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Recent studies have shown that overweight and obesity play an important role in the development of osteoarthritis (OA). However,
joint overload is not the only risk factor in this disease. For instance, the presence of OA in non-weight-bearing joints such as the
hand suggests that metabolic factors may also contribute to its pathogenesis. Recently, white adipose tissue (WAT) has been
recognized not only as an energy reservoir but also as an important secretory organ of adipokines. In this regard, adipokines
have been closely associated with obesity and also play an important role in bone and cartilage homeostasis. Furthermore, drugs
such as rosuvastatin or rosiglitazone have demonstrated chondroprotective and anti-inflammatory effects in cartilage explants
from patients with OA. Thus, it seems that adipokines are important factors linking obesity, adiposity, and inflammation in OA.
In this review, we are focused on establishing the physiological mechanisms of adipokines on cartilage homeostasis and
evaluating their role in the pathophysiology of OA based on evidence derived from experimental research as well as from
clinical-epidemiological studies.

1. Introduction

Adipose tissue (AT) has emerged as a complex and highly
dynamic organ with endocrine, metabolic, and immune
regulatory roles. AT releases a plethora of bioactive peptides
or proteins, immune molecules, and inflammatory mediators
named “adipokines (only produced by the adipose tissue) or
adipocytokines (primary but not exclusively produced by
adipocytes)”. However, the term “adipokine” is used through
the review to refer to these mediators (Figure 1(a)). Adipo-
kines act both at autocrine/paracrine and at endocrine levels.
To date, about a hundred adipokines constituting the
adipokinome have been described to be synthesized by
hypertrophic adipocytes from white adipose tissue
(WAT). At first, it was thought that the adipokines were
only involved in metabolic processes. However, at present,
it is well known that adipokines represent a new family of
compounds that act as key players in the complex network
of soluble mediators involved in the vascular homeostasis,
metabolism, and immunity. Adipokines are also involved

in the pathophysiology of numerous diseases, including
not only metabolic syndrome (insulin resistance, hypergly-
cemia, dyslipidemia, hypertension, and prothrombotic and
proinflammatory states) but also rheumatic diseases such
as rheumatoid arthritis, osteoarthritis (OA) and systemic
lupus erythematosus, and cardiovascular and metabolic
complications that are frequently observed in rheumatic
diseases. Thus, adipokines exert potent modulatory actions
on target tissues and cells involved in cartilage, synovium,
bone, and various immune cells [1–6].

As a secretory organ, the AT has defining characteristics;
it depends on fat depots (visceral or subcutaneous), the cell
type composition (mature adipocytes, stromal-vascular cells,
and nonfat cells including macrophages), and so on. In
human obesity, AT is characterized by adipocyte hypertro-
phy and hyperplasia, macrophage infiltration, endothelial
cell activation, and fibrosis. Adipocyte size is related to
dysregulated adipokine and chemokine production; thus,
the hypertrophic adipocytes modify their expression of
proinflammatory mediators [4].
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Mature adipocytes represent 50–85% of the total cellular
components of WAT. Obese subjects are characterized by a
slightly larger adipocyte number than that in lean individ-
uals of which 10% is renewed annually. Intra-abdominal
fat only represents 15% of the total fat in lean and obese
individuals [7]. In obese individuals, AT from visceral fat
is constituted of adipocytes, preadipocytes, fibroblasts,
endothelial cells (stromal-vascular fraction), and bone
marrow-derived activated macrophage human leukocyte
antigen+ (HLA-DR+) infiltration as well as a small propor-
tion of CD8+ T cells, natural killer T cells, mast cells, and
B cells [8, 9]. Additionally, in obesity, there is a shift in
the M2 (anti-inflammatory)/M1 (proinflammatory) balance,
due to the migration of inflammatory monocytes from the
periphery to macrophage cluster surrounding necrotic adi-
pocytes. M1 are responsible for the circulating levels of

inflammatory mediators, determining the chronic and
systemic obesity-related inflammation [10].

Obesity not only has been a public health problem by
enhancing the cardiovascular disease and metabolic disor-
ders but also it has long been considered a risk factor for
OA [11–13]. It has been reported that obesity increases
the incidence of OA, particularly in weight-bearing joints
such as the knees, and weight reduction is associated with
a slower OA progression. A prevailing hypothesis is that
obesity increases mechanical loading across the articular
cartilage, leading to its eburnation, degradation, and degen-
eration [14]. However, obesity is also associated with OA in
non-weight-bearing joints, such as those of the fingers,
hands, and wrists, or temporomandibular joints which
suggests that metabolic factors contribute to the high preva-
lence of OA in obese individuals [15]. All known adipokines
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Figure 1: (a) Soluble mediators synthesized by white adipose tissue. Solid red arrows represent cytokines, growth factors, and hormones
produced by obese white adipose tissue. Dotted red lines represent the inhibition of the soluble mediator expression by obese white
adipose tissue. Solid green arrows depict endocrine and immune soluble mediators synthesized by lean white adipose tissue. Dotted green
lines represent the inhibition of the soluble mediator expression by lean white adipose tissue. (b) Relationship of adipokines with the
inflammation and the fat mass index in OA patients. sAdipokine: serum adipokine; BMI: body mass index.
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are markedly dysregulated not only in obesity but also in
type 2 diabetes or metabolic syndrome, where adipokines
such as resistin, leptin, chemerin, and visfatin-1 impli-
cated in the pathogenesis of inflammation and insulin
resistance are overexpressed, and some adipokines with
anti-inflammatory properties, such adiponectin and omen-
tin, are decreased [16–21].

In this review, we are focused on establishing the
physiological mechanisms of adipokines and their role in
the pathophysiology of OA.

2. Adipokines and Their Receptors

2.1. Leptin. Leptin, from the Greek root leptos, meaning
“thin”, was the first adipocyte-derived hormone/adipokine
described. It is a nonglycosylated polypeptide of 146
amino acids and 16KDa encoded by the gene obese (ob)
in the chromosome 7q31.3 [22]. Leptin’s three-dimensional
structure is highly similar to the members of the long-chain
helical cytokines, such as interleukin (IL)-6, IL-11, IL-12,
and granulocyte colony-stimulating factor (G-CSF) [23–25].
The cytokine-like structure of leptin is indicative of its
function in regulating immune responses. Leptin is mainly
produced inWATbymature adipocytes, but brownAT, intes-
tine, placenta, mammary glands, gastric fundic epithelium,
skeletal muscle, brain, joints (chondrocytes, synoviocytes,
and infrapatellar fat pads [IFP]), and bone (osteophytes)
also produce it. Its concentration fluctuates during the
day, with its peak during the night, usually being higher
in postpubertal women. The leptin production has shown
a positive correlation with BMI and fat mass [26]. Leptin
expression is also regulated by a wide range of inflamma-
tory mediators such as lipopolysaccharide (LPS) and cyto-
kines (tumor necrosis factor- (TNF-) α, IL-6, and IL-1β)
during acute inflammatory responses [24, 27, 28].

It was first described as a satiety- and appetite-regulating
hormone that induces a decrease of food intake, stimulating
the hypothalamus inducing anorexigenic factors and sup-
pressing orexigenic factors evoking the feeling of satiety,
but also stimulates thermogenesis and energy expenditure
by lowering blood glucose levels [29, 30]. The coexistence
of an increasing of the body fat content and obesity in animal
models and humans correlates with higher levels of leptin;
this is widely interpreted as evidence of “leptin resistance”.
It has been characterized by a decrease in transport of leptin
across the blood–brain barrier and by elevated hypothalamic
levels of SOCS3 and endoplasmic reticulum (ER) stress,
which inhibit leptin signaling [31–37].

