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Abstract: Calcium phosphate (CaP) materials do not always induce ectopic vascularization and
bone formation; the reasons remain unclear, and there are active discussions of potential roles for
post-implantation hematoma, circulating immune and stem cells, and pericytes, but studies on
adipose-derived stem cells (AMSCs) in this context are lacking. The rough (average surface roughness
Ra = 2–5 µm) scaffold-like CaP coating deposited on pure titanium plates by the microarc oxidation
method was used to investigate its subcutaneous vascularization in CBA/CaLac mice and in vitro
effect on cellular and molecular crosstalk between human blood mononuclear cells (hBMNCs) and
AMSCs (hAMSCs). Postoperative hematoma development on the CaP surface lasting 1–3 weeks may
play a key role in the microvessel elongation and invasion into the CaP relief at the end of the 3rd week
of injury and BMNC migration required for enhanced wound healing in mice. Satisfactory osteogenic
and chondrogenic differentiation but poor adipogenic differentiation of hAMSCs on the rough CaP
surface were detected in vitro by differential cell staining. The fractions of CD73+ (62%), CD90+

(0.24%), and CD105+ (0.41%) BMNCs may be a source of autologous circulating stem/progenitor
cells for the subcutis reparation, but allogenic hBMNC participation is mainly related to the effects of
CD4+ T cells co-stimulated with CaP coating on the in vitro recruitment of hAMSCs, their secretion
of angiogenic and osteomodulatory molecules, and the increase in osteogenic features within the
period of in vivo vascularization. Cellular and molecular crosstalk between BMNCs and AMSCs is
a model of effective subcutis repair. Rough CaP surface enhanced angio- and osteogenic signaling
between cells. We believe that preconditioning and/or co-transplantation of hAMSCs with hBMNCs
may broaden their potential in applications related to post-implantation tissue repair and bone
bioengineering caused by microarc CaP coating.
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1. Introduction

Currently, experimentally induced ectopic test is a well-studied, well-described model that is most
commonly generated by subcutaneous, intramuscular, or kidney capsule transplantation. All 3 model
types are valid experimental approaches to study the osteogenic differentiation of mesenchymal stem
cells (MSCs) independent of an osseous environment [1], as well as the reconstitution of bone marrow
organization, and to produce valuable information on the relations between hematopoietic cells and
their microenvironment [2]. In vivo results allow us to estimate key molecular, cellular and tissue
targets and strategies for regenerative medicine; in addition, such data improve our understanding
of the biology of heterotopic calcification and ossification and the complications of implants for
traumatology and orthopedics.

Despite continuous investigations of ectopic osteogenesis (EO) since at least 1952 [3], the full
potential of bone marrow remodeling in ectopic implants has not yet been fully realized. Ectopically
implanted marrow undergoes a regenerative process that recapitulates marrow ontogeny; this process
is possible because marrow tissue has considerable angiogenic potential [2] and is a source of MSCs.

Bone marrow-derived MSCs (BM-MSCs) and adipose-derived MSCs (AMSCs) are commonly
used in skeletal tissue engineering in vitro and in vivo [4]. Overall, BM-MSCs are more prone to
osteogenic differentiation than AMSCs and show superior ectopic bone formation without the need for
additional growth factors [5].

An experimental approach to evaluating remodeling of the bone/marrow system in the presence
of artificial materials is a variant of EO when artificial samples have been implanted subcutaneously
with bone marrow [6], BM-MSCs, progenitor cells [7], or other cells [8] without additional growth
factors, mainly bone morphogenic proteins (BMPs). At the same time, an incidence of EO varied from
67 to 100%, while it was triggered by different types of microarc calcium phosphate (CaP) coatings on a
titanium substrate [6].

Besides, inorganic biomaterials, mainly CaPs, can induce direct ectopic bone formation without the
addition of osteogenic cells or bone growth factors when implanted under the skin or in muscle [1,9–11];
however, the underlying mechanisms remain unclear. At the same time, there have been a few reports
stating that CaP scaffolds without cells did not show new bone formation at 8 weeks after subcutaneous
implantation [12].

The formation of new blood vessels from pre-existing blood vessels (angiogenesis) is likely critical
for ossification [13]. Skin injury results in the homing of blood progenitor cells [14] and leukocytes
from the circulation to defects. Therefore, Scott et al., cannot exclude the participation of these
progenitor cell types from ectopic bone formation [1]. On the other hand, pericytes (perivascular
cells) that lie on the abluminal surface of blood microvessels and capillaries may be triggered or
function as a source of activated MSCs that can differentiate into osteoblasts when in close contact
with an osteogenic material [13]. Microparticles derived from CaP biomaterials (debris, degradation
products, and commercial-grade particles) have been hypothesized to provoke inflammation and
cytokine release. In some cases, it promotes the osteogenic differentiation of stem and progenitor
cells [15]. Thus, pericytes and circulating stem/progenitor cells are possible candidates for osteoblast
differentiation in the context of EO [16].

Poor subcutaneous vascularization and blood flow compared with muscle and kidney [1] obviously
limit the participation of circulating MSCs and pericytes in subcutaneous osteoinduction on the implant
surface and/or bulk before blood flow is restored. As a result, questions about the tissue origin of
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osteogenic cells (e.g., connective fat and skin) that can initiate angiogenesis and bone formation in
such EO models remain unanswered.

AMSCs from subcutaneous fat that localize to the perivascular compartment promote local
angiogenesis [17] and tissue formation as precursors of pericytes and other cells (adipocytes, osteoblasts,
chondrocytes, endothelial cells, myocytes, etc.) [18] and secrete multiple cytokines and chemokines [17].
In turn, the invasion of blood mononuclear leukocytes into implant-dependent lesions leads to
cooperation with local MSCs, which initiates controlled proliferation, inflammation and tissue
repair [19].

In this regard, there is considerable interest in studying the subcutaneous vascularization of rough
CaP material deposited by the microarc oxidation (MAO) technique and in vitro models of its effect on
cellular and molecular crosstalk among blood mononuclear cells and AMSCs to evaluate cell motility,
the secretion of angiogenic molecules, and osteogenic features; these data will provide a potential
pathway of reparative regeneration after the implantation of inorganic biomaterials.

2. Materials and Methods

2.1. Substrate Preparation and Deposition of the CaP Coating

Commercially available pure titanium VT1-0 plates (99.58 Ti, 0.12 O, 0.18 Fe, 0.07 C, 0.04 N,
and 0.01 H, wt.%; 10 × 10 × 1 mm3) were used as substrates. The titanium plates were polished with a
series of increasingly fine abrasive paper up to P1200, ultrasonically cleaned in distilled water and
ethanol for 10 min, and dried in air. The CaP coating was deposited by the microarc oxidation (MAO)
method using the Microarc 3.0 system (ISPMS SB RAS, Tomsk, Russia) with a DC pulsed power supply
in the anodic regime as described previously [20,21]. The titanium specimen and titanium electrolytic
bath served as the anode and cathode, respectively. The electrolyte suspension contained 20 wt.%
aqueous solution of phosphoric acid, 6 wt.% dissolved hydroxyapatite (HA, Ca10(PO4)6(OH)2) powder,
and 9 wt.% dissolved calcium carbonate (CaCO3). The MAO parameters for the bilateral deposition of
the CaP coating on titanium substrates were as follows: pulse frequency, 50 Hz; pulse duration, 100 µs;
deposition time, of 7–10 min; and electrical voltage, 150–200–250 V. Rough CaP surfaces were prepared
with average surface roughness (Ra) values in the range of 2.0–2.9, 3.0–3.9, and 4.0–4.9 µm.

Roughness amplitude parameters and the mean value of the profile element width within a
sampling length were measured with a Talysurf 5–120 profilometer (Taylor Hobson Ltd., Leicester,
UK). The linear distance between surface features (Sm) as the width of surface peaks and valleys, the Ra

as an arithmetic mean of the absolute ordinate values within a sampling length and the peak-to-valley
roughness (Rz) were estimated.

The coating thickness on cross-sectional micrographs was determined with scanning electron
microscopy (SEM; LEO EVO 50, Zeiss, Germany; Nanotech Center at ISPMS SB RAS, Tomsk, Russia).
The surface morphology and topography of the coating were analyzed via SEM (Philips SEM 515,
Amsterdam, the Netherlands) at Tomsk Materials Science Center for Collective Use (Tomsk, Russia).
The surface area was randomly examined at 300 to 5000 ×magnification. An Olympus GX-71 inverted
metallographic microscope (Olympus Corporation, Tokyo, Japan) equipped with an Olympus DP 70
digital camera (Olympus Corporation, Tokyo, Japan) was used to obtain images of the coating and to
locate attached cells and tissues.

The specimens before and after coating were balanced on a digital microanalytical balance (GR-202,
A&D Company, Tokyo, Japan), and the bilateral coating mass was calculated.

Before biological testing, the samples were dry heat sterilized in a Binder FD53 oven (Binder
GmbH, Tuttlingen, Germany) at 453 K for 1 h. The samples were usually placed in the bottom of a
well in a 12-well plastic plate, except for the Cell-IQ experiment, in which the samples were attached
vertically at one edge of the well with a clip.
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2.2. In Vivo Implantation of CaP-Coated Substrates

Studies were performed with 10 male mice (CBA, 2 months old) in compliance with the principles
of humane treatment of laboratory animals (approval no. 1923 on 28 March 2011; Local Ethics
Committee, Siberian State Medical University, Tomsk, Russia; approval no. 7 on 9 December 9 2015;
Local Ethics Committee of Innovation Park, Immanuel Kant Baltic Federal University, Kaliningrad,
Russia). Mice were received from the Mouse Bank of Goldberg Research Institute of Pharmacology and
Regenerative Medicine, Tomsk National Research Medical Center of the Russian Academy of Sciences,
Tomsk, Russia; upon receipt, the mice were housed in the Central Scientific-Research Laboratory
of Siberian State Medical University (annual veterinary certificate and compliance audit report).
The animals were acclimatized to laboratory conditions (22 ◦C, 12 h/12 h light/dark, 50% humidity,
ad libitum access to food and water) for 2 weeks prior to operation.

