Aarabi et al., 
2007). They reported sensitivity, specificity, selectivity and 
GDR measures of 74%, 85.6%, 70.1%, and 79.7, respectively, 
with an average FDR of 1.55 per hour tested over 86 hours 
of recordings from 10 full term neonates at the age of 39–42 
weeks. A comprehensive primer to the multilayer artificial 
neural network classifiers can be found in previous studies 
(Abraham, 2005; Gurney, 2014).

In late 2008, researchers from Sweden demonstrated that 
a SVM fed with five input extracted features from the EEG 
signals outperforms for the classification of bursts from 
suppression EEG intervals compared to an artificial neural 
network or a Fisher’s linear discriminant (Löfhede et al., 
2008). Löfhede et al. (2008) reported an AUC of > 90% for 
their SVM-based algorithm using data from 6 neonates aged 
39–42 weeks. 

In 2009, researchers from Houston in the United States 
demonstrated that a three stage automated algorithm with 
an EEG measures-based qualification final stage can highly 
distinguish candidate seizures with widely varying morphol-
ogy (Mitra et al., 2009). Mitra et al’s multi-stage algorithm 
was able to detect seizures with durations of at least 10 sec-
onds with an average overall sensitivity of 79.8% and an FDR 
of 0.78/h along 34 hours of recordings from 28 full term sub-
jects aged 39–42 weeks.

Lawrence et al. (2009) from France investigated the fea-
sibility of a neonatal seizure detector in limited-channel 
hypoxic-ischemid aEEGs and compared the results to con-
ventional EEG-video recordings. They used 2708 hours 
of recordings from 40 near- to full-term infants of aged ≥ 
36 weeks. They demonstrated that the performance of the 
software-based seizure detector improved from 55% for the 
detection of all seizures to 87% for the detection of seizures 
with longer durations of  > 60 seconds only. 

A few other attempts, between 2009 and 2014, have devel-
oped automated algorithms for grading HIE through anal-
ysis of background EEG as well as identification of neonatal 

inter-burst EEG intervals in infants with signs of HIE (De-
burchgraeve et al., 2009; Matic et al., 2012, 2014, 2015).

Conclusion
This article highlights the recent advances in the automatic 
identification of neonatal epileptiform seizures in the post 
HIE EEG recordings developed by different research groups 
using signal processing and machine learning techniques. 
Examining literature from 2000 to 2018, this survey discussed 
a variety of methods ranging from basic techniques such as 
wave-sequence analysis (Navakatikyan et al., 2006), pattern 
characteristic-based analysis (Lommen et al., 2007), correla-
tion/autocorrelation (Deburchgraeve et al., 2008) and adap-
tive thresholding (Ansari et al., 2017) to more complicated 
techniques such as time-frequency (Hassanpour et al., 2004) 
and wavelet-based analysis (Kitayama et al., 2003), artificial 
neural networks (Mitra et al., 2009) and energy and spectral 
component analysis (Cherian et al., 2011). The article also 
detailed the application of more advanced techniques such as 
SVM combinational techniques (Löfhede et al., 2008; Temko 
et al., 2011a, 2012, 2013, 2017; Low et al., 2011; Ansari et al., 
2016; Mathieson et al., 2016; Tapani et al., 2017, 2018), Gauss-
ian mixture model (Thomas et al., 2010) and convolutional 
neural networks (Ansari et al., 2018a) for the identification of 
neonatal seizures. Among all, SVM-based methods (Temko 
et al., 2011a, 2012, 2013, 2017) as well as Ansari’s heuristic 
detector (Ansari et al., 2018b) alongside with his convolu-
tional neural network-based approach (Ansari et al., 2018a), 
introduced in 2018, demonstrated superiority in the classifi-
cation of seizures from non-seizure intervals. These methods 
resulted in considerable smaller false alarm rates tested over 
much larger clinical datasets from neonates with signs of HI 
at birth. Despite the significant advances in the improvement 
of automated techniques, false detections have been remained 
a substantial challenge for the automated techniques to be ful-
ly accepted by the clinicians. Acquiring lower false detection 
rates are naturally challenging due to the various morpholo-
gies of seizures in neonatal EEG after an HI event. Detailed 
information of the discussed techniques is supplied in Tables 
1 and 2 at the end of the manuscript.