Leptin exerts its biological actions through its dimerized
receptor, ObR [38, 39]. Six OB-R isoforms have been
described, 4 short isoforms (Ob-Ra, Ob-Rc, Ob-Rd, and
Ob-Rf), a soluble isoform Ob-Re, and the longest isoform
(Ob-Rb) which is the only one with a full intracellular
domain capable of transducing the leptin-binding signal
[40]. Ob-Rb shows sequence homology to members of class
I cytokine receptor (gp130) superfamily which includes
the IL-6R, leukocyte inhibitory factor receptor (LIFR),
and G-CSFR [38, 39]. The Ob-Rb is expressed in the
brain, erythrocytes, blast cells, hematopoietic CD34+ stem

cells, and various subpopulations of CD4+ and CD8+ T and
B cells, dendritic cells, monocytes, neutrophils, macrophages,
and natural killer cells (NKs) [39, 41, 42]. The Ob-Rb lacks
intrinsic tyrosine kinase activity. Nonetheless, it has been
shown to have the signaling capabilities of IL-6R (gp130),
activating Janus kinases (JAK) 2, signal transducers, and
activators of transcription (STAT) 3 signaling pathway.
However, alternative pathways in immune cells have been
described, such as extracellular signal activated kinase
(ERK)1/2, p38, Jun N-terminal kinases (JNK), protein kinase
C (PKC), Src-homology 2 domain-containing phosphatase 2
(SHP2)/growth factor receptor-bound protein 2 (GRB2), and
phosphatidylinositol 3 kinase (PI3K)/K9/protein kinase B
(AKT) pathways. This hormone circulates as an active free
form and bound to plasma proteins and the soluble receptor
isoform (Ob-Re) [8, 24, 41–50].

Regarding molecular mechanisms of attenuation of leptin
signaling under conditions of continuous stimulation, it has
been demonstrated that the two proximal intracellular tyro-
sine residues (Tyr985 or Tyr1077) in LEPRb were sufficient
for the attenuation of STAT3 activation [51].

The central effects of leptin in innate immunity
involve the activation of proliferation and phagocytosis
of monocytes/macrophages, the chemotaxis of neutrophils,
the release of oxygen radicals by these cells, and the acti-
vation of NK cells. Leptin also upregulates the secretion
of proinflammatory cytokines (TNF-α, IL-6, and IL-12)
by macrophages [25, 52, 53].

On adaptive immunity response, leptin strikingly stimu-
lates the proliferation of naïve T cells and IL-2 production
through mitogen-activated protein kinases (MAPK) and
phosphatidylinositol 3 kinase (PI3K) pathways. Leptin has
significant role in promoting polarization towards Th1 cell
response. Studies in humans have demonstrated the role of
leptin in the activation of lymphocytes. Leptin alone is unable
to induce the proliferation and activation of mature circulat-
ing T lymphocytes unless it is coadministered with other
nonspecific immunostimulants (PHA or Con A), in which
case, leptin results in the induction of early (CD69) and
late activation markers (CD25 and CD71) in both CD4
and CD8 lymphocytes [25, 41, 42, 54]. Moreover, it has
been shown that Tregs produce leptin and express its
receptor. Leptin acts as a negative signal in proliferation
of Treg cell [55].

Circulating levels in normal lean individual are 5–
15 ng/mL, whereas in subjects with obesity, these levels
can reach 100 ng/mL and exceed 250ng/mL in the morbidly
obese [56].

2.2. Adiponectin. Adiponectin or adipocyte complement-
related protein 30 kDa (Acpr30) is a protein of 244 amino
acids produced by adipocytes, placenta, the liver, epithelial
cells, osteoblasts, myocytes (in response to inflammatory
stress or in response to metabolic and/or oxidative aggres-
sion), and by pituitary cells. In the blood stream, adiponectin
is in three forms: trimer (low molecular weight), hexamer
(medium molecular weight), and 12- to 18-mer (high
molecular weight). Also, a globular adiponectin results from
the cleavage of the full-length monomer [57–60], being the
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high molecular weight isoform and the most biologically
active [61]. Adiponectin consists of 4 regions: a short signal
sequence, a short region that varies between species, a
65-amino acid region similar to collagenous proteins, and
aglobular domain [61].Circulating adiponectin levels areneg-
atively correlated with the BMI and decreased in obese sub-
jects, type 2 diabetes, and cardiovascular disease [19, 62, 63].

AdipoR1 and AdipoR2 are the major receptors for
adiponectin. AdipoR1 is abundantly expressed in the mus-
cle, hypothalamus, brainstem, and pituitary gland while
AdipoR2 is expressed in the liver, astrocytes, and cortex.
AdipoR1 is more tightly linked to the activation of AMPK,
p38-MAPK, JNK,peroxisomeproliferator-activated receptor-
(PPAR-) α, and nuclear factor- (NF-) kB pathways that
regulate the inhibition of gluconeogenesis together with
increased fatty acid oxidation, while AdipoR2 is more
involved in the activation of the PPAR-pathways, which
stimulate energy dissipation by increasing fatty acid oxida-
tion and inhibit oxidative stress and inflammation. T-
cadherin has also been reported as a receptor for high
molecular multimers of adiponectin [63–68]. Adiponectin
may attenuate TNF-α, IL-6, MCP-1, vascular cell adhesion
molecule-1 (VCAM-1), intercellular adhesion molecule-1
(ICAM-1), and endothelial-leukocyte adhesion molecule 1
(ELAM-1) expression, inflammation, oxidation, and fibrosis
in AT through the inhibition of NF-kB activation [69–71].
Moreover, adiponectin suppresses superoxide radical gen-
eration in endothelial cells. Adiponectin acts by inhibiting
proinflammatory response, polarizing macrophages from
M1 to M2, and Th1/Th17 to Th2/Tregs, and inhibiting
TLR4-mediated NF-kB activation [72, 73]. Circulating
levels in normal lean individual are 11–15μg/mL, whereas
with obesity, these levels can decrease 8μg/mL [19].

2.3. Resistin. ResistinorAT-specificsecretoryfactor(ADSF)or
C/EBP-epsilon-regulated myeloid-specific secreted cysteine-
rich protein (XCP1) is a 12.5 kDa cysteine-rich adipose-
derived peptide hormone, encoded by the RETN gene that
belongs to the family of “resistin-like molecules” or “FIZZ”
(found in inflammatory zone) [63, 74]. In mice, circulating
resistin exists in a disulfide-linked hexamer or a smaller
trimer. In humans, resistin is present in two quaternary
forms: an abundant high molecular weight hexamer and
a less abundant but more bioactive trimer, which induces
hepatic insulin resistance and inflammation [17, 75].

The resistin expression in rodents is primarily by adipo-
cytes, while in humans is mainly produced by monocytes
and macrophages activated with LPS, IL-1β, IL-6, TNF-α,
resistin itself, and in less extent by pancreatic β cell, lung
cells, and placental tissue [63]. The relevance and physiolog-
ical role of resistin in humans remain unclear. Given the
incomplete homology (59%) between human and mouse
resistin [74] and the absence in humans of one of the three
murine resistin isoforms, resistin in humans may have a
different physiological role than that in mice. Resistin
appears to be a link between obesity and insulin resistance,
and inflammation and insulin resistance in rodents. In
humans, elevated circulating resistin levels are significantly
related to increased risk of type 2 diabetes [17, 76], while

resistin has been implicated in the pathogenesis of obesity-
mediated insulin resistance and type 2 diabetes in rodent
models [17, 63, 75, 77].