Mice were anesthetized with an intramuscular injection of Zoletil (5 mg/kg) (Vibrac Sante Animale,
Carros, France) and Rometar (4 mg/kg) (Bioveta, Ivanovice na Hane, Czech Republik) and operated
under sterile conditions. The skin was sterilized with 70% ethanol, twenty CaP-coated titanium
samples were implanted into the lateral subcutis pockets of the venter, and the wound was sutured
and treated with 70% ethanol.

Each week for 5 weeks, two animals were euthanized by CO2 inhalation. Two samples from each
mouse were explanted and fixed for 24 h with neutral formalin. Then, the sample surface was studied
with an Olympus GX-71 inverted metallographic microscope (Olympus Corporation, Tokyo, Japan)
equipped with an Olympus DP 70 digital camera (Olympus Corporation, Tokyo, Japan). Some tissues
grown on CaP surfaces were stained with hematoxylin and eosin.

2.3. Human Cell Isolation

Adult human AMSCs (hAMSCs) were isolated from lipoaspirates of a healthy man (29 years
old) who was undergoing liposuction for aesthetic reasons in the surgery hospital. This study was
approved by the Local Ethics Committee of Innovation Park, Immanuel Kant Baltic Federal University,
Kaliningrad, Russia (permission no. 7 on 9 December 2015). Informed consent for the procedure was
obtained as specified previously [22]. A stromal vascular fraction and a processed lipoaspirate (PLA)
with little contamination by endothelial cells, pericytes, and smooth muscle cells were obtained as
described previously [23].

PLA cells were passaged at subconfluence four times (each passage lasting 5–7 days) and cultured
at 37 ◦C and 5% CO2 in nutrient medium consisting of 90% α-MEM (Sigma-Aldrich, St. Louis, MO,
USA), 10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO, USA), 0.3 g/L L-glutamine (Sigma-Aldrich,
St. Louis, MO, USA), and 100 U/mL penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA)
to expand the ex vivo hAMSC population. The cells were stained using a Human Phenotyping Kit
(130-095-198) (Miltenyi Biotec, Bergisch-Gladbach, Germany) and Viability Fixable Dyes (Miltenyi
Biotec, Bergisch-Gladbach, Germany), and the results were analyzed with a MACS Quant flow
cytometer (Miltenyi Biotec, Bergisch-Gladbach, Germany) and KALUZA Analysis Software (Beckman
Coulter, Brea, CA, USA) in accordance with the manufacturer’s instructions. As a result, most of the
viable, adherent, fibroblast-like cells expressed CD73 (99%), CD90 (85%), and CD105 (99%) and did not
show a hematopoietic immunophenotype (1% positive for CD45, CD34, CD20, and CD14).

Previously, PLA cells cultured with specific induction media from the StemPro® Differentiation
Kit (Thermo Fisher Scientific, Waltham, MA, USA) for 21 days showed multilineage differentiation into
osteoblasts, chondrocytes, and adipocytes by selective staining [24]. Thus, the isolated cells constitute
a pool of hAMSCs according to the recommendations of the International Society for Cellular Therapy
(ISCT) and the International Federation for Adipose Therapeutics and Science (IFATS) [25,26].

Human blood mononuclear cells (hBMNCs) were collected from 3 young (25–32 years old) healthy
men (permission no. 2 on 6 March 2017; Local Ethics Committee, Innovation Park, Immanuel Kant
Baltic Federal University) by venous blood gradient (ρ = 1.077) Ficoll-Paque Premium (Sigma-Aldrich,
St. Louis, MO, USA) centrifugation at 1500 rpm for 45 min. Informed consent was obtained from each
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volunteer for the diagnostic procedure. The hBMNCs were washed twice with phosphate-buffered saline
(pH = 7.2) and resuspended in complete culture medium consisting of 90% α-MEM (Sigma-Aldrich,
St. Louis, MO, USA), 10% inactivated (30 min at 56 ◦C) fetal bovine serum (Sigma-Aldrich, St. Louis, MO,
USA), 0.3 g/L L-glutamine (Sigma-Aldrich, St. Louis, MO, USA), and 100 U/mL penicillin/streptomycin
(Sigma-Aldrich, St. Louis, MO, USA). The cells were 92–94% viable, as shown by 0.4% trypan blue
staining before culture.

2.4. Human Cell Culture

To obtain 2-day and 3-day monocultures, hBMNCs were resuspended in complete culture medium
consisting of 90% α-MEM (Sigma-Aldrich, St. Louis, MO, USA), 10% inactivated (30 min at 56 ◦C) fetal
bovine serum (Sigma-Aldrich, St. Louis, MO, USA), 0.3 g/L L-glutamine (Sigma-Aldrich, St. Louis, MO,
USA), and 100 U/mL penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA). One CaP-coated
substrate was placed in each well of a 12-well flat-bottom plate (Orange Scientific, Braine-l’Alleud,
Belgium). A cell suspension without a three-dimensional (3D) substrate was used as a 2D control.
The cells were plated at 1 × 106 live cells per 1.5 mL of nutrient medium and then incubated in a
humidified atmosphere of 95% air and 5% CO2 at 37 ◦C.

To study 14-day cell viability, secretion and immunophenotype, hBMNCs were cultivated at a
concentration of 1 × 106 live cells per 1.5 mL of nutrient medium as described above.

For 7-day cell motility, hAMSCs or hBMNCs were resuspended in complete culture medium
consisting of 90% α-MEM (Sigma-Aldrich, St. Louis, MO, USA), 10% inactivated (30 min at 56 ◦C) fetal
bovine serum (Sigma-Aldrich, St. Louis, MO, USA), 0.3 g/L L-glutamine (Sigma-Aldrich, St. Louis,
MO, USA), and 100 U/mL penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA). The nutrient
medium was replaced with fresh medium every 3–4 days. One CaP-coated substrate was placed in each
well of a 12-well flat-bottom plate (Orange Scientific, Braine-l’Alleud, Belgium). Samples were placed
vertically in the well at one edge and attached to the wall with a clip. In this position, the samples
did not shift when the plates were placed in the Cell-IQ® v2 MLF integrated platform for continuous
real-time phase-contrast imaging of live cells (CM Technologies Oy, Tampere, Finland) and did not
damage the growing cell layer. Then, 50 µL of cell suspension (5 × 104 viable hAMSCs or hBMNCs)
was placed in the center of the well. Allogenic cell coculture (5 × 104 viable hAMSCs and hBMNCs at a
1:1 ratio) was performed by mixing the cell suspensions at the volumes of 50 and 25 µL, respectively
(Figure 1). Cell cultures without CaP-coated 3D substrates served as 2D controls. The cells were allowed
to adhere to the bottom of the wells in a humidified chamber for 80 min. Thereafter, the wells were
carefully filled with 1.5 mL of the nutrient medium, and the cells were observed in a Cell-IQ® v2
MLF integrated platform for 7 days in a humidified atmosphere of 95% air and 5% CO2 at 37 ◦C until
monolayer formation was detected. The nutrient medium was replaced with fresh medium in 3–4 days.
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2.5. Cell-IQ Visualization of Cell Behavior

The Cell-IQ® v2 MLF integrated platform (CM Technologies, Oy, Tampere, Finland) was used for
continuous real-time phase-contrast imaging of live cells as described in our previous publication [27]
with minor modifications. The monocultures or mixed cultures were placed into the wells of 12-well
flat-bottom plates as described above and did not directly contact the CaP-coated samples for a long
time, suggesting a predominantly indirect influence (from dissolution products of the coating material)
of the CaP-coated specimens on cell behavior (Figure 1).

To analyze cell morphology, motility and division, six points were selected in each well for phase
contrast imaging. The visualization fields were located as follows (Figure 1): on the cell layer boundary
(1), equidistant between the cell layer and sample (2), near the sample (3), and equidistant between the
cell drop and the sample but on the opposite side (4–6).

Digital microphotographs of the cell cultures (a total of 108 images for each of the six points)
were obtained every 90 min. Several electronic libraries of digital images were created for effective
cell identification. Every tenth image was used for automated analysis with Cell-IQ Imagen software
(MI2.8.9, CM Technologies Oy, Tampere, Finland). The maximum cell amount and the number and
timing of hAMSC divisions were determined at the chosen visualization points.

2.6. RTCA Technique to Monitor Cell Invasion and Recruitment

Cell migration through microholes (invasion) in the polymer membrane that imitate blood vessel
pores was monitored with 16-well CIM plates for the real-time cell analyzer (RTCA) (xCELLigence RTCA
DP system, Roche Applied Science, Penzberg, Germany). The system allows real-time determination
of impedance dynamics at cell contacts with gold electrodes and of the cell index, which correlates with
the number of cells and area of attachment to the electrode. Each well in the CIM plate is composed
of two chambers: The lower chamber (maximum volume, 162 µL) contains chemoattractant, cells or
tissues, and test cells are placed in the upper chamber (maximum volume, 180 µL). The cells migrate
through 8 µm pores on the opposite surface of the membrane in the upper chamber, which is 80%
covered with gold electrodes. The holder for the upper and lower chamber assembly was placed in a
CO2 incubator for 24 h at 37 ◦C.

The experiment was performed according to previously described methods [28,29] with some
modifications. All experiments were performed in laminar sterile air. Four wells were used for each
experimental group. The hAMSCs or hBMNCs (4 × 104 cells) in standard culture medium (α-MEM,
100 U/mL penicillin and streptomycin, and 0.3 g/L L-glutamine) were placed in the lower chamber.
In the control wells, the lower chamber was filled with the corresponding volume (160 µL) of culture
medium, the upper chamber was filled with 30 µL of culture medium, and the CIM plates were
incubated for 20 min at 37 ◦C. CIM plates were placed in the RTCA DP Analyzer (Roche Applied
Science, Penzberg, Germany) for instrument calibration. Then, the upper chambers of the CIM plate
were filled with 4 × 104 hBMNCs or hAMSCs in 150 µL of culture medium and placed in the RTCA
DP Analyzer for 20 min at 37 ◦C. After that, the signals determining the migration index (MI) were
recorded every 15 min for 72 h with the RTCA Software.

