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Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with unsatisfactory prognosis. The abnormal genes expression is significantly
associated with initiation and poor prognosis of HCC. The aim of the present study was to identify molecular biomarkers related to the
initiation and development of HCC via bioinformatics analysis, so as to provide a certain molecular mechanism for individualized
treatment of hepatocellular carcinoma.
Three datasets (GSE101685, GSE112790, and GSE121248) from the GEO database were used for the bioinformatics

analysis. Differentially expressed genes (DEGs) of HCC and normal liver samples were obtained using GEO2R online tools. Gene
ontology term and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis were conducted via the Database for
Annotation, Visualization, and Integrated Discovery online bioinformatics tool. The protein–protein interaction (PPI) network
was constructed by the Search Tool for the Retrieval of Interacting Genes database and hub genes were visualized by
Cytoscape. Survival analysis and RNA sequencing expression were conducted by UALCAN and Gene Expression Profiling
Interactive Analysis.
A total of 115 shared DEGs were identified, including 30 upregulated genes and 85 downregulated genes in HCC samples. P53

signaling pathway and cell cycle were the major enriched pathways for the upregulated DEGs whereas metabolism-related pathways
were the major enriched pathways for the downregulated DEGs. The PPI network was established with 105 nodes and 249 edges
and 3 significant modules were identified via molecular complex detection. Additionally, 17 candidate genes from these 3 modules
were significantly correlated with HCC patient survival and 15 of 17 genes exhibited high expression level in HCC samples. Moreover,
4 hub genes (CCNB1, CDK1, RRM2, BUB1B) were identified for further reanalysis of KEGG pathway, and enriched in 2 pathways,
the P53 signaling pathway and cell cycle pathway.
Overexpression of CCNB1, CDK1, RRM2, and BUB1B in HCC samples was correlated with poor survival in HCC patients, which

could be potential therapeutic targets for HCC.

Abbreviations: DAVID = Database for Annotation, Visualization, and Integrated Discovery, DEGs = differentially expressed
genes, FC = fold change, GO = gene ontology, HCC = hepatocellular carcinoma, KEGG = Kyoto Encyclopedia of Gene and
Genome, MCODE = molecular complex detection, PPI = protein–protein interaction, STRING = Search Tool for the Retrieval of
Interacting Genes, TCGA = The Cancer Genome Atlas.
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1. Introduction

Currently, the incidence and mortality rates of cancer overall are
declining year by year, whereas for liver cancer, both incidence
and mortality rates are increasing.[1] Hepatocellular carcinoma
(HCC) is the most common type of primary liver cancer.[2]

Although great progress has been made in the treatment of HCC
in recent years, the prognosis of HCC remains unsatisfactory. It is
estimated that 5 million deaths worldwide between 2015 and
2030 will be attributable to HCC due to its difficulty in early
diagnosis, relapse, and metastasis.[2] Accumulating evidence
indicated that the abnormal genes expression is associated with
initiation and poor prognosis of HCC,[3,4] and numerous studies
have been performed to search for suitable biomarkers of early
detection and prognosis.[5,6] However, limit number of biomark-
ers are used in clinical practice.[7] Therefore, it is especially
important to explore more reliable biomarkers for improving the
early detection, prognosis prediction, and better understanding
the potential mechanism of HCC.
In the last decades, genome-wide molecular profiling has

played crucial roles in quickly detecting differentially expressed
genes that were involved in the tumorigenesis and progression
and has proved to be a reliable technique to identify core
genes.[8,9] In this study, we aim to identify molecular biomarkers
related to the initiation and development of hepatocellular
carcinoma via bioinformatics analysis, so as to provide a certain
molecular mechanism for individualized treatment of hepatocel-
lular carcinoma in the future.
2. Methods

2.1. Microarray data

In this study, we obtained the 3 independent gene expression
profiles of HCC (GSE101685, GSE112790, and GSE121248)
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). All
of these 3microarray datawere basedonGPL570Platforms ([HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array),
which included 24 HCC samples and 8 normal liver samples, 183
HCC samples, and 15 normal liver samples and 70 HCC samples
and37normal liver samples, respectively.Ethical approvalwasnot
necessary as this study is bioinformatics analysis.
2.2. Identification of differentially expressed genes (DEGs)

GEO2R online tools[10] were used to identify the DEGs between
HCC samples and normal liver samples. The genes with jlogFC
(fold change)j>2 and adjust P value< .05 were considered as the
DEGs. Venny online software (https://bioinfogp.cnb.csic.es/tools/
venny/) was used to identify the shared upregulated and
downregulated DEGs among the 3 datasets.
2.3. Gene ontology term and Kyoto Encyclopedia of Gene
and Genome (KEGG) pathway analysis