Resistin inhibits the anti-inflammatory effects of adi-
ponectin on vascular endothelial cells by promoting the
expression of the proinflammatory VCAM-1, ICAM-1, pen-
traxin 3, and proinflammatory cytokines (MCP-1, TNF-α,
IL-6, and IL-12) through NF-κB dependent pathway in these
cells, thereby enhancing leukocyte adhesion and inflamma-
tory process [78–80].

Resistin competes with lipopolysaccharide (LPS) for
binding to TLR4 and adenylyl cyclase-associated protein 1
(CAP-1) [79, 81, 82]. Some other potential receptor candi-
dates including an isoform of decorin involved in WAT
expansion, tyrosine kinase-like orphan receptor-1 (ROR1)
in 3T3-L1 cells, or insulin-like growth factor 1 receptor
(IGF-1R) in fibroblasts from rheumatoid arthritis patients
have also been described [83]. Thus, resistin could interact
with different receptors depending on the tissue and cell
types. Resistin activates G protein-dependent mechanism,
the adenylate cyclase/cAMP/PK A pathway, the PI3-kinase/
Akt pathway, the PKC, and extracellular Ca2+ signaling
through L-type voltage-sensitive Ca2+ [3, 84–86].

2.4. Visfatin. Visfatin or pre-B cell colony-enhancing factor
1 (PBEF1) or nicotinamide phosphoribosyl transferase
(NAmPRTase or Nampt) is a 52 kDa enzyme of 491
amino acids that promotes B cell maturation, stimulates
the expression of proinflammatory cytokines and chemo-
kines (IL-1β, IL-6, TNF-α, and SDF-1 or CXCL12), VEGF,
and MMP-2/9, and inhibits neutrophil apoptosis [87, 88].
Visfatin was described to be a highly expressed protein with
immune cell signaling and nicotinamide adenine dinucleo-
tide (NAD) biosynthetic activity, which is essential for
pancreatic β cell function; thus, visfatin presents an insulin-
like effect [89]. Visfatin was predominantly found in visceral
WAT, muscle, bone marrow, liver, lymphocytes, macro-
phages that infiltrate AT, and fetal membranes [63]. Possible
correlations between circulating visfatin and anthropometric
or metabolic parameters in obesity, overweight, type 2
diabetes, adiposity, metabolic syndrome, and cardiovascular
disease have been determined in some studies [63, 90].
Visfatin’s receptor is currently unknown. However, it is well
known that there are 3 signaling pathways activated by
visfatin: the first one is mediated by the β1 integrin and
involves signaling through the ERK, p38 MAPK NF-kB,
and AP-1 pathways; the second one is mediated by IL-6
and involves STAT3, Nampt, and Sirt-1 and Sirt-6; and the
third one involves redox pathways and the reduction of
reactive oxygen metabolites through increased activity of
superoxide dismutase (SOD), catalase (CAT), and glutathi-
one peroxidase (GSHPx) [88, 91–93].

2.5. Chemerin. Human chemerin also known as retinoic acid
receptor responder protein 2 (RARRES2) or tazarotene-
induced gene 2 protein (TIG2) is composed of 163 residues
and a molecular weight of 16 kDa [94]. Chemerin is
expressed as a precursor (prochemerin) that is cleaved at
the C-terminus by a serin protease to become active [95]. It
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is expressed in the spleen, lymph nodes, and lung. Adipo-
cytes, perivascular AT stroma-vascular cells, and vascular
smooth muscle cells secrete physiological amounts of
chemerin in early adipocyte differentiation, and when
adipocytes are mature, chemerin production is increased.
It is an attractant for immune cells and may play a role
in the recruitment of tissue macrophages, and it has been
identified as an adipokine of the metabolic syndrome [96].
Chemerin is upregulated in WAT cells upon IL-1β stim-
ulation in vitro, and chemerin serum levels are increased
in obese patients; thus, chemerin may be the functional
link between chronic low grade inflammation, obesity,
type 2 diabetes, and cardiovascular diseases. Chemerin
exerts its functions by binding to the G protein-coupled
receptor ChemR23 or CMKLR1 (chemokine-like receptor
1), GPR1, and CCRL2 (chemokine C-C motif receptor)
[97–100]. CMKLR1 is expressed by activated monocytes/
macrophages, NKs, and foam cells, while GPR1 is expressed
in the liver, intestine, kidney, and AT. CCRL2 is produced
by lung endothelial cells and liver endothelium. ChemR23 is
also expressed by endothelial cells, where it is upregulated
by proinflammatory cytokines, and strongly induces angio-
genesis in vitro by promoting endothelial cell proliferation
through VEGF and adhesion molecule expression (ICAM
and E-selectin) and remodeling by the stimulation of gelati-
nolytic matrix metalloproteinase (MMP) activity (MMP-2,
MMP-9) [101–103]. Positive correlations were detected
between chemerin serum levels and BMI, fasting insulin,
leptin, and CRP [104].

2.6. Lipocalin 2. Lipocalin 2 (LCN2), also known as neutro-
phil gelatinase-associated lipocalin (NGAL), siderocalin,
24p3, or uterocalin, belongs to the lipocalin protein super-
family [105, 106]. LCN2 is a 25 kDa glycoprotein and
binds and transports various small lipophilic substances
such as retinoids, arachidonic acid (Leukotriene B4), and
steroids. LCN2 protein is present as a 25 kDa monomer,
as a 46 kDa homodimer, and in a covalent complex with
MMP-9. LCN2 a mammalian acute-phase protein also
involved in iron homeostasis (ferritin and transferrin-
independent iron delivery) is highly expressed in response
to toxic amyloid β1–42 peptides and which is related to cell
proliferation and apoptosis of hematopoietic cells [107].

Lipocalin 2 is abundantly expressed in WAT and is
induced by inflammatory stimuli through activation of
NF-kB. Serum concentrations of this protein are positively
associated with adiposity, hyperglycemia, insulin resistance,
and CRP levels. LCN2 binds at least two mammalian surface
receptors, LCN2 receptor (also known as 24p3R, NGALR,
or SLC22A17), a brain-type organic cation transporter
(BOCT), and megalin (also known as low-density lipoprotein
receptor-related protein 2, LRP2, gp330), a multiligand
scavenger receptor [108, 109].

2.7. Vaspin.Vaspin, a visceral AT-derived serpin (serpinA12)
is known mainly for its insulin-sensitizing effects and
modulatory role on glucose tolerance. This 50 kDa adipokine
was first discovered in a rat model when identifying genes
that were differentially expressed during the development

of obesity and type 2 diabetes [110]; vaspin level is low in
obesity and suppresses leptin, TNF-α, ICAM, and resistin
synthesis [111, 112]. Subsequently, decreased vaspin levels
have been reported to be linked to diabetes, metabolic
syndrome, obesity, coronary artery disease, and impaired
insulin sensitivity [113]. Vaspin interacts with GRP78, a
cell membrane glucose-regulated protein, to induce intra-
cellular signaling in vascular smooth muscle cells that
inhibits reactive oxidative species, MAPK, PI3K/Akt, and
the phosphorylation of NF-kB and PKCθ induced by
TNF-α, which improves glucose and lipid metabolism and
relieves metabolic dysfunction and inflammatory responses
in obesity [111, 113, 114].