2.7. Cellular Immunophenotype and Viability Analysis

The cellular antigen profile was analyzed using specific monoclonal antibodies (mAbs; see below)
according to the manufacturer’s instructions. The mAbs were labeled with fluorescein isothiocyanate
(FITC), allophycocyanin (AРC), phycoerythrin (PE), or peridinin chlorophyll protein (PERCP).

After 2 or 14 days in culture, the hBMNCs were washed with phosphate-buffered saline (рН= 7.2),
and a cell suspension was mixed with a cocktail of mAbs against CD3, CD4, CD8, and CD25 (Abcam,
Cambridge, UK); and CD45RO, CD45RA, CD71, and CD95 (e-Bioscience, Santa Clara, CA, USA).
The CD45+CD3+ subpopulations were detected (Figure 2a–d).
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After 14 days in culture, the hAMSCs were detached from the plastic wells with 0.05% trypsin
(PanEco, Russia) in 0.53 mM EDTA (Sigma-Aldrich, St. Louis, MO, United States) and washed twice with
phosphate-buffered saline. The surface markers on viable AMSCs were analyzed with a Human MSC
Phenotyping Kit (cat. no. 130-095-198, Miltenyi Biotec, Bergisch-Gladbach, Germany), which detects
CD14, CD20, CD34, CD45, CD73, CD90, and CD105 (Figure 2e,f).

After a 10-min incubation with the labeled mAbs, the cells were assayed using a MACS Quant flow
cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s protocol.
Flow cytometry (FC) results were analyzed using KALUZA Analysis Software (Beckman Coulter, Brea,
CA, USA).

The in vitro viability of hBMNCs and hAMSCs was estimated with a MACS Quant flow cytometer
(Miltenyi Biotec, Bergisch Gladbach, Germany). A total of 6 × 105 cells was resuspended in binding
buffer, and 5 µL of Annexin V:FITC (Abcam, Cambridge, UK) was added to 195µL of the cell suspension.
The cells were incubated for 10 min, washed, and resuspended in binding buffer.
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Figure 2. A strategy for gating live human blood mononuclear cells (hBMNC) subsets (a)–(d) and
human adipose-derived stem cells (hAMSCs) (e)–(f). (a) CD45+ leukocytes; (b) CD45+CD3+ T cells;
(c) CD4+ vs. CD8+ T cells; (d) CD45RA+ vs. CD45RO+ T cells; (e) MSC identification based on forward
scatter (FSC) vs. side scatter (SSC); (f) CD73+, CD90+, and CD105 + vs. CD14+CD20+CD34+CD45+.
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An aliquot of 190 µL of the cell suspension was mixed with 10 µL of propidium iodide solution
(Abcam, Cambridge, UK), and the resulting mixture was analyzed by FC. hAMSCs were preliminarily
harvested with 0.05% trypsin (PanEco, Moscow, Russia) in 0.53 mM EDTA (Sigma-Aldrich, St. Louis,
MO, USA) and washed twice with phosphate-buffered saline. The percentages of live and dead
(apoptotic or necrotic) cells were measured according to the manufacturer’s protocol.

2.8. Cytokine Profile of Cultured Cells

Cell culture supernatants were collected on days 2 and 14 and centrifuged at 500× g for 10 min.
FC was performed to measure the spontaneous and CaP coating-induced secretion of the following
human cytokines and chemokines: Interleukin (IL)-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8,
IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ),
eotaxin, granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating
factor (GM-CSF), interferon gamma-induced protein 10 (IP-10; C-X-C motif chemokine 10 (CXCL10)),
monocyte chemoattractant protein-1 (MCP-1; chemokine (C-C motif) ligand 2 (CCL2)), macrophage
inflammatory protein 1 alpha (MIP-1α; CCL3), MIP-1β (CCL4), regulated upon activation, normal T
cell expressed and secreted (RANTES; CCL5), basic fibroblast growth factor (bFGF), platelet-derived
growth factor (PDGF-BB), and vascular endothelial growth factor (VEGF).

FC was conducted with mAbs according to the manufacturer’s instructions for the cytokine assay
system (Bio-Plex Pro Human Cytokine 27-Plex Panel, Bio-Rad, Hercules, CA, USA) using an automated
processing system (Bio-Plex Protein Assay System, Bio-Rad, Hercules, CA, USA). The concentration of
each cytokine is presented in pg/mL.

2.9. Estimation of the In Vitro Osteogenic Differentiation of Cultured hAMSCs and hBMNCs

To establish the self-differentiation potential of cells in plastic wells and on a rough CaP surface,
osteogenic supplements were not added to the culture medium. hAMSCs at a final concentration
of 1.5 × 105 live cells per 1.5 mL were cultured in 90% α-MEM (Sigma-Aldrich, St. Louis, MO, USA)
supplemented with 10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO, USA), 50 mg/L gentamicin
(Invitrogen, Carlsbad, CA, USA), and 280 mg/L L-glutamine solution (Sigma-Aldrich, St. Louis, MO,
USA) with or without the CaP-coated samples (cells were seeded on and around the samples) at 100%
humidity with 5% CO2 at 37 ◦C for 21 days as described previously [20]; the medium was replaced
with fresh medium every 3–4 days. hBMNCs at a final concentration of 1 × 106 live cells per 1.5 mL of
nutrient medium were incubated for 21 days as described above. The above concentrations of hAMSCs
and hBMNCs were mixed, and the cells were cultivated as described above at a 6.7:1 ratio as reported
previously [30,31].

The multipotent potential of hAMSCs was estimated by staining with alcian blue (Sigma-Aldrich,
St. Louis, MO, USA) to visualize proteoglycan synthesis by chondrocytes, alizarin red S (Sigma-Aldrich,
St. Louis, MO, USA) to identify mineralization of the extracellular matrix (ECM) by osteoblasts, and oil
red (Sigma-Aldrich, St. Louis, MO, USA) to detect neutral triglycerides and lipids in adipocytes.
hBMNCs and mixed cultures were stained with alizarin red S after 21 days of cultivation. All staining
procedures were performed as recommended by the manufacturer. Adherent hBMNCs were also
stained with fast blue PP salt (C15H15N3O3·BF4, m.w. 372.10; Lachema, Czech Republic) to detect
alkaline phosphatase (ALP) activity after 3 days of culture as described previously by our group [32].

The results were assessed with a Zeiss Axio Observer A1 microscope (Carl Zeiss Microscopy,
LLC, Oberkochen, Germany) using ZEN 2012 software (Carl Zeiss Microscopy, LLC, Oberkochen,
Germany) on plastic surfaces and with a reflected light microscope (Olympus GX-71 metallographic
device, Olympus Corporation, Tokyo, Japan) on CaP surfaces.

2.10. Statistical Analysis

Statistical analyses were conducted using the STATISTICA 13.3 software package for Windows
(TIBCO Software Inc., Palo Alto, CA, USA). The mean (X) and standard deviation (SD) or median (Me)
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and 25% (Q1) and 75% (Q3) quartiles were calculated. The normality of the data distribution was defined
by the Kolmogorov-Smirnov test. Because of the nonnormal data distribution, the nonparametric
Mann–Whitney and Wilcoxon T test (PT) were used to evaluate significant differences between samples.
Statistically significant differences were considered at P < 0.05. Relationships between the studied
parameters were established via regression analyses. Significant relationships were indicated by
coefficient (r) values with a significance level greater than 95%.

3. Results

3.1. Surface Topography Characterization

The microreliefs of the CaP surface with Ra = 2−5 µm had similar irregularities. The peaks of
the CaP topography consisted of spherulites of up to 10–20 µm in diameter (Figure 3). The optical
microscopy (Figure 3a) showed interconnected valleys as vast dark fields between ranges of bright
spherulites; the areas are presented in Table 1. Single or open interconnected pores (1–10 µm in
diameter) were observed by SEM in both spherulites (Figure 3b–d) and valleys independent of the
roughness index.

Roughness indices calculated for the elevated (Ra, Rz) and horizontal (Sm) profiles of the microarc
CaP coating topography are presented in Table 1. A strong linear regression between Ra and Rz was
identified (r = 0.94; n = 10; p < 0.00006). No regression was noted between Ra and Sm (r = −0.17; n = 10;
p = 0.64). Additionally, we determined the areas of irregularly shaped surface valleys surrounding the
spherulites of the microarc CaP coating (Table 1; Figure 3).

The regression analysis identified a strong relation between Ra = 2−4 µm and S (r = 0.93; n = 16;
p < 10−6; S (%) = 24.44 + 6.71x). Based on these data, Ra seemed to be sufficient to characterize the
roughness of microarc CaP-coated substrates for the biological experiments.
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Figure 3. Optical microscopy (a) and SEM (b)–(d) images of typical topography of the microarc
rough CaP coating on titanium substrates. (a) Reflected dark-field microscopy; (b) Ra = 2.0−2.9 µm;
(c) Ra = 3.0−3.9 µm; (d) Ra = 4.0−4.9 µm. Scale bars 10 and 40 µm. Magnification, × 1000 (a) and
× 2500 (b–d).
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Table 1. Topography parameters of titanium substrates with microarc rough CaP coating, mean (X) ±
standard deviation (SD).

First Measurement, n = 10, n1 = 100 Second Measurement on Other Samples, n = 16,
n1 = 48

Ra, µm Rz, µm Sm, µm Ra, µm Total Area (S) of Surface Valleys
between Spherulites, %

4.15 ± 1.20 15.86 ± 3.69 100.20 ± 11.10 3.14 ± 0.99 46 ± 7

Note: n=number of samples tested; n1=number of measurements.