On reflection of the research that has been performed on 
neonatal EEG with advanced signal processing and machine 
learning, it should be noted that all the current techniques 
applied to neonatal EEG studies have been solely concen-
trated on the identification of high amplitude seizures. One 
consideration for the future is to investigate other forms of 
transients that exist in the EEG such as spike waves, sharp 
waves, slow waves, micro-scale transients and complexes 
that have currently not been explored in human neonates 
but have been found to provide useful biomarkers correlat-
ed with injury in animal models (Abbasi et al., 2014, 2015, 
2016, 2017, 2018, 2019a, b c). In addition, typical sampling 
rates used in neonatal EEG are usually no higher than 256 Hz 
which could serve to limit the resolution, reduce detection 
and dramatically increase FAR of such biomarkers and other 
transients that exist in the neonatal EEG. Thus, another sug-
gestion would be to move current sampling rates to be greater 
than 1024 Hz which has been shown to provide considerable 
performance improvement in EEG biomarker identification 
in animal studies (Abbasi et al., 2014, 2015, 2016, 2017, 2018, 
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Table 1  Automated strategies on the detection of epileptiform seizures post a hypoxic-ischemic event (continued in Table 2)

Reference Subjects
Number of 
subjects

Type of 
experiment Epileptiform events

Number of 
events

Length of 
recordings 
(hours)

Number of 
experts EEG acquisition

Sampling 
frequency 
(Hz)

Kitayama et al. (2003) Preterm to term newborns  
(24–40 weeks)

15 Clinical Neonatal  seizure 69 NR 1 13 channels* 200

Smit et al. (2004) 3 preterms and 17 term neonates 20 Clinical Neonatal  seizure NR NR 3 9 channels* 200
Hassanpour et al. (2004) Newborns (age of samples not 

specified)
5 Clinical Neonatal  seizure 275 0.83 1 20 channels* 256

Navakatikyan et al. 
(2006)

Full-term newborn
(39–42 weeks)

17 Clinical Neonatal seizure 97 4.85 2 Two-lead and 20 
channels*

256

Aarabi et al. (2007) Full-term neonates (39–42 weeks) 10 Clinical Conventional seizure 637 86 1 EEG* 256
Lommen et al. (2007) Near-term and term newborns 

(34–42 weeks)
13 Clinical Neonatal aEEG seizure 382 222 2 EEG* and aEEG NR

Greene et al. (2008) Full-term neonates (39–42 weeks) 17 Clinical Neonatal  seizure 99 1 9 channels* 256
Deburchgraeve et al. 
(2008)

Term infant 21 Clinical 1) Spike train type seizure; 2) 
Oscillatory type seizure

550 217 2 13 and 17 channels* 256

Greene et al. (2008) Full-term neonates (39–42 weeks) 17 Clinical Neonatal seizure 411 14.8 1 7–11 channels* 256
Löfhede et al. (2008) Full-term infants 

(39–42 weeks)
6 Clinical Burst/suppression 125 1.32 1 8 channels* 200

Mitra et al. (2009) Full-term neonates (39–42 weeks) 28 Clinical Neonatal seizure 206 34 4 12 channels* 185
Lawrence et al. (2009) Near-term and term infants (≥ 36 

weeks)
40 Clinical Seizure 1116 2708 3 aEEG through 17 

channels*

Deburchgraeve 
et al. (2009)

Term infant 6 Clinical Neonatal  seizure 21 1 17 channels* 256

van Rooij et al. (2010) Full-term neonates (37–41 weeks) 15 Clinical Neonatal  seizure 214 2150 1 2-channel aEEG*

Thomas et al. (2010) Full-term neonates (39–42 weeks) 20 Clinical Seizure 760 330 1 EEG* 256
Temko et al. (2011a) Full-term newborn

(39–42 weeks)
17 Clinical Neonatal seizure 705 267 2 8 channels* 256

Low et al. (2011) Term neonates 41 Clinical Neonatal  seizure 377 1 EEG* 256
Cherian et al. (2011) 22 term infants , 2 preterm/near-

term  (30 and 35 weeks)
24 Clinical Neonatal  seizure 2077 756 1–2 9, 13, 17 channels* 256

Temko et al. (2012) Full-term newborn
(39–42 weeks)

18 Clinical Neonatal seizure 1389 816.7 2 9 channels* 256

Temko et al. (2013) Full-term newborn (39–42 weeks) 1st set: 18,    
2nd set: 24

Clinical Neonatal seizure 1st set: 389,  2nd 
set:1142

1st set: 816.7
2nd set: 2540

2 9 channels* 256

Temko et al. (2015) Full-term neonates NR Clinical Neonatal  seizure 8 channels* 256
Mathieson et al. (2016) Near term and term neonates (≥ 