2.8. Omentin. Omentin is a secretory protein of 34 kDa; it
is highly and selectively expressed in visceral stromal-
vascular cells compared with subcutaneous AT. Other tis-
sues and cells (small intestine Paneth cells and endothelial
cells) also express omentin-1 or intelectin, intestinal lactofer-
rin receptor, or endothelial lectin at lower level bacteria
[115]. Omentin, as adiponectin, may play a paracrine or
endocrine role in modulating insulin sensitivity and as type
of Ca2+-dependent lectin with affinity for galactofuranosyl
residues, in gut immunity against pathogenic bacteria or
their components [21, 116].

Omentin plays a role in inflammatory response favoring
downregulation of inflammation and cell differentiation
by AMP/eNOS signaling pathway [21, 116]. Circulating
levels are inversely correlated to obesity and BMI, waist
circumference, and leptin in healthy subjects; the normal
level is reported in 0.37μg/mL, but are significantly
reduced in Crohn’s disease, synovial fluid of rheumatoid
arthritis patients, other inflammatory diseases, and obese
individuals to 0.31μg/mL [116]. A definitive omentin
receptor has not yet been identified. Nonetheless, omen-
tin signaling pathway involves AMPK and eNOS and
inhibits Akt pathways, C-reactive protein (CRP) produc-
tion, TNF-α, adhesion molecules, TLR4, and NF-kB sig-
naling pathways [117].

2.9. Nesfatin-1. Derived from the protein nucleobindin 2
(NUCB2), nesfatin-1 is identified in 2006 as an anorex-
igenic peptide of 82 amino acid lengths that regulates
appetite and body weight [118]. Nesfatin-1/NUCB2 is
expressed in hypothalamic nuclei, the arcuate nuclei, lat-
eral hypothalamus, paraventricular nuclei, supraoptic
nuclei, gastric mucosa, pancreatic islets, testis, and AT
[119]. Nesfatin-1 secretion from AT, particularly subcu-
taneous adipose depots, is negatively correlated with
BMI, body weight, percentage body fat, body fat weight,
and fasting blood glucose and is increased by proinflam-
matory cytokines (IL-1β, TNF-α, and IL-6) as well as
insulin and dexamethasone [120]. In obesity, nesfatin-1
is suggested to play a role in the enhancement of lipid
accumulation pathways [121]. Nesfatin activates G
protein-dependent mechanism and extracellular Ca2+ sig-
naling through L-, P/Q-, or M-type voltage-sensitive Ca2+

channels [122–124].
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3. Adipokines in the Pathobiology of
Osteoarthritic Cartilage

Chronic inflammatory disease results from a failure or
absence of the mechanisms responsible for maintaining
homeostasis and the persistence of the mechanisms that
upregulate inflammation. Adipokines in the joint cavity
from OA patients are produced majorly by IFPs and syno-
viocytes, but chondrocytes, inflammatory cells, and osteo-
blasts as well as osteoclasts release also large amounts of
adipokines inducing and perpetuating the inflammatory
state [125, 126].

3.1. Leptin. Leptin and Ob-Rb have been isolated from
chondrocytes, synoviocytes, osteophytes, and IFPs from
patients with OA [127].

A seminal study showed that leptin deficient (ob/ob) or
leptin receptor deficient (db/db) female C57BL76J mice had
a tenfold increase in adiposity and morbid obesity compared
with controls. However, it was not associated with the
increased incidence of knee OA. Systemic inflammatory
cytokine levels remained without change, and the sub-
chondral bone morphology was unaltered suggesting that
obesity alone was unable to induce knee OA. The results
pointed a preponderant role for leptin in the development
of OA by regulating both the skeletal and immunological
response [128].

On the other hand, in vivo leptin injection into the
rat knee joints showed cartilage degradation by increasing
MMP and cysteine proteases in vitro, it has been demon-
strated that OA chondrocytes produce more leptin than
normal chondrocytes, and it stimulates chondrocytes to
secrete TNF-α, IL-1β, IL-6, IL-8, growth-related oncogene
(GRO), and MCP-1 and reduces proliferation of OA
chondrocytes [129].

Regarding the signaling leptin pathways in OA, it
involves MAPKs (p38, JNK, and MEK) and NF-kB as it has
been demonstrated in chondrocyte cultures treated with
recombinant human leptin. Leptin induces degradation of
aggrecan by upregulating disintegrin and metalloprotein-
ase with thrombospondin motif- (ADAMTS-) 4, 5, and
9 and MMP-1, MMP-2, MMP-3, MMP-9, and MMP-13
[130–132]. Leptin has also been involved in the expression
of proinflammatory cytokines by synoviocytes (IL-6, IL-8),
chondrocytes (IL-1β), cartilage explants (IL-6, IL-8, PGE2)
via activation of NF-κB, VCAM-1 expression by chondro-
cytes via JAK2 and PI3K signaling pathway, and chondrocyte
apoptosis, phenotype loss, and decrease of proliferation.
(Figure 2 and Table 1) [133].

Leptin also synergizes with IL-1β, a classic proinflam-
matory cytokine involved in cartilage damage enhancing
the production of iNOS, prostaglandin E2 (PGE2), and
cyclooxygenase-2 (COX-2) in human chondrocytes [28].

In OA, leptin has been demonstrated to act as a proin-
flammatory agent by decreasing in the ability of the chondro-
genic progenitor cells to migrate, inducing the production
of proinflammatory cytokines and matrix metalloprotein-
ase- (MMP-) 1, 2, 3, 9, and 13 expression and the chon-
drocyte senescence by activating the p53/p21 pathway as

well as nitric oxide (NO) (Figure 2 and Table 1). NO pro-
motes apoptosis, chondrocyte phenotype loss, and MMPs
activation [134].

There is also a difference in the expression of the leptin
receptor (Ob-Rb) between the lateral and medial compart-
ment, with a larger expression of the receptor in the latter,
and this could be associated with the asymmetrical damage
in this disease [134].

Nonetheless, chondrocytes and synoviocytes are not the
sole targets of leptin; osteoblasts are also a significant target
of leptin action. OA subchondral osteoblasts produce twofold
leptin and Ob-Rb than the normal cells, and this abnormal
production by OA osteoblasts could be responsible, in part,
for the osteoblasts differentiation and proliferation and the
elevated levels of alkaline phosphatase activity, osteocalcin
release, type I collagen, and TGF-β1 production (metabolic
markers in osteoblasts), since the leptin inhibition assays
with piceatannol and tyrphostin (selective inhibitors of
JAK2/STAT3 and JAK1/STAT3, resp.) or with the use of
inactivating antibodies against leptin or the use of small
interfering RNA (siRNA) reduced the expression of MMP-
13, metabolic markers in osteoblasts, and endochondral
ossification as well as bone mineralization [135].

It has been demonstrated that serum and plasma leptin
levels in knee OA patients correlate positively with BMI,
more specifically with the fat mass and central adiposity
(Figure 1(b)) [136–138]. Also, a meta-analysis that included
11 case-control clinical studies and 3625 subjects showed
that plasma leptin concentrations were higher in OA
patients compared with controls and higher in premeno-
pausal women than in men [139].