3.2. In Vivo Ectopic Vascularization of CaP-Coated Implants

There are technical difficulties with obtaining clear optical images of relief features with
Ra > 3.5 µm, especially after removing implants from tissues. Therefore, CaP-coated titanium substrates
with Ra = 2−3.3 µm were used as the implants. Post-implantation disruption of the local vasculature
within subcutaneous tissue resulted in a hematoma lasting 1–3 weeks (Figure 4a–c), which is critical
for subsequent wound healing [33]. Long-lasting hematoma may be conditioned by the biomechanical
forces (shear load and slight compression) exerted on the graft site and may be caused by lateral
excursion of murine skin.
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Figure 4. Surface of the microarc rough CaP coating on the titanium substrate after subcutaneous
implantation in mice. (a) One; (b) two; (c) three; (d) four; and (e,f) five weeks after implantation.
(g) Blood vessel stalks; (h) erythrocytes in capillaries between surface spherulites at 5 weeks after
subcutaneous implantation. (b,g,h): Bright—and dark-field reflecting optical microscopy was used.
Hematoxylin and eosin staining (b,f). Scale bars 25–400 µm.
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Microvessels were observed on the CaP coating near the hematoma at the end of the 3rd week
after subcutaneous implantation (Figure 4c). The intensive vascular bed formed from pre-existing
blood vessels (angiogenesis) [13] in surrounding soft tissue within 4 weeks (Figure 4d). Microvessel
elongation (Figure 4e,f) occurred with the help of stalk and tip cells [13] that migrated on the CaP
surface (Figure 4g).

In addition, some microvessels were observed between the spherulites in the surface valleys
(Figure 4e,h), suggesting endothelial cell invasion into the CaP relief or possibly primary de novo
capillary formation (vasculogenesis). Finally, blood vessels between adipose-like cells negative
for hematoxylin and eosin (Figure 4f) were detected on the CaP coating relief at 5 weeks after
subcutaneous implantation.

3.3. In Vitro Modeling of Microarc CaP Coating, hBMNCs and hAMSCs Connections

3.3.1. Cytokine Secretion, Cell Viability and Cellular Immunophenotype

Close effective interactions between blood cells and resident cells, mainly hAMSCs, form the basis
of successful vascularization, osteogenesis, and wound and fracture healing [1,33]. Therefore, cellular
and molecular crosstalk among AMSCs, hBMNCs, and relief CaP material was modeled in vitro. There
is a current trend towards modeling cell behavior under 3D culture conditions.

3.3.2. hBMNC Culture

hBMNC secretory activity was established in 2-day and 14-day cultures (Tables S1 and S2 in
Supplementary Materials). Increased concentrations of proinflammatory (IL-1β, IL-2, IL-6, IL-9, IL-15,
IL-17) and anti-inflammatory (IL-1Ra, IL-12(p70)) ILs, granulocyte and/or monocyte/macrophage
growth factors (G-CSF, GM-CSF), and chemokines (IL-8, MCP-1, MIP-1α, MIP-1β) were detected after
2 days of hBMNC cultivation in the presence of CaP-coated samples (3D culture) compared with
cell culture on plastic (control 2D culture). Conversely, the secretion of angiogenic molecules (VEGF,
PDGF-BB, basic FGF (bFGF)) did not differ significantly between 2D and 3D culture (Table S1).

The nutrient medium was replaced every 3–4 days under conditions of prolonged cell culture.
Therefore, the concentrations of some biomolecules (IL-2, IL-5, IL-7, IL-15, IL-17, G-CSF, VEGF) were
not detected after 14 days of cultivation due to depletion of hBMNC secretion (Table S2).

CaP-coated samples served as cell irritants and sharply increased (3–100 times; PT2 < 0.05) the
levels of most of the tested humoral factors, excluding IL-5, IL-7, and IL-1Ra. IL-15 was produced de
novo by 3D-stimulated hBMNCs (Table S2).

As shown in Table S3 in Supplementary Materials, CD45+CD3+ hBMNCs in 2-day 2D control
culture expressed a wide range of membrane markers, predominantly CD45RA, an indicator of naïve
(no antigen activation) CD4+ T helper/inducers. The membrane activation and costimulatory molecules
CD25, CD71, and CD95 were present on 9, 2.5, and 15% of CD45+CD3+ cells, respectively. Thirty-five
percent of CD45+CD3+ cells were positive for the CD45RO isoform of this transmembrane antigen
of activated T lymphocytes and/or memory T cells. Surprisingly, 62% of hBMNCs were CD73+ after
3 days of culture. A very small percentage of cells (less than 1%) were positive for other stromal
markers (CD90 and CD105) (Table S4 in Supplementary Materials).

hBMNCs from other healthy volunteer were cultured for 14 days. These cells showed markedly
increased levels of CD25, CD71, and CD95, unlike both freshly isolated hBMNCs (see 2.3) and hBMNCs
cultured for 2 days under control 2D conditions (Tables S3–S5 in Supplementary Materials).

Interestingly, short and long contact of hBMNCs with CaP-coated samples did not significantly
change the spectrum of tested leukocyte antigens on CD45+CD3+ cells (Tables S3–S5). At the same
time, a relative increase in the number of CD73+, CD90+, and CD105+ cells or CD45+ hBMNC subsets
with hematopoietic but not monocytic CD14 antigens was detected at as late as 3 days of cultivation
(Table S4).
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The viability of the nonadherent fraction of hBMNCs diminished progressively because of a
2.5- to 4-fold increase in cell necrosis from contact with CaP-coated samples (Tables S3 and S5).
In turn, the lower percentage of live hBMNCs at 14 days compared with 2 days in control 2D
culture stemmed from a 7-fold increase in apoptosis (Tables S3 and S5). These results suggest the
hyperactivation-dependent death of nonadherent T cells in contact with CaP-coated samples for
2–14 days.

3.3.3. hAMSC Culture

The secretory activity after 14 days of cultivation (2D control 1) in a monolayer was obviously
(10–1000) higher for hAMSCs than for hBMNCs regarding the studied cytokines and chemokines,
excluding PDGF-BB (Table S2). For example, the VEGF concentration was increased up to 1814 pg/mL
in hAMSC cultures versus 0 pg/mL in control 2D cultures of hBMNCs.

In contrast with 3D culture of hBMNCs, the concentrations of biomolecules (except IL-7) were
decreased by 1.5- to 100-fold in hAMSC cultures containing CaP-coated samples compared with 2D
stromal cell cultures. In addition, the concentrations of most cytokines and chemokines (IL-1β, IL-1Ra,
IL-2, IL-9, IL-17, TNFα, bFGF, PDGF-BB, GM-CSF, IL-8, IP-10, MIP-1α, MIP-1β, RANTES) were lower in
hAMSC 3D culture than in hBMNC 3D culture. A few proinflammatory (IL-6, IL-7), angiogenic (VEGF),
and antiangiogenic (IL-12p70) biomolecules were at higher levels in hAMSC cultures containing the
CaP-coated samples than in hBMNC 3D cultures (Table S2).

The immunophenotype of hAMSCs in control 2D culture (more than 91% CD73+, CD90+,
or CD105+ cells) corresponded to the MSC profile. Fourteen days of contact between hAMSCs and the
rough CaP coating decreased (by 4–5%) the percentage of cells expressing stromal markers, mainly
CD73 and CD105 (Table S6). Hematopoietic antigen presentation was unchanged. Overall, the rough
CaP-coated titanium substrates significantly diminished hAMSC apoptosis and necrosis, leading to an
increase in cell viability (Table S6).

3.3.4. hAMSC and hBMNC Allogenic Coculture

The concentrations of all tested biomolecules were higher in 14-day mixed hAMSC+hBMNC
allogeneic cultures (2D control 2) than in hBMNC monocultures according to the Wilcoxon T-test
(PT < 0.05) (Table S2). Moreover, significantly elevated levels of most ILs (excluding IL-4, IL-7,
and IL-15), cytokines (excluding IFNγ), hematopoietic growth factors, angiogenic molecules (except
PDGF-BB) and chemokines (eotaxin only) were detected in 2D coculture compared with hAMSCs
alone (2D control 1). Conversely, the MIP-1α concentration decreased (Table S2).

CaP-coated titanium specimens had predominantly costimulatory effects on the secretory activity of
hBMNCs and hAMSCs in mixed 3D culture (PT < 0.05 compared with 3D monocultures). The increased
concentration of the anti-inflammatory molecule IL-1Ra and the 3-fold decreased concentration of the
proinflammatory molecule IL-6 in mixed 3D culture compared to 2D coculture suggest inflammatory
signal switching in favor of regeneration pathways in the presence of the CaP coating (Table S2).

The immunophenotype of CD45+CD3+ leukocytes was changed in mixed hAMSC+hBMNC
allogeneic 2D culture (Table S5). The fractions of CD4+ T helper/inducers and CD45RO+ activated
T lymphocytes and/or T memory cells increased by 2-fold and 12%, respectively, in contrast to the
significantly decreased percentages of CD25+ and CD71+ hBMNCs (Table S5). Furthermore, decreased
percentages of hAMSCs positive for CD73 (from 96.55 to 93.33%) and CD105 (from 92.94 to 90.83%)
were observed in mixed culture (2D control 1) (Table S6).

The introduction of CaP-coated specimens to hAMSC+hBMNC cultures did not significantly
influence the antigen spectrum of hBMNCs in the mixed cell population. In general, the changes in
molecular expression on hBMNCs were the same in mixed 2D and 3D cultures as in the corresponding
leukocyte monocultures. Increased percentages of CD4+, CD95+, and CD45RO+ or CD45RA+ leukocytes
and decreased percentages of CD71+ and CD25+ leukocytes were detected. In addition, the relative
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number of CD95+ cells in mixed 3D culture was significantly different from the corresponding cell
number in hBMNC 3D culture (Table S5).