37 weeks)
70 Clinical Neonatal seizure 2061 4060 1–2 9 channels* 250/256

Ansari et al. (2016) Neonates 71 Clinical Neonatal  seizure 3493 1023 4 9, 17 channels* 256
Mathieson et al. (2016) Term neonates 20 Clinical Neonatal seizure 421 1262.9 1 9 channels* 250/256
Tapani et al. (2017) Full-term neonates 79 Clinical Neonatal  seizure 290 112 3 EEG* 256
Rakshasbhuvankar et 
al. (2017)

Near-term and term infants  (≥ 35 
weeks)

35 Clinical Neonatal  seizure 169 840 1 2-channel aEEG 
with raw trace

Temko et al. (2017) Full-term newborn (39–42 weeks) 18 Clinical Neonatal  seizure 1389 816.7 1 8 channels* 256
Ansari et al. (2017) Neonates 17 Clinical Neonatal  seizure 1975 977 1 20 channels* 256?
Tapani et al. (2018) Full-term neonates 79 Clinical Neonatal  seizure 342 112 3 19 channels* 256
Ansari et al. (2018b) Neonates 81 Clinical Neonatal  seizure 4980 353 4 9, 17 channels*? 256?
Ansari et al. (2018a) Near-term and Term infants  (≥ 36 

weeks)
22 Clinical Neonatal  seizure 373 74.3 1 9, 13, 17 channels* 256

*: 10–20 electrodes multi-channel system; ?: uncertain; aEEG: amplitude-integrated EEG; EEG: electroencephalography; NR: not reported.

2019a, b, c). Finally, all seizure detection in the neonatal 
EEG has been performed post initial seizure, namely after 
the latent phase of injury has occurred (and the window of 
opportunity is passed). Whilst data is sparse in the latent 
phase of injury for human neonates, it would still be useful to 
endeavor to analyze EEG transients in this region which has 
been shown to provide useful information in animal models 
(Abbasi et al., 2014, 2015, 2016, 2017, 2018, 2019a, b, c) for 
the advanced prediction of initial seizure onset.

Author contributions: Literature retrieval and data collection: HA; 
manuscript preparation: HA, CPU;  manuscript writing: HA; manuscript 
review: CPU. The final submitted article has been revised and approved 
by the authors.
Conflicts of interest: We declare no conflicts of interest.
Financial support: This work was supported by the Auckland Medical 
Research Foundation, No. 1117017 (to CPU).
Copyright license agreement: The Copyright License Agreement has 
been signed by both authors before publication.
Plagiarism check: Checked twice by iThenticate.
Peer review: Externally peer reviewed.

Open access statement: This is an open access journal, and articles are 
distributed under the terms of the Creative Commons Attribution-Non-
Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, 
and build upon the work non-commercially, as long as appropriate credit 
is given and the new creations are licensed under the identical terms.

References
Aarabi A, Grebe R, Wallois F (2007) A multistage knowledge-based sys-

tem for EEG seizure detection in newborn infants. Clin Neurophysiol 
118:2781-2797.

Abbasi H, Bennet L, Gunn A, Unsworth C (2019a) Latent phase detection 
of hypoxic-ischemic spike transients in the EEG of preterm fetal sheep 
using reverse biorthogonal wavelets & fuzzy classifier. Int J Neural Syst 
doi:10.1142/S0129065719500138.

Abbasi H, Bennet L, Gunn A, Unsworth C (2019b) 2D wavelet scalogram 
training of deep convolutional neural network for automatic identifica-
tion of micro-scale sharp wave biomarkers in the hypoxic-ischemic EEG 
of preterm sheep. EMBC 2019. embs.EMBC19.1937.8a16c111.

Abbasi H, Bennet L, Gunn AJ, Unsworth CP (2019) Automatically iden-
tified micro-scale sharp-wave transients in the early-latent phase of 
hypoxic-ischemic EEG from preterm fetal sheep reveal timing rela-
tionship to subcortical neuronal survival. EMBC 2019. embs.EM-
BC19.1936.059e4997.



229

Abbasi H, Unsworth CP (2020) Applications of advanced signal processing and machine learning in the neonatal hypoxic-ischemic 
electroencephalography. Neural Regen Res 15(2):222-231. doi:10.4103/1673-5374.265542

Table 2  Automated strategies on the detection of epileptiform seizures post a hypoxic-ischemic event (continued from Table 1)
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support vector machine 
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algorithm in clinical 
application
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features
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machine 
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Ansari et al. (2018b) Heuristic detector 78.1 90.5 59.2 95 3.14
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ANSeR: Algorithm for Neonatal Seizure Recognition; CNNs: convolutional neural networks; EEG: electroencephalography; FDR: false detection 
rate; GDR: good detection rate; ROC: receiver operating characteristic.
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