Leptin and its soluble receptor (sObR) have been detected
in the synovial fluid (SF) obtained from OA patients, and
interestingly, leptin levels measured in the joint fluid
exceed three- to elevenfold than those found in serum
(Figure 3(a)) [140]. In addition, Ku et al. and Karvonen-
Gutierrez et al. reported that SF and serum leptin levels
are directly correlated with the radiographic severity of
OA [141, 142] and also with proinflammatory cytokines,
MMP-1, and MMP-3 levels in OA patients, suggesting the
possible use of leptin as a potential biomarker for quantita-
tive detection of OA severity. In a recent study, SF leptin
concentrations were associated also with knee and hip pain
in OA patients [140, 143, 144]. In addition, in Chinese pop-
ulation, serum levels of leptin were independently associated
with increased knee cartilage volume assessed by radiography
[145]. Moreover, leptin and the sObR were also highly corre-
lated with greater cartilage volume loss using high-resolution
3D MR images [146, 147].

Based on these studies, upregulated expression levels of
leptin may be a risk factor in OA and it could be used as a
very sensitive biomarker for predicting the severity of the
disease, pain, and cartilage damage [139, 148].

3.2. Adiponectin. Adiponectin has been implicated in OA
pathogenesis on the basis of both clinical and experimental
observations. In cultured chondrocytes, full-length adiponec-
tin at physiological and high concentration (5–30μg/mL) is
able to induce several proinflammatory molecules and
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mediators, such as NOS2, IL-6, IL-8, vascular endothelial
growth factor (VEGF), MCP-1, CC-chemokine ligand 2
(CCL-2), VCAM-1, ICAM-1, and MMPs (1, 3, 2, 9, and
13) [129, 149–151]. Moreover, elevated levels of AdipoR1
and in lesser extent of Adipo R2 are expressed by OA carti-
lage and they have been associated with catabolic effects of
adiponectin [152, 153]. Interestingly, some studies have
shown a protective role of adiponectin in knee OA. Cultured
OA chondrocytes pretreated with full-length adiponectin at
low concentration (less than 1μg/mL; as it has been deter-
mined in SF from OA patients) downregulated MMP-13

and PGE2 induced by IL-1β and upregulated tissue inhibitor
of metalloproteinase- (TIMP-) 1 and 2 expression [150, 154].
In human knee OA synovial fibroblasts (OASFs), adiponec-
tin was found to induce expression of ICAM-1 via the liver
kinase (LK) B1/calmodulin-dependent protein kinase II
(CaMKII), AMPK, c-Jun, and AP-1 signaling pathway and
this expression increased the adhesion of monocytes to
human OASFs (Figure 4 and Table 1) [151].

By contrast, there are many reports that have demon-
strated that physiological concentrations of adiponectin
induce the release of anti-inflammatory mediators including

Ability of CPC to migrate
Chondrogenic potential

Osteogenic potential

Apoptosis in osteoblasts Cell cycle arrest and senescence in CPC
Proliferation of osteoblasts

Alkaline phosphatase activity
Osteocalcin, type I collagen, and TGF-�훽1 production

NF-�휅B

ObRb

Leptin

STAT3

JAK2

STAT1

STAT5

STAT3

P

P

P

P

ERK1/2

p38 MAPK p42/p44 
MAPK

P P

P P

p53/p21

gp130/
IL-6R

STAT3 P

AP-1
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Figure 2: Leptin signal transduction. The Ob receptor b (ObR b) isoform of leptin binds to the JAK-STAT intracellular signaling system. As a
consequence of leptin binding to its receptor, JAK2 is activated by the autophosphorylation. STAT1 and STAT5 bind tyrosine residues.
STAT3 proteins form dimers and translocate to the nucleus and regulate c-fos, c-jun, SOCS3, and AP1 gene expression. Src homology
domains of receptor (SHP2) activate MAPK pathways (p38, p42/44, and ERK1/2). These pathways induce the expression of cytokine and
chemokine genes. Moreover, ObRb/leptin also induces the transcription of metalloproteinases and aggrecanases, cartilage degradation
proteins, and the signaling pathways of inflammatory cytokines through activation of NF-kB and AP-1 that transcribe the genes of
inflammatory proteins (IL-1β, IL-6, TNF-α, and induced nitric oxide synthase among others). Leptin, through interleukin 6 (IL-6)/gp130
pathway activates STAT3, which in the nucleus, transcribes the gene of SOCS3 that suppresses the leptin signaling pathways. Bcl: B cell
lymphoma; ERK: extracellular signal-regulated kinase; JAK: c-Jun N-terminal kinase-associated kinase; MAPK: mitogen-activated protein
kinase; NF-kB: nuclear factor-kappa B; ObR: Ob receptor; SOCS3: suppressor of cytokine signaling-3; STAT: signal transducer and
activator of transcription.
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IL-10, IL-1Ra, TIMP-1, and TIMP-2 by human chondrocytes
and macrophages (Figure 4 and Table 1) [154–156].

Furthermore, adiponectin acts as a modulator of mac-
rophage phenotypes. It switches the phenotype from the
proinflammatory classically activated macrophage (M1) to
an anti-inflammatory alternatively activated macrophage
(M2) [73]. Obese adipose tissue is predominantly enriched
with M1 polarized macrophages, which causes exacerbation
of inflammation and tissue destruction, while M2 macro-
phages exert an anti-inflammatory action and protect against
obesity-related metabolic disorders. Adiponectin knockout
mice display increased expression levels of M1-related
genes, such as TNF-α, IL-6, and MCP-1, in peritoneal
macrophages and stromal-vascular fractions compared to
wild-type mice [73]. Treatment of wild-type mice with
adiponectin stimulates the expression of M2-related genes,
including arginase-1, IL-4, IL-10, and macrophage galactose
N-acetyl-galactosamine specific lectin-1 [73]. Adiponectin
also promotes the polarization of human monocyte-derived
macrophages into anti-inflammatory M2 macrophages
through a PPAR-α- and AMP-activated protein kinase-
dependent mechanism [157]. It has been shown that
adiponectin polarizes Kupffer cells and RAW264.7 macro-
phages to M2 through a mechanism involving the AdipoR2
via IL-4/STAT6- and MyD88-dependent mechanism [158].
Additionally, adiponectin bound to calreticulin/CD91

promotes and enhances the ability of macrophage to remove
early opsonized apoptotic cells, which is crucial in preventing
exacerbated inflammation and immune system dysfunction
[159]. Finally, the globular form of adiponectin has a high-
binding affinity for the receptor AdipoR1. Elevated levels of
AdipoR1 have been associated with the gene expression of
type II collagen, aggrecan, and sex determining region-box
9 (SOX9) which suggest a role of adiponectin in cartilage
repair and remodeling [150]. Hence, these data suggest that
adiponectin induces anti-inflammatory profile and reduces
chronic inflammation in target organs thereby leading to
protection against various obesity-related disorders.

The importance of adiponectin in the pathogenesis of OA
is also supported by clinical observations. Plasma adiponec-
tin levels are negatively correlated with BMI (Figure 1(b))
[137]. Adiponectin levels are significantly lower in patients
with OA than in healthy controls, and knee OA patients with
higher radiographic severity had significantly lower adipo-
nectin levels in both plasma and SF [145, 160]. In addition,
adiponectin levels detected in OA synovial fluid were almost
100 times lower than those in plasma and it correlated
with OA severity and aggrecan degradation but not with
type II collagen (Figure 3(b)) [154, 160]. Remarkably, the
adiponectin : leptin ratio in the synovial fluid has been pro-
posed as a predictor of pain in knee OA [161]. A lower
leptin : adiponectin ratio correlated with lower knee OA
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Figure 3: Adipokines in synovial fluid and serum from OA patients and their relative expression compared with healthy individuals. (a)

Leptin levels, (b) adiponectin levels, (c) resistin levels, (d) visfatin levels, (e) chemerin levels, (f) omentin-1 levels, (g) lipocalin-2 levels,
(h) vaspin levels, and (i) nesfatin-1 levels. Red lines: synovial fluid concentration in patients with OA; blue lines: serum concentration in
patients with OA; black lines: serum concentrations in healthy donors; SF: synovial fluid; HD: healthy donors; ♀: female levels; ♂: male levels.
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pain [143]. Furthermore, it has determined that weight
loss is associated with an increase in adiponectin and a
decrease in leptin and cartilage oligomeric matrix protein
plasma levels in obese subjects [144]. This suggests that lower
levels of adiponectin are related to a more aggressive disease
and that higher levels have anti-inflammatory properties.