CD73 presentation on hAMSCs was reduced by 5% in mixed 3D culture compared with 2D
coculture (Table S6). Both 2D and 3D cocultures strongly increased hBMNC viability to up to 97%
(Table S5), and CaP-coated substrates increased hAMSC viability under both monoculture and mixed
culture conditions (Table S6). In vitro, hAMSCs promoted the long-term viability of allogeneic
hBMNCs, especially those positive for CD4. The rough CaP coating sustained the vitality of hAMSCs
but not hBMNCs.

3.3.5. In Vitro Osteogenic Differentiation

Adherent fibroblast-like CD73+CD90+CD105+ hAMSCs cultivated on plastic wells in standard
nutrient medium for 21 days stained poorly with alizarin red S (Figure 5a). The differentiation of
hAMSCs into osteoblasts on plastic around CaP-coated specimens was enhanced, but only diffuse
alizarin red staining was observed (Figure 5b).
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Figure 5. hAMSC culture after 21 days of culture on plastic surface (a)–(d) and on the rough
CaP coating (e)–(g) in a standard nutrient medium. (a) 2D culture of hAMSCs; (b) culture of
hAMSCs around CaP-coated specimens; (c) mixed 2D culture of hAMSCs+hBMNCs; (d) mixed
3D culture hAMSCs+hBMNCs around CaP-coated specimen; (e) Sites of the cell and extracellular
matrix (ECM) mineralization. Alizarin red staining (a)–(e); (f) alcian-blue-stained sites of glycoproteins;
(g) oil-red-stained sites of neutral triglycerides and lipids. Scale bars 150 and 300 µm.
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Alizarin red staining of individual cells did not allow us to calculate the area of ECM mineralization
in hAMSC monocultures (Table 2). Staining appeared when hBMNCs were added to hAMSCs (Table 2;
Figure 5c), and a 10-fold increase in the total area of ECM mineralization around the CaP-coated
samples was detected in the mixed culture (Table 2; Figure 5d).

Table 2. In vitro hAMSC and hBMNC osteogenic differentiation with ECM mineralization after 21 days
of culture, Me (Q1–Q3), n = 3.

Parameters of Bilateral CaP Coating Biological Parameters

Ra, µm Thickness, µm Mass, mg

The Number of the
Sites of ECM

Mineralization
Calculated in 3 Wells

An Average
Area of the

Mineralization
Sites, mm2

Total Area of the
Stes of ECM

Mineralization,
mm2

(a) hBMNC culture on plastic surface

- - - 2 (0–20) -* -*

(b) hAMSC culture on plastic surface (2D control)

- - - 0 * 0 0

(c) hAMSC culture in contact with the CaP-coated titanium substrates

2.6 (2.3–3.0) 37.5 (35.0–47) 10.5 (9.4–13.8) 0 * 0 0

(d) hAMSC and hBMNC coculture on plastic surface (2D control 1)

- - - 34 b (25–38) 0.15 b

(0.04–0.43) 9.56 b (1.33–15.54)

(e) hAMSC and hBMNC coculture on plastic surface in contact with the CaP-coated titanium substrates (3D mixed culture)

2.7 (2.4–3.0) 40.0 (36.0–47.5) 12.2 (10.9–14.0) 190 c,d (176–217)
0.34 c

(0.31–0.49)
95.63 c,d

(68.08–102.41)

Note: Significant differences were determined with the Mann–Whitney U test: b–d P < 0.05 vs. the corresponding
group number; n = number of tested wells in each culture plate for each group; total area = average area × number of
stained sites in each of 3 wells; *) alizarin red staining of multiple cells and the smallest ECM sites was observed only.

The marked increase in the number of sites of ECM mineralization on plastic in 3D mixed culture
compared with control 2D mixed culture indicates an increase in hAMSC differentiation into osteoblasts
in response to indirect contact with the CaP coating.

Interestingly, satisfactory osteogenic and chondrogenic differentiation (Figure 5e,f) but poor
adipogenic (Figure 5g) differentiation of hAMSCs on the rough CaP surface were detected by differential
cell staining. The microarc CaP coating and its biodegradable products can switch hAMSC fate.

Adherent hBMNCs in 3-day culture on plastic (2D culture) have been shown to adopt two
phenotypes, large (diameter greater than 20 µm) cells with membrane pseudopodia and small (10 µm
or smaller) round cells. Some cells with nucleoli were blast cells capable of proliferation (Figure 6a).
The presence of a microarc CaP coating increased the number of irregularly shaped large hBMNCs
with nucleoli (Figure 6b). In addition, single ALP-positive cells with blue-stained cytoplasm were
noted in 3D culture (Figure 6c).
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Figure 6. hBMNC monocultures after 3 days (a)–(c) and 21 days (d), (e) in a standard nutrient medium.
(a) 2D culture of hBMNCs on plastic surface; (b), (c) 3D culture of hBMNCs around CaP-coated
specimen. Alkaline phosphatase (ALP) staining with fast blue PP salt. Some cells with nucleoli (a),
(b) and single adherent ALP-positive cells with blue stained cytoplasm (c) are marked by black arrows;
(d) adherent round cells; (e) adherent round and fibroblast-like cells. Small sites of mineralization
stained with alizarin red are shown by black arrows. Scale bars 25 and 50 µm.

The macrophage-like shape of hBMNCs was accompanied by the increased expression of stromal
antigens (CD90, CD105, and especially CD73) but not CD14 (Table S4). hBMNCs secreted a notable
concentration of angiogenic molecules (PDGF-BB) after 14 days of cultivation (Table S2). Round
hBMNCs in 21-day 2D cultures were negative for alizarin red staining (Figure 6d).

However, adherent cells (0–1.6% per well) had a fibroblast-like shape. Surprisingly, single small
sites of alizarin red staining (ECM mineralization) were observed at places of contact between round
and fibroblastoid cells (Table 2; Figure 6e). Therefore, the data suggest that CaP-coated samples caused
the accumulating biomass of CD73+ endothelial cells (angioblasts) and/or MSCs/osteoblasts in adherent
hBMNC culture (Figure 6b,c).

Most likely, the blood circulating fraction of stromal cells among hBMNCs is capable of osteogenic
differentiation during 21 days of in vitro culture. hBMNC populations have been proposed as a source
of enhanced ECM mineralization in mixed culture with hAMSCs. Nevertheless, their contribution
was unappreciable versus hAMSCs (Table 2), and hBMNC participation is initially conditioned by a
spectrum of secreted molecules (Tables S1 and S2).

3.3.6. Cell-IQ Visualization of Cell Behavior

Cell-IQ continuous real-time automated monitoring did not show significant differences in the
average velocity of cell division (AVCD) between the experimental groups (Table 3). No changes in
AVCD were determined at any point in the 6 visualization fields (see Figure 1) (data not shown).
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Table 3. Monitoring hAMSC division during 7-day culture without or with hBMNCs and/or the rough
CaP coating, Me (Q1–Q3), X ± SD, n = 3.

Bilateral CaP Coating Parameters Average Velocity of Cell Division (AVCD), Number of
Divisions per Hour Before Monolayer FormationRa, µm Thickness, µm Mass, mg

(a) hAMSC culture on plastic surface (2D control)

- - - 0.40 ± 0.29 n1 = 18

(b) hAMSC culture in contact with the CaP-coated titanium substrates

3.5 (2.4–4.3) 52.0 (30.5–56.5) 14.0 (9.0–17.1) 0.46 ± 0.30 n1 = 13

(c) hAMSC and hBMNC coculture on plastic surface (2D control 1)

- - - 0.44 ± 0.31 n1 = 31

(d) hAMSC and hBMNC coculture on plastic surface in contact with the CaP-coated titanium substrates

3.3 (2.3–4.3) 51.0 (31.5–52.5) 13.7 (9.3–14.7) 0.39 ± 0.29 n1 = 12

Therefore, hBMNCs did not affect hAMSC division or viability (Table 3), and cell biomass
alterations in the experimental groups (Table 4) were exclusively related to stromal cell migration.
Different numbers of hAMSCs were counted in various visualization fields at the end of the observation
period (Table 4) because of unequal initial cell distribution and irregular cell motility: Cells migrated
in or out of visualization fields. The findings for all six visualization fields are presented in Table 4.

Table 4. Monitoring hAMSC motility during 7 days of culture without or with hBMNCs and/or the
rough CaP coating, Me (Q1; Q3), n = 3.

Ra, µm Thickness,
µm Mass, mg

Visualization
Fields According

to Figure 1

Alteration of
hAMSC Count
by the End of
Observation

Average Alteration
Rate (AAR) of

hAMSC Number
per Hour

(a) hAMSC culture on plastic surface (2D control)

- - -

1 390 (280;420) 2.55 (2.36;2.63)
2 90 (40;250) 1.0 (0,67;4.55)
3 0 (0;10) 0 (0;2)
4 430 (410;470) 2.85 (2.48;3.19)
5 210 (180;310) 3.65 (2.39;5.14)
6 10 (0;45) 0.67 (0;0.75)

(b) hAMSC culture in contact with the CaP-coated titanium substrates

3.5 (2.4–4.3) 52.0 (30.5-56.5) 14.0 (9.0–17.1)

1 368 (310;450) 2.3 (2.3;2.73)
2 30 (10;180) 0.45 (0.38;2.5)
3 0 (0;45) 0 (0;0.53)
4 370 (350;390) 2.44 (2.12;2.74)
5 60 (38;100) 0.86 (0.54;1.09) a

6 0 (0;0) 0 (0;0)
(c) hAMSC and hBMNC coculture on plastic surface (2D control 1)

- - -

1 290 (200;295) 1.79 (1.21;2.36)
2 10 (0;20) 0.37 (0;1.33)
3 155 (0;155) 0 (0;1.41)
4 235 (100;250) 1.52 (1.18;1.62) a

5 130 (35;155) 1.41 (1.09;1.53) a

6 0 (0;0) 0 (0;0)
(d) hAMSC and hBMNC coculture on plastic surface in contact with the CaP-coated titanium substrates

3.3 (2.3–4.3) 51.0 (31.5–52.5) 13.7 (9.3–14.7)

1 235 (180–260) 1.58 (0.95–1.6) b

2 0 (–10; 0) 0 (–0.11; 0) b

3 11 (–20; 15) 0.11 (–0.17; 0.14)
4 180 (168;235) 1.12 (1.02; 1.42) b

5 10 (14;195) 0.14 (–0.08;3.9) c

6 0 (0;0) 0 (0;0)

Note: The minus sign indicates a decreased number of migratory cells in the visualization field compared with
initial observation timepoint. Significant differences were determined with the Mann–Whitney U test: (a–c) P < 0.05
vs. The corresponding experimental group number; n, number of wells in the plate for each group.
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The data showed limited hAMSC movement near the initial cell drop (1–2, 4–5; Figure 1) caused
by CaP-coated samples and/or hBMNC addition. Both the CaP coating and the presence of hBMNCs
had synergistic negative effects on hAMSC motility (Table 4). This effect of the microarc CaP coating
stemming from its dissolution was reported previously [27].

The regulatory effect of hBMNCs on hAMSC mobility was confirmed by the concordant graphs of
leukocyte (Figure 7a) and stromal cell (Figure 7b) count, and the number of hAMSCs was below that in
stromal cell monoculture (Figure 7c). The data indicated that hBMNC chemokines (Tables S1 and S2)
attract hAMSCs, and this hypothesis was verified by the RTCA experiments (see below).Materials 2020, 13, x FOR PEER REVIEW 19 of 33 
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Figure 7. The dynamics of cell accumulation in the 5th visualization field (see Figure 1) of the
Cell-IQ system. (a) hBMNCs; (b) hAMSCs in mixed cell culture; (c) hAMSCs in monoculture. X-axis:
Observation time (h); Y-axis: Cell count.

Note: n = number of wells in each plate for each group; n1 = number of dividable cells.

3.3.7. Cell Invasion and Recruitment

Enhanced (PT < 0.05) hAMSC invasion towards hBMNCs compared with cell-free medium was
shown for 3 days in the RTCA experiments (Figure 8). Conversely, hBMNC motility conditioned by
indirect (humoral) contact with hAMSCs remained at basal levels.
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Figure 8. Experimental curves of impedance in the real-time cell analyzer (RTCA) system mirror the
migration index (MI) of different cells passing through the microporous membrane. hAMSC invasion
towards hBMNCs (top blue line), and vice versa (bottom cyan line); control hAMSC motility towards
cell-free nutrient medium (middle red line).

Therefore, chemokines secreted by hBMNCs (Tables S1 and S2) promote hAMSC recruitment into
sites of inflammation and/or regeneration.

4. Discussion

Artificial surface topography is known to have an important effect on cell behavior [34], and the
roughness of CaP coatings prepared on titanium substrates by MAO method controls MSC fate [20].
Biocompatible microarc CaP coatings [35] with a fixed Ra = 2–4 µm promote MSC osteogenic
differentiation both in vitro [20] and in vivo [36]; therefore, these conditions were adopted in our
experiments. The microstructure, phase, and elemental composition, as well as physicochemical and
mechanical properties were described for microarc CaP coatings in [37], in relation to the applied
voltage in the range from 200 to 350 V. According to these results, the microarc CaP coatings on titanium
substrate had mainly an amorphous microstructure with the CaHPO4 phase for all applied voltages.
The increase in the MAO voltage led to a coating structure transformation from X-ray amorphous to
the amorphous-crystalline state. Thus, chemical features of microarc CaP coatings excluding, to some
degree, the Ca/P atomic ratio were not depended on the increasing magnitudes of applied voltage [37].

On the other hand, surface and bulk features (Ra, mass and thickness) are very processible and
connected closely with the applied voltages and biological reactions [6,20,37–39]. Because some
variations of calcium, phosphorus, oxygen, and titanium contents and phase compounds accompanied
with surface and bulk indices [37], microarc CaP-coated samples with a fixed range of Ra = 2–5 µm
were used in the different series of experiment ( Tables 1–4, Tables S1–S6).

There are numerous reviews regarding the biological impact of Ra index of surface roughness
in vitro [40] or in vivo [41]. However, relative investigations are obviously insufficient. Zigterman et al.,
(2019) believe that the in vitro research methods differed too much from the in vivo research methods for
reliable comparison of the results [41]. Therefore, our investigation is of apparent interest for materials
scientists and biologists in the field of microarc CaP coatings and their biomedical applications.

4.1. Relationships between CaP Surface Roughness Indices

There is a strong direct dependence of Ra on voltage from 150 to 400 V, a key technological parameter
of the MAO technique [38]. A close linear regression between Ra and Rz of the microarc CaP coating
was estimated (see Section 3.1). In turn, Ra is correlated with indices of the osteogenic differentiation
and maturation of MSCs on microarc CaP coatings in vitro [39] and in vivo [6]. No regression between
Ra and Sm was found in this study (see Section 3.1). Thus, our previous conclusion [20] that only the
roughness index Ra (and not Sm) can be controlled technologically during the CaP coating of titanium
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via MAO was confirmed. Certain authors consider Sm (the linear distance between surface features
(surface peak and valley widths)) the more convenient parameter of surface topography to characterize
the relationship between surface roughness and in vitro hMSC adhesion on metallic substrates [40].
The situation for dielectric CaP materials is different.

Furthermore, we calculated the area (S) of irregularly shaped surface valleys surrounding the
spherulites of the micro-arc CaP coating (Table 1; Figure 3) because they are preferred by osteogenic cells
in vitro [20,32]; these valleys were occupied by blood microvessels in the ectopic experiment in vivo
(see Section 3.2; Figure 4e,h). A close relation between Ra = 2−4 µm and S was detected (see Section 3.1).
Adherent hMSCs range widely in size by origin, for example, 20–30 µm from prenatal lung [32] and
more than 100 µm from fat (Figure 5b) and blood (Figure 6e), and respond to surface features relative to
cell size and seed surface microterritories with highly divergent properties. In this regard, the relative
(percentile) dimensions of surface valleys in implants should have biological significance.

According to our developing concept of “niche-relief” for MSCs [42], these areas of surface valleys
can be considered important technological, physical, and biological features of anisotropic microarc
rough CaP coatings on titanium substrates.

4.2. In Vivo Contradictions of Subcutaneous Ectopic Implantation

The formation of new blood vessels from pre-existing blood vessels (angiogenesis) is critical for the
biocompatibility/biodegradation of implanted biomaterials and their possible ossification [13]. Despite
poor subcutaneous vascularization and blood flow compared with muscle and kidney capsules [1],
inorganic biomaterials, mainly CaPs, can induce direct ectopic bone formation (osteoinduction) without
the addition of osteogenic cells or bone growth factors while implanted under the skin [1,9,10].
In contrast, there are reports of CaP scaffold failure after subcutaneous implantation [10]. A few
investigations described subcutaneous osteoinduction induced by CaP implantation in mice with a
low incidence (3/16) of new bone formation [43]. The probability of material-induced bone formation
has been concluded to vary with animal species and to be related to the physical-chemical features of
the implant material [10,43].

Therefore, our study of the in vivo vascularization of rough CaP-coated samples implanted
subcutaneously in mice was in line with current trends in this field. Post-implantation disruption of
the local vasculature within mouse subcutaneous tissue resulted in a hematoma lasting 1–3 weeks
(Figure 4a–c) that enabled wound (fracture) healing, revascularization of the injured region [33],
and new bone formation [44] when the hematoma was explanted to an ectopic site [45].

In addition to its osteogenic potential, a hematoma possesses angiogenic features [46]. The fibrin
network provides a microenvironment for various cellular functions, such as the migration, proliferation,
differentiation, and maturation of blood, endothelial, and stromal cells, as well as their secretion of
biomolecules. Cells and cytokines initiate the cascade of events essential for revascularization [44].

Indeed, microvessels around the hematoma were found on the rough CaP coating at 3 weeks after
subcutaneous implantation in mice (Figure 4c). The intensive vascular bed formed from pre-existing
blood vessels (angiogenesis) [13] in surrounding soft tissues after 4 weeks of observation (Figure 4d).

Angiogenic growth factors activate endothelial cell receptors in existing blood vessels.
Upon stimulation by proangiogenic gradients, activated cells release proteases that allow them
to escape from the blood vessel walls and to migrate, proliferate and form sprouts connecting
neighboring vessels. The tandem migration of endothelial cells forms cellular loops that become vessel
lumens. These sprouting networks develop stalk cells and a leading tip cell that guides the migration
of the developing vessel into surrounding tissue towards chemotactic gradients. The stalk cells, on the
other hand, elongate the vessel at a rate of several millimeters per day, as reviewed previously [13,47].
In this context, our in vivo experimental results indicate microvessel elongation with the help of stalk
and tip cell migration on the rough CaP surface (Figure 4g).

There are two time points for revascularization: an early time point on the order of days (at the
end of the inflammatory phase) and a later time point at approximately 3 weeks (the beginning of
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bone formation) [48]. Late angiogenesis is likely a critical reason for the delayed (after 13 weeks)
and inconsistent bone formation (0–3/16) by subcutaneous EO in mice implanted with CaP materials
without osteogenic cells or bone growth factors [43].

Unlike angiogenesis, de novo vasculogenesis involves endothelial precursor cell (angioblast)
migration to form new primary capillaries in response to gradients of angiogenic growth factors and
signaling molecules [49,50]. VEGF, bFGF, and PDGF represent the most prominent molecules that
stimulate angiogenesis and vasculogenesis [51]. In our study, some microvessels grew between the
spherulites in the surface valleys (Figure 4e,h), which suggests endothelial cell invasion into the rough
CaP relief or possibly de novo primary capillary formation, which was termed vasculogenesis by
Risau [52].