Recently, serum adiponectin level was not associated
with cartilage volume measurements by X-rays [145],
whereas higher values correlated with less cartilage volume
loss in the medial compartment of the femur when evalu-
ated by high-resolution 3D MR image [147]. Furthermore,
also the serum level was positively associated with infrapatel-
lar fat pad volume evaluated by MRI in OA patients after
adjustment for age, sex, weight, and height, although this

association became nonsignificant after adjustment for IL-17
[162].

On the other hand, plasma adiponectin levels were
higher in women with erosive hand OA compared to
those with nonerosive OA [163, 164]. Conversely, a study
showed that patients with high adiponectin levels had a
decrease risk for hand OA progression [165]. However,
another study indicated no association between plasma adi-
ponectin levels and radiographic hand OA severity [166].

Regarding OA of the shoulder, few studies showed a
correlation between the levels of adipokines and pain,
especially leptin, adiponectin, and BMI [167]. Nonetheless,
the levels of leptin and adiponectin does not correlate with
the functional limitation [168]. The presence of Ob-Rb,
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Figure 4: Adiponectin signaling via AdipoR1 and AdipoR2 activation. Adiponectin is decreased in obesity. AdipoRs can lead to stimulation
of various signaling pathways. AMPK blocks angiogenesis via mTOR and cell growth and proliferation via PI3K/Akt. Antiapoptotic and
migratory proteins induced by p65/p50 of the NF-kB pathway is inhibited by PPAR-α. Adipo R: adiponectin receptors; APPL1: adaptor
protein containing pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1; PPAR-α: peroxisome
proliferator-activated receptor α; AMPK: 5′-adenosine monophosphate-activated protein kinase; MAPK: mitogen-activated protein kinase;
ERK1/2: extracellular signal-regulated kinases 1/2; SOCS3: suppressor of cytokine signaling-3; mTOR: mammalian target of rapamycin;
LKB1: liver kinase B1.

10 Mediators of Inflammation



AdipoR1, and AdipoR2 on the shoulders from patients
with late-stage OA has been reported [167]. The profile
of adipokines in OA shoulder is different when compared
with knee or hip OA, with a higher serum/SF ratio for
leptin and adiponectin compared with knee OA as well
as higher levels of adiponectin and lower levels of leptin
in both serum and SF [169].

3.3. Resistin. Resistin is produced mainly by articular WAT
and in lesser extent by OA synovial tissue and osteophytes
(osteoblasts and osteoclasts) and participates in adipogene-
sis, insulin resistance, meniscal GAG degradation, and
inflammatory processes. It has a positive correlation with
obesity, insulin resistance, and chronic inflammation
[153, 170] (Figures 1(a) and 1(b)). In murine models, car-
tilage and in human primary chondrocytes resistin was
also found to induce MMP13, ADAMTS4, PGE2, TNF-
α, and IL-8 (Figure 5 and Table 1) [171]. Fascinatingly,

leptin-deficient mouse models (ob/ob or db/db) have ele-
vated concentrations of serum resistin, suggesting that
resistin levels depend on leptin levels [172].

Resistin was found in plasma and SF of patients with
OA. Circulating levels of resistin positively correlates with
leptin levels and IL-6, MMP1, and MMP3 levels in SF,
with no significant difference for diabetic versus nondia-
betic patients or gender or hand OA [169, 173]. Resistin
levels in females are significantly higher than those in
males (Figure 3(c)).

In patients with radiographic changes of hand OA
patients, plasma resistin levels were higher than in nonradio-
graphic hand OA and controls [173]. In contrast in knee OA,
resistin has neither been associated with cartilage volume
assessed by radiography [145] nor by high-resolution 3D
MR image [147]. However, among patients with knee OA
and join effusion, its presence in SF is clearly associated with
the Lequesne index, a validated questionnaire for pain and
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Figure 5: Resistin signaling. Resistin is recognized by TLR4 receptor. Two signaling pathways are triggered through the recruitment of the
adaptor molecules TIRAP and MyD88. The first through PI3K followed by Akt and NF-kB. The second through MAPK pathway,
followed by upregulation of NF-kB.
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disability. This association persisted even controlling by
anthropometric measurements and metabolic factors [174].
Similarly, another study also found an association with the
WOMAC score and CTX-II and resistin level in synovial
fluid of patients undergoing arthroscopic lavage [175].
Recently, among knee OA patients, serum level of resistin
was significantly associated with Kellgren-Lawrence grading
scores, WOMAC pain scores, physical functional scores,
WOMAC total scores, and CTX-II [175].

In addition, some studies have shown that the menisci are
more susceptible to inflammation produced majorly by resis-
tin followed by leptin and adiponectin. This response was
similar to the one induced by IL-1β [170].

3.4. Visfatin. Visfatin modulates the expression of chondro-
cyte extracellular matrix proteins. Human chondrocytes

pretreated with visfatin inhibited IGF-1-stimulated proteo-
glycan synthesis in a dose-dependent manner by activating
the extracellular signal-regulated kinases (ERK)/MAPK
signaling pathway (Figure 6). Human OA chondrocytes
produce visfatin, and IL-1β, IL-6, TNF-α, and glucocorti-
coids treatment increases visfatin synthesis [176, 177].
Moreover, IL-1β and IL-6 act synergistically with visfatin to
increase the release of PGE2, MMPs, and NO, which is
selectively blocked by small interfering RNA knockout of
visfatin. Visfatin also induced ADAMTS4 and ADAMTS5
expression and MMP-3 and MMP-13 synthesis and release;
it also reduced the synthesis of high molecular weight
proteoglycans by immature mouse articular chondrocytes
[176–179]. Moreover, high concentrations of visfatin
decrease the expression of factors essential for the mainte-
nance of chondrocyte phenotype including SOX9 and type
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Figure 6: Visfatin signaling. Visfatin stimulates monocytes to release IL-6. IL-6 signals increase the expression level of STAT3 which
upregulates the active enzymatic form of visfatin/PBEF/Nampt. Visfatin/PBEF/Nampt can increase cell survival through Sirt-1 and Sirt-6
stimulating the release of TNF-α inducing a chronic low grade inflammation. In the second pathway, visfatin signals through the cells
surface receptor β1 integrin. This binding upregulates and activates p38 MAPK and ERK1/2. The MAPK cascade increases the expression
of AP-1 and NF-kB that upregulate SDF-1, leading to increased survival and migration. The third pathway was demonstrated through the
activation of unknown receptor increasing the antioxidative enzymes superoxide dismutase (SOD) and catalase (CAT).
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II collagen [180, 181]. Taken together, all these data indicate
that visfatin has a catabolic function in cartilage and might
have an important role in the pathophysiology of OA
(Table 1).