Numerous groups have found that macroporosity (pore size larger than 30–40 µm) greatly
influences the vascularization of ceramic scaffolds [53] through the secretion of proangiogenic factors
by cells in contact with CaP materials [53]. Similarly, the microarc rough CaP coating on titanium
substrates with comparable topographical elements and Ra = 2−4 µm [20] has an angiogenic effect
(Table S1; Figure 4).

Finally, vascularized tissue with adipose-like cells negative for hematoxylin and eosin covered
the rough CaP coating at 5 weeks after subcutaneous implantation (Figure 4f). Therefore, a question
regarding interactions between cells of fat origin and the CaP coating has arisen despite the poor (1 of
9 cases) EO features of hAMSCs not treated with recombinant BMP2 and subcutaneously implanted in
immunodeficient mice on porous CaP ceramic particles [54]. At 8 weeks, weak vascularization and EO
induced by mouse AMSCs immobilized on bone substitute material Bio-Oss were reported [55].

At the same time, adipose tissue itself as a scaffold for AMSC expansion resulted in ectopic bone
tissue formation through endochondral ossification at 8 weeks after in vivo implantation [56].

4.3. A Question Regarding in Vitro Models of hBMNC and AMSC Participation in Subcutaneous Angiogenesis
and EO

BM-MSCs and AMSCs are commonly used sources in skeletal tissue engineering in vitro
and in vivo [4]. AMSCs from subcutaneous fat in the perivascular compartment promote local
angiogenesis [17] and tissue formation as precursors of pericytes and other cells (adipocytes, osteoblasts,
chondrocytes, endothelial cells, myocytes, etc.) [18] and secrete multiple cytokines and chemokines [17].
At the same time, little is known about the tissue origin (e.g., fat, skin, blood) of cells that can initiate
angiogenesis and bone formation in subcutaneously implanted materials [1,9–11] without the addition
of osteogenic cells or bone growth factors.

Skin injury results in vasculogenesis [13] and the homing of blood progenitor cells [14] and
leukocytes from circulation to defects. On that basis, circulating stem/progenitor cells and pericytes are
possible candidates for osteoblasts under conditions of EO [16].

Nevertheless, poor subcutaneous vascularization and blood flow in implants compared with
muscle and kidney capsules [1] are obvious limitations for the massive participation of circulating
MSCs and pericytes in subcutaneous osteoinduction on the implant surface and/or bulk before blood
flow is restored.

Thus, in vitro modeling of the cellular and molecular crosstalk among the rough CaP material,
blood leukocytes and AMSCs was of great interest to determine the secretion of angiogenic molecules
by AMSCs and their osteogenic potential under both unstimulated and irritant-stimulated conditions.

There are some difficulties in murine MSC isolation, purification and cultivation [57]. Because of
these challenges and the clinical need for stem cells for wound and bone healing, hAMSCs were used
in this study.

Immune cells are vital modulators of inflammation, bone formation and angiogenesis [33].
After the development of a hematoma (Figure 4a–c), the migration of blood cells towards the implant
surface is one of the first steps in subcutaneous healing. We have studied the in vitro cellular and
molecular responses of hBMNCs on rough CaP coatings after a few days and after 14–21 days.



Materials 2020, 13, 4398 21 of 31

4.4. In Vitro Modeling of Cellular and Molecular Crosstalk between the Rough CaP Coating and hBMNCs

hBMNCs that migrate into the injured tissues are considered a source of mononuclear leukocytes,
including lymphocytes and monocytes [33], and circulating stem/progenitor cells [16]. Leukocytes
secrete various pro—and anti-inflammatory cytokines, chemokines, and growth factors to recruit
additional inflammatory cells, promote neovascularization, direct MSC migration and differentiation,
and mediate tissue remodeling [33] predominantly by promoting chronic inflammation within
2 weeks [10,43].

Indeed, hBMNCs in vitro generated a wide spectrum of inflammatory ILs, granulocyte and/or
monocyte/macrophage growth factors, angiogenic molecules and chemokines after 2 days of culture
(Table S1). Biomolecule secretion seemed to be depleted significantly at 14 days, especially for IL-2,
IL-5, IL-7, IL-15, IL-17, G-CSF, and VEGF, which were not detected at this timepoint (Table S2). These
findings assume long-term hBMNC activity with a changing array of secreted molecules, particularly
more decreased proinflammatory cytokine and chemokine production versus anti-inflammatory
IL-1Ra release, despite the potential diversity in the functional activity of hBMNCs collected
from different healthy volunteers. Our results correspond to the current view about immune
cells as regulators of inflammation/tissue repair switching [33], culminating in the emerging term
“osteoimmunology” [58,59].

The interactions of lymphocytes and monocytes/macrophages with MSCs have been actively
investigated [33,58,60,61]. Moreover, previous studies showed that CaP biomaterials can mediate
the pronounced secretion of chemokines and cytokines by immune cells [29]. Complex experiments
suggest measuring the secretion of proangiogenic factors by cells cultured in the presence of CaP
materials [53].

Our in vitro experiment clearly showed that culturing hBMNCs with CaP-coated titanium samples
markedly increased (3–100 times) the levels of secreted humoral factors (except IL-5, IL-7, and IL-1Ra)
over a long time frame (14 days). The hBMNCs cultured for 14 days in 3D conditions showed a
significant growth (relative to the 2-day culture) in the release of angiogenic molecules (VEGF, bFGF,
PDGF-BB) compared with those cultured on a plastic surface (Tables S1 and S2). The rough CaP coating
did not affect the expression of the tested lymphocytic determinants on CD45+CD3+ T cells (Tables S3
and S5) or the monocytic CD14 antigen on CD45+ leukocytes (Table S4).

It should be emphasized that the 7-fold increase in the apoptosis of nonadherent hBMNCs from
2–14 days of culture was enhanced by the rough CaP coating, which increased the signs of necrotic cell
death (Tables S3 and S5). Together with the abovementioned data on cytokine secretion and membrane
marker presentation, the data suggest the hyperactivation-dependent death of nonadherent T cells [62]
in contact for 14 days with CaP-coated samples.

Surprisingly, an increase in the extremely large percentage of CD73+ cells (from 62 to 67%, Table S4)
was observed upon contact with the rough CaP coating in the 3-day hBMNC culture. CD73 has been
reported to be a surface antigen of cytotoxic, helper and regulatory T cells [63]. Quast et al., (2017)
stated that CD73 expression on T cells is an important anti-inflammatory signal associated with the
reduced production of proinflammatory molecules (IL-3, IL-6, IL-13, IL-17, MIP-1α, MIP-1β) [64].
Apparently, the rough CaP coating may serve as a physicochemical switch for T cell activity from pro-
to anti-inflammatory, thus regulating angiogenesis and tissue regeneration.

In addition, CD73 is present on endothelial progenitors [65]. This study identified an increasing
number of features of stromal cells, not CD14+ macrophages, such as small fractions of CD90+ and
CD105+ hBMNCs, morphological signs of dividing cells (nucleoli), ALP-positive staining (3-day
culture), and osteoblast-like properties (21-day culture, alizarin red staining) with a fibroblast-like
shape in the angiogenic microenvironment (notable PDGF-BB levels) (Tables S1, S2 and S4; Figure 6).
Therefore, the number of CD73+ endothelial cells (angioblasts) and/or MSCs/osteoblasts among
hBMNCs increased by CaP-coated samples (Figure 6b,c) and accumulated over 14–21 days in the
in vitro model of subcutaneous injury was proposed. Most likely, the fraction of stromal cells
among circulating hBMNCs (Figure 6e) can serve as a source of circulating MSCs/progenitor cells
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as described previously [16]. Nevertheless, their paucity renders their contribution inappreciable
compared with hAMSCs, and hBMNC participation revolves primarily on the secretion of a spectrum
of inflammatory mediators.

4.5. In vitro Modeling of Cellular and Molecular Crosstalk between the Rough CaP Coating and hAMSCs

The in vitro and in vivo advantages of AMSCs over BM-MSCs mainly include enhanced
angiogenesis that may be negated by their lack of EO [66,67] and the prerequisite for osteogenic
differentiation by osteogenic priming [68] or gene manipulation [69] before transplantation and
implantation on different scaffolds.

A limited number of publications have shown delayed (after 8 weeks) subcutaneous EO by
unprimed hAMSCs on CaP (beta-tricalcium phosphate) material [70]. The question of whether
AMSCs are capable of osteoinduction remains unresolved, and additional investigations and models
are necessary.

Our in vitro experiment showed higher secretory activity of hAMSCs compared with hBMNCs
that strongly decreased (Table S2) and increased viability of 14-day stromal stem cells (Table S6) cultured
in the presence of the microarc rough CaP coating. The decreased secretion of angiogenic cytokines
by hAMSCs in contact with rough CaP-coated substrates may be one reason for the late vascular
bed formation on the implant surface at 4 weeks after transplantation (Figure 4d). The experimental
samples promoted enhanced but diffuse in vitro staining of hAMSCs with alizarin red S around the
CaP surface (Table 2; Figure 5a,b). Furthermore, the rough CaP coating did not influence hAMSC
division (Table 3) but decreased the number of CD73+CD90+CD105+ cells (Table S6), restrained their
motility (Table 4) and increased alizarin red staining (Figure 5e).

Such changes in hAMSCs favored their osteogenic differentiation after 21 days of contact
with CaP-coated substrates. Overall, osteoinduction significantly inhibits the release of cytokines,
chemokines, and growth factors by AMSCs, as confirmed by our results [71]. The absence of nodules
of ECM mineralization (calcium deposition) around CaP-coated substrates in hAMSC monocultures
(Figure 5a,b), in contrast to our previous results [20,27], emphasizes the variability in osteoinduction
initiated in vitro and in vivo by various sources of hAMSCs [66]. Together with the delayed blood vessel
formation (Figure 4), the data suggest that this model may induce poor subcutaneous EO that is not
comparable with the results of other techniques (intramuscular and kidney capsule transplantation) [1].

On the other hand, the microarc rough CaP coating was able to directly switch the fate of individual
hAMSCs from adipogenic to chondrogenic and osteogenic differentiation (Figure 5e,f); such fates
are strongly enhanced in vitro by humoral osteogenic supplements, such as β-glycerophosphate,
dexamethasone, and ascorbic acid [20].

In this context, vascularized fat tissue covering the CaP coating at approximately 5 weeks after
implantation (Figure 4f) retained good osteogenic potential as described previously [56] through
endochondral ossification at 8 weeks after in vivo implantation.

4.6. In Vitro Modeling of Cellular and Molecular Crosstalk among the Rough CaP Coating, hBMNCs
and hAMSCs

The immunomodulatory properties of AMSCs are not completely understood. MSCs attenuate
immune responses through their prevalent immunosuppressive capabilities stemming from the
secretion of various biologically active molecules with immunomodulatory effects [30]. They can
suppress [72] or not reduce [30] the proliferation of peripheral BMNCs in mixed allogeneic or xenogeneic
culture, as well as stimulate the activation and proliferation of resting T cells and generate regulatory
T cells [73].

The present study showed that 14 days after seeding, mixed hAMSC + hBMNC allogeneic cultures
were characterized by a significant increase in the secretion of most tested cytokines, growth factors,
angiogenic molecules, and osteomodulatory molecules, with a lesser effect on chemokines (eotaxin
only), compared with hBMNC or hAMSC monocultures (Table S2 and Table 5).
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Table 5. Significant increases in cytokines, growth factors and chemokines with angiogenic and
osteomodulatory potential in 14-day mixed hAMSC + hBMNC cultures.

Cytokines

Increased
Concentrations

(Table 3) vs.
hAMSC

Monoculture, Times

Angiogenic
Properties References

MSC, Osteoblast,
and Osteoclast
Network; Bone

Remodeling

References

Inflammatory interleukins and cytokines
IL-1 1.5 + [74] +/- [33,74]]

IL-1Ra 6 - [75] + [76]
IL-2 2 + [77] + [78]
IL-4 1.5 + [79] + [79]
IL-5 9 ? [80] ? [81]
IL-6 6 + [80,82] +/- [33]
IL-9 1.3 + [83] ? [84]

IL-10 1.8 - [80,85] + [33]
IL-12 1.6 - [80] + [78]
IL-13 6.5 + [86] + [33,78]
IL-17 1.4 + [82] +/- [33]
TNFα 1.3 +/- [87] +/- [33,74]
IFNγ 1.5 - [80,85] - [88]

Growth factors
G-CSF - + [89] + [89]

GM-CSF - + [90] + [91]
Angiogenic growth factors

bFGF 1.4 +
[51]

+ [92]
VEGF 1.3 + + [92]

PDGF-BB 1.4 + + [93]
Chemokines

Eotaxin
(CCL11) 4 +/- [94,95] + [96]

Generally, CaP-coated titanium specimens in mixed 3D culture maintained the costimulatory
effect of hBMNCs on the secretory activity of hAMSCs (PT < 0.05), with effects in some cases (IL-1Ra,
IL-17, bFGF, PDGF-BB, GM-CSF, MIP-1α) compared with mixed 2D culture (Table S2). The increased
concentration of the anti-inflammatory molecule IL-1Ra and the 3-fold decrease in the proinflammatory
molecule IL-6 in 3D mixed culture compared to 2D coculture indicate signal switching from acute
inflammation to regeneration pathways in the presence of the rough CaP coating (Table S2). Moreover,
there was enhanced production of ILs (PT < 0.05), including mediators with angiogenic properties,
and other angiogenic factors (VEGF, TNFα, G-CSF) (see references in Table 5) in 3D cocultures compared
with 3D hBMNC monoculture (Table S2).

The results are similar to the molecular basis of the initiation of vascularization and subcutis
restoration at 21 days after sample implantation in mice (Figure 4).

Coculturing cells in 2D and especially 3D (in the presence of CaP-coated samples) conditions
strongly increased the viability of both blood (from 17–69% to 97% of nonadherent live leukocytes)
and stromal (by 7–8%) cells (Tables S5 and S6). At the same time, hBMNCs in close contact with
either autologous fibroblast-like cells (Figure 6e) or allogeneic hAMSCs (data not shown) showed more
intense alizarin red staining in the cytoplasm and nucleus than freely adherent blood cells (Figure 6d).
These results were unusual for this dye, and the increased death of leukocytes adhered to stromal
cells has been proposed. MSCs have the capacity for immunomodulatory effects through paracrine
signals and/or cell-cell contact [97]. Perhaps, hAMSCs had the opposite influence effect in this context
(humoral stimulation of nonadherent hBMNCs and direct contact inhibition).

The number of CD3+CD4+ hBMNCs increased, and the immunophenotype of these cells changed
from proliferative (CD71: Transferrin receptor, a T lymphocyte mitogen [98]; CD25: IL-2 receptor)
to activated, as evidenced by the expression of differentiation (CD45RA naïve: CD45RO+ activated
T lymphocytes and/or T memory cells) and apoptosis (CD95) markers (Table S5). In this regard,
the obtained results emphasize T cell phenotype switching induced by hAMSCs alone, as described



Materials 2020, 13, 4398 24 of 31

previously [61], and in combination with CaP material but not the suppression or stimulation of
lymphocyte proliferation as described in Reference [72,73], respectively.

It is possible that MSCs altered the profile of naïve and effector T cells to induce a more
anti-inflammatory and regenerative phenotype [98]. Indeed, the presence of hBMNCs in hAMSC
culture for 14 days limited the expression of stem cell markers (CD73 and CD105; Table S6) and increased
the alizarin red staining of mineralization sites (Table 2). Stromal cell motility was diminished (Table 4)
and regulated by hBMNCs (Figure 7). CaP-coated specimens strongly enhanced the described changes
(Table S6, Tables 2 and 4; Figure 5) that were defined earlier as hAMSC osteogenic differentiation [27].
This is highly likely because osteoblasts differentiated from MSCs secrete organic bone matrix and
induce mineralization [99].

Overall, hBMNCs promoted the invasion of hAMSCs across the model vessel wall (Figure 8), which
highlights the significance of a chemotactic gradient induced by hBMNCs for hAMSC recruitment
and homing to ectopic sites of inflammation and/or regeneration. Proinflammatory (e.g., TNFα, IL-1,
IL-8, RANTES, MCP-1, and MIP-1α) and angiogenic (bFGF, PDGF, VEGF) molecules were secreted in
monocultures and mixed cultures (Tables S1, S2 and Table 5); these signals mediate the mobilization
and subsequent homing of MSCs [97,100], including in CaP-induced ectopic bone formation [29]. In the
presence of CaP-coated specimens, hBMNCs alone and hBMNCs+hAMSCs showed a marked increase
in the secretion of biomolecules compared to hAMSCs alone (Tables S1 and S2). Notably, BMNCs
can regulate AMSC motility, secretion and osteogenic features as a potential strategy for enhancing
reparative regeneration after the ectopic implantation of inorganic biomaterials.

5. Conclusions

Here, we provide clear in vitro evidence of the costimulatory effect of microarc rough CaP coating
and inflammatory BMNCs, mainly CD4+ T cells, on the recruitment of AMSCs and their secretion of
angiogenic and osteomodulatory molecules and osteogenic features. The main results are presented in
Figure 9.
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Long-term post-implantation hematoma caused by lateral excursion of the subcutis on the relief
CaP surface may play a key role in the vascularization and BMNC invasion required for enhanced
tissue regeneration. The infiltration of adipose tissue by T cells peaked earlier than that by macrophages
and resulted in the recruitment of additional infiltrating macrophages to enhance inflammation and
the reconstruction of soft tissue defects [77]. Our data emphasize the significance of the T cell status
for CaP implantation, which is not always successful at inducing subcutaneous vascularization and
bone formation without osteogenic cells or bone growth factors [9,12]. The in vitro coregulation of
local AMSC motility and invasion, secretion and osteogenic features by CaP coating and emigratory
BMNCs may be a model for enhancing ectopic vascularization and bone growth after the subcutaneous
implantation of CaP biomaterials.

MSCs have the capacity to home to and integrate into damaged tissue and exert immunomodulatory
effects that are regulated by the local inflammatory microenvironment [97]. Such capabilities are
essential for the development of suitable cellular therapeutic methods and clinical applications based
on MSCs. BM-MSCs are considered more capable of osteogenic differentiation than AMSCs and
show superior bone formation [5]. Different strategies to enhance AMSC capacities to match or
exceed those of BM-MSCs will improve future clinical applications [66]. Thus, preconditioning
and/or co-transplantation of hAMSCs with allogeneic hBMNCs may broaden their clinical potential in
applications related to post-implantation tissue repair and bone bioengineering caused by microarc
CaP coating.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/19/4398/s1,
Table S1. Secretory activity (pg/mL) of hBMNCs (106 live cells per 1.5 mL) after 2 days in culture without or with
the rough CaP coating, Me (Q1–Q3); Table S2. Secretory activity (pg/mL) of hBMNCs (106 live cells per 1.5 mL)
and hAMSCs (5 × 104 viable cells per 1.5 mL) after 14 days of monoculture or coculture without or with the rough
CaP coating, Me (Q1–Q3); Table S3. Immunophenotype and viability of hBMNCs after 2 days of culture without or
with the rough CaP coating, Me (Q1–Q3); Table S4. Immunophenotype of hBMNCs after 3 days of culture without
or with the rough CaP coating, Me (Q1–Q3); Table S5. Immunophenotype and viability of hBMNCs after 14 days
of culture without or with hAMSCs and/or the rough CaP coating, Me (Q1–Q3); Table S6. Immunophenotype and
viability of hAMSCs after 14 days of culture without or with hBMNCs and/or the rough CaP coating, Me (Q1–Q3).
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