Besides, visfatin is expressed by OA mouse and human
IFP in higher concentrations than in subcutaneous adipose
tissue, especially next to the sites of osteophytes formation,
also by synovial tissue, chondrocytes in osteophytes, osteo-
blasts, and osteoclasts in OA [126, 153, 182, 183]. The higher
expression of visfatin in sites of high bone remodeling,
combined with a reduced osteoclast differentiation and
osteoclast specific markers, suggests a role in proinflamma-
tory OA pathogenesis (Table 1) [153, 182]. OA patients have
higher levels of circulating and local visfatin compared with
controls, with higher amounts in SF versus matched plasma
and more expression in OA IFP than in the matched
subcutaneous AT (Figure 3(d)) [184]. Visfatin plasma and
SF levels appeared to be positively associated with lipid
metabolism, inflammation, C-reactive protein (CRP) levels,
C-telopeptide of type II collagen (CTX-II), degradation
biomarker of aggrecan, aggrecanases (AGG1 and AGG2),

radiographic damage, and disease activity (Figure 1(b))
[172, 185]. It has been demonstrated that visfatin and
IL-1β stimulate in a dose-dependent manner; the expression
and release of nerve growth factor (NGF) by OA chondro-
cytes and NGF levels are involved in pain associated with
knee OA [186], while hip OA pain has been associated with
IL-6 and visfatin [140].

3.5. Chemerin. Chemerin (TIG2 or RARRES2) is a novel
chemoattractant adipokine which directs leukocytes express-
ing CKMLR1, a G protein-coupled receptor, towards sites of
inflammation (Figure 7).

Interestingly, human articular chondrocytes and resi-
dent cell in native cartilage express chemerin and its
receptor [187]. Dexamethasone and IL-1β increases chemerin
expression [188]. Furthermore, it has been demonstrated
that recombinant chemerin enhances the production of sev-
eral proinflammatory/procatabolic cytokines (IL-1β, IL-6,
IL-8, and TNF-α) as well as MMP-1, MMP-2, MMP-3,
MMP-8, and MMP-13 in human articular chondrocytes.
Chemerin also induces angiogenesis in vitro by promoting

Serine proteases

(elastase/cathepsin G)

Angiogenesis
In�ammatory response

(proin�ammatory cytokines and MMPs)

Steroidogenesis

Prochemerin

Chemerin

CMKLR1 GPR1 CCRL2

ERK1/2

p44/42
MAPK 

Akt AMPK

Gi Gi

P

P P

Figure 7: Chemerin signaling. Chemerin binds to three different G protein-coupled receptors: CMKLR1 (chemokine-like receptor 1), GPR1
(G protein-coupled receptor 1), and CCRL2 (chemokine (CC motif) receptor-like 2). The latter does not transduce any signal; once activated,
CMKLR1 and GPR1 stimulate or inhibit different signaling pathways including MAPK ERK1/2, Akt, and AMPK to regulate different
biological processes such as angiogenesis, inflammation, and steroidogenesis.
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endothelial cell proliferation, migration, and capillary tube
formation. All of these elements play a key role in the
turnover, degradation, and damage of the extracellular
matrix, resulting in irreversible devastation of the cartilage
in OA. Chemerin phosphorylates p42/44, MAPKs (ERK1/
2) and Akt (Ser 473), both of which are involved in
signal-transduction pathways that converge in inflamma-
tory signaling (Figure 7) [187, 189].

Chemerin was detected in serum and SF from knee OA
patients, and the serum concentration of this adipokine
correlated with the disease severity in OA, BMI, and hsCRP
(Figures 1(b) and 3(e)). However, no significant association
was determined between serum chemerin concentration
and age nor gender [190–192]. In addition, it has demon-
strated that synovial tissue from knee OA patients express
chemerin and its levels were also positively correlated with
the severity of knee OA [192].

3.6. Omentin-1. Omentin-1 is a secretory protein that has
also been identified as a new adipokine that is highly
and selectively expressed in visceral AT. A recent study
demonstrated that omentin-1 has a key role in the regu-
lation of inflammation. The anti-inflammatory role of
omentin has been supported by the findings that it pre-
vents TNF-α-induced COX-2 inflammatory signal trans-
duction through phosphorylation of AMPK/endothelial
nitric oxide synthase (eNOS)/NO pathways. Moreover,
omentin significantly inhibited the phosphorylation of JNK.
Omentin plays an anti-inflammatory role by preventing
the TNF-α-induced COX-2 expression in vascular endothe-
lial cells. Besides, omentin-1 has been shown to reduce
systemic release of inflammatory factors such as IL-6 [117].
Finally, omentin-1 has demonstrated to induce human
osteoblast proliferation via the PI3K/Akt signaling pathway
(Figure 8) [193].

AP-1 SCOS3 NF-�휅B

I�휅B

Inhibition of adhesion molecule
expression and cell migration

Inhibition of inflammation
at low levels of omentin-1: inhibition of

osteoblast proliferation

Inhibition of Inflammation
Inhibition of COX2

NF-�휅B

Omentin

Unknown

JNK

PI3K

Akt

P
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AMPK

Figure 8: Omentin signaling. Omentin activates AMPK, which further blocks E-selectin expression and reduces endothelial inflammation.
AMPK also activates endothelial nitric oxide (eNOS), also known as nitric oxide synthase 3 (NOS3) or constitutive NOS (cNOS), which
has vasodilation effect and blocks JNK signaling. JNK activates inflammation through TNF-α-mediated COX2 effect. Moreover, omentin
inhibits NF-κB signaling pathway and thus inhibits inflammation.
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Serum omentin-1 levels were not significantly differ-
ent between the knee OA patients and healthy controls.
Nevertheless, omentin-1 concentrations in SF were decreased
significantly as the radiographic severity of OA was increased
(Figure 3(f)). Moreover, SF omentin-1 levels were inde-
pendently and negatively correlated with self-reported
pain, radiographic severity, and physical disability in knee
OA patients. Omentin-1 in SF might serve as a potential
biomarker for reflecting the degenerative process and
symptomatic severity of knee OA [194, 195]. Thus, it sug-
gested that omentin-1 seems to have an anti-inflammatory
role (Figure 1(b)).

3.7. Lipocalin 2. LCN2, a mechanoresponsive adipokine,
has been identified in human chondrocytes, where IL-1β,
TNF-α, IL-17, leptin, adiponectin, LPS, and dexamethasone
are the major upregulators of its expression, while TGF-β1
and IGF-1 are the main downregulators. LCN2 exerts its
effects through the receptors lcn2R/24p3R and megalin
(gp330). LCN2 is likely to be involved in matrix degrada-
tion, as it forms molecular complexes with MMP-9 or
gelatinase B [196–199]. LCN2 is expressed in both prolif-
erating and hypertrophic growth plate zones of cartilage,
and it induces type X collagen synthesis and decrease
chondrocyte differentiation and proliferation [197]. LCN2
is induced in osteoblasts in the absence of mechanical
loading, and it reduces osteoblast viability in the presence
of iron and enhances the activity of MMP-9 released by
osteoblasts. Furthermore, prestimulated human osteoblasts
induce in a paracrine manner, LCN2 expression in human
chondrocytes [198]. LCN2 promotes cartilage breakdown
by blocking MMP-9 auto-degradation and by increasing
chondroptosis [197, 200]. However, LCN2 appears to be
not enough or necessary for OA cartilage destruction in
mice [199].

Gupta et al. and Katano et al. confirmed that the level
of LCN2 in SF was significantly higher in patients with RA
than in those with OA (Figure 3(g)) [196, 200].

3.8. Vaspin. Vaspin (visceral AT-derived serine protease
inhibitor) has been identified as an adipokine that is
expressed predominantly in visceral AT. It has showed that
vaspin could attenuate the osteogenic differentiation in the
preosteoblast cell line MC3T3-E1 by the increment of
microRNA-34c and its binding to Runx2. Runx2 is a tran-
scription factor that modulates the expression of multiple
bone-related genes (type I collagen, osteocalcin, and bone
sialoprotein) through PI3K-Akt and ERK signaling pathway
(Figure 9) [201]. In vascular smooth muscle cells inflamma-
tion, vaspin exerts an anti-inflammatory effect by inhibiting
the TNF-α-induced ICAM-1 expression, reactive oxygen
species, proinflammatory adipokines (resistin and leptin),
and TNF-α in murine WAT, through decrease phosphoryla-
tion of NF-kB and PKCθ (Figure 9) [111].

It has been demonstrated that cartilage, synovium,
meniscus, infrapatellar fat pad, and osteophyte from OA
patients expressed vaspin gene; the protein is only expressed
by the superficial zone of OA patient’s cartilage, the clusters
of synovial cells, and the transitional layer of osteophytes

between cartilage and fibrous tissues. Regarding to circu-
lating vaspin levels, the serum concentration was reduced
in OA patients compared to healthy controls and serum
vaspin levels from OA patients surpass those in the paired
SF. Serum or SF vaspin was not related to age and BMI.
However, vaspin levels were higher in males compared
with females, but with no statistical significance (Figure 3(h))
[130]. This suggests a potential protective role of vaspin in
OA (Figure 1(b)).

3.9. Nesfatin-1. Nesfatin-1 is expressed by chondrocytes,
osteophytes, and synovial tissue of knee OA. It induces the
expression of COX-2 and the release of IL-8, IL-6, and
MIP-1α, in human primary chondrocytes from OA patients
[202]. Nesfatin levels in OA serum are significantly higher,
as compared to SF samples and serum from healthy controls
(Figure 3(i)). Significant correlation is found between serum
nesfatin-1 and hsCRP levels in OA patients and synovial
nesfatin-1 and IL-18 levels. Thus, nesfatin-1, hsCRP, and
IL-18 could be considered as biomarkers to determine the
knee OA progression [203]. Furthermore, Zhang et al.
determined that serum and SF nesfatin-1 levels were both
significantly associated with OA severity (Figure 1(b)) [204].

4. Therapeutic Perspectives

Even though there is strong evidence of the relationship
between adipokines and OA, there is no therapeutic proposal
regarding the regulation of the production or function of
the former. Leptin activity may be detrimental in some
pathological conditions such as enhancement of undesired
immune responses in chronic inflammatory diseases, auto-
immune diseases, cancer, elevated blood pressure, and cer-
tain cardiovascular pathologies. The recent development of
monopegylated superactive leptin muteins exhibiting antag-
onistic properties and other leptin-action-blocking peptides,
proteins, neutralizing circulating monoclonal antileptin or
leptin receptor antibodies, and nanobodies (variable domains
of the Camelidae family heavy-chain antibodies) opens a
variety new perspectives for their use in research, and
finally, as promising therapeutic tools for the treatment
of the inflammatory pathologies described above by blocking
CD4+ T lymphocyte activation and proliferation, cytokine
secretion, phagocytosis, regulation of the hypothalamic-
pituitary-adrenal axis, reproduction, and angiogenesis and
by inducing expansion of naturally occurring Foxp3+CD4+

CD25+ regulatory T (Treg) cells [205–207].
In addition, to explore the conversion of the WAT to

uncoupling protein-1- (UCP-1-) expressing adipocytes with
thermogenic capacity (beige or brown tissue (BAT), or the
activation of BAT) is also a fertile ground in research for
the development of novel therapeutic technologies. The
brown and beige adipocytes have the capacity to counteract
metabolic disease, including obesity and type 2 diabetes and
obesity. It has been reported that the levels of peroxisome
proliferation-activated receptor-γ coactivator 1α (PGC-1α)
are increased in muscle by exercise stimulating the secre-
tion of a membrane protein fibronectin type III domain-
containing 5 (FNDC5), a potential transcriptional target
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of PGC-1α. FNDC5 is proteolytically cleaved to release
a shorter peptide named irisin. Thus, irisin is an exercise-
induced myokine that acts on WAT to stimulate UCP-1
expression to increase levels of brown-like fat. Hence,
irisin could be therapeutic for human inflammatory
diseases [208–210].

It is important to highlight that the risk of OA can be
decreased by losing weight and in consequence fat mass
(WAT); it has been estimated that if an individual decrease
body mass index (fat mass) by 2 units (approximately 5 kg),
the risk of developing knee OA would decrease by over
50% [211]. In a study that assessed the impact of a combined
pain coping skills training and behavioral weight manage-
ment in 169 overweight and obese patients with knee OA, a
reduction of leptin levels after 24 weeks of the program when
compared with baselines levels was observed. This decline
was clearly mediated by weight change. However, the authors

did not find differences regarding adiponectin [212]. Also,
among a cohort of patients who underwent bariatric sur-
gery and had symptomatic OA, leptin serum levels were
elevated. After the surgery, both leptin levels and pain fell,
suggesting that the fall of leptin could contribute to the
knee pain relief [213].

Finally, it is not preposterous to consider the possibil-
ity of performing autologous subcutaneous adipose tissue
transplants to improve adipose tissue metabolism and reduce
insulin resistance and consequently the synthesis and pro-
duction of adipokines [214].

5. Conclusion

Adipokines are synthesized and upregulated by adipocytes as
well as chondrocytes and other cell types from joints with
OA. The immunomodulatory effects of adipokines imply
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Figure 9: Vaspin signaling. Vaspin binds its receptor, glucose-regulated protein 78 (GRP78) GRP78, and activates the expression of Bcl-2
and downregulates that of Bax. Moreover, vaspin stimulates the PI3K signaling pathway with a specific phosphorylation of ERK and AKT.
Vaspin has antiapoptotic effects in vascular endothelial cells and human osteoblasts.
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altered local but also systemic inflammation. Up to date, the
best-studied adipokines are adiponectin, leptin, visfatin, and
resistin (Figure 10), although new adipokines have been
added to the list. The presence of these adipokines has been
recognized in the synovium, infrapatellar fat pad, and
chondrocytes of patients with OA. Further research is still
needed to understand the role of each of the adipokines in
the development and progression of OA as well as how it is
related to obesity and metabolic factors. Right now, it is still
unknown if important changes in adipokine levels induced
by a drug or chance of lifestyle will truly impact cartilage
loss or any other important outcome in OA. However,
future approaches to antagonize local specific target adipo-
kines in OA, but with minimum systemic adverse effects,
are warranted.
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Figure 10: Expression of adipokines in large and small joints. Hand: Different studies have demonstrated that adiponectin may have a
protective role in knee OA and it may be related to erosive hand OA [163, 164, 166]. Choe et al. showed that serum levels of resistin
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and higher adiponectin, resistin, and visfatin levels within the joint. Only the levels of visfatin correlate with hip pain [140]. Shoulder: the
leptin and adiponectin levels correlate with joint damage, but appear to have a different profile of adipocytokines in shoulder, with lower
SF and serum levels of leptin and adiponectin, but a higher serum/SF ratio for both, especially adiponectin [168].
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