To investigate the function of commonly DEGs, the Database for
Annotation, Visualization, and Integrated Discovery online
bioinformatics tool (DAVID, https://david.ncifcrf.gov/) were
used to conduct functional and pathway enrichment analysis.
GO analysis, including the biological process, cellular compo-
nent, and molecular function, and KEGG pathway analysis, were
performed for the shared DEGs via DAVID. P value less than .05
was considered statistical significance.
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2.4. Protein–protein interaction (PPI) network and module
analysis

To construct PPI network for the commonly DEGs, an online
biological database, the Search Tool for the Retrieval of
Interacting Genes (STRING; https://string-db.org/), was used.
Then, the potential correlation between these DEGs was
evaluated by STRING app in Cytoscape.[11] Furthermore, the
modules of the PPI network were explored by Molecular
Complex Detection (MCODE) app in Cytoscape (degree cutoff
=2, K-Core =4, Depth =100, and node score cutoff =0.2).
2.5. Survival analysis and RNA sequencing expression

The analysis of patient survival of the hub genes was performed
via UALCAN (http://ualcan.path.uab.edu/), a comprehensive,
widely used online bioinformatics tool, which provide graphs and
plots depicting gene expression and patient survival information
based on The Cancer Genome Atlas (TCGA) database and
MET500 transcriptome sequencing.[12] To validate these hub
genes, Gene Expression Profiling Interactive Analysis (GEPIA,
http://gepia.cancer-pku.cn/) was applied to assess the RNA
sequencing expression of candidate genes from the TCGA
database and Genotype-Tissue Expression Projects.[13]
3. Results

3.1. Identification of DEGs in HCC

In this study, there were 277 HCC samples and 60 normal liver
samples. By using GEO2R online tools, 459, 325, and 145 DEGs
were extracted from GSE101685, GSE112790, and GSE121248,
respectively. Then, Venny online software was used to identify
the shared upregulated and downregulated DEGs among the 3
datasets. As shown in Fig. 1 and Table 1, a total of 115 shared
DEGs were identified, including 30 upregulated genes and 85
downregulated genes in HCC samples.

3.2. Functional enrichment analysis of DEGs genes

To further demonstrate the biological functions of the DEGs,
Gene ontology in DAVID software was performed. As shown in
Table 2, for biological process, the upregulated DEGs were
mainly involved in mitotic nuclear division, regulation of
attachment of spindle microtubules to kinetochore, G2/M
transition of mitotic cell cycle, negative regulation of ubiqui-
tin–protein ligase activity involved in mitotic cell cycle, and
positive regulation of ubiquitin–protein ligase activity involved in
regulation of mitotic cell cycle. Whereas the downregulated
DEGs were significantly involved in epoxygenase P450 pathway,
oxidation-reduction process, exogenous drug catabolic process,
xenobiotic metabolic process, and monocarboxylic acid meta-
bolic process. For cellular component, the upregulated DEGs
were mainly involved in midbody, cytoplasm, mitotic spindle,
centralspindlin complex, and cytosol. Whereas the downregu-
lated DEGs were significantly enriched in extracellular region,
organelle membrane, insulin-like growth factor ternary complex,
extracellular space, and insulin-like growth factor binding
protein complex. About molecular function, the upregulated
DEGs were mainly involved in protein binding, histone kinase
activity, protein kinase activity, and protein serine/threonine
kinase. Whereas the downregulated DEGs were significantly
enriched in heme binding, iron ion binding, oxidoreductase

https://www.ncbi.nlm.nih.gov/geo/
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
https://david.ncifcrf.gov/
https://string-db.org/
http://ualcan.path.uab.edu/
http://gepia.cancer-pku.cn/


Figure 1. Identification of common DEGs in 3 gene expression datasets (GSE101685, GSE112790, and GSE121248). A, Thirty upregulated DEGs in the 3
datasets. B, Eighty-five downregulated DEGs in the 3 datasets. DEGs = differentially expressed genes.
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activity, acting on paired donors, with incorporation or reduction
of molecular oxygen, arachidonic acid epoxygenase activity and
oxidoreductase activity, acting on paired donors, with incorpo-
ration or reduction of molecular oxygen, reduced flavin or
flavoprotein as 1 donor, and incorporation of 1 atom of oxygen.
KEGG analysis indicated that the upregulated DEGs were

significantly enriched in P53 signaling pathway and cell cycle.
While downregulated DEGs were mainly involved in retinol
metabolism, caffeine metabolism, and drug metabolism—cyto-
chrome P450, etc (Table 3).
3.3. PPI network and module analysis

To investigate the relationship between the identified DEGs in the
HCC, we constructed the PPI network via online database
Table 1

All 115 differentially expressed genes (DGEs) were identified fro
downregulated genes in the hepatocellular carcinoma tissues, comp

DEGs

Upregulated ROBO1 CRNDE RBM24 IGF2BP3 CAP2 HMMR
CDKN3 RACGAP1 PRC1 CCNB1 ECT2 BUB1

Downregulated LINC01093 CNDP1 CXCL14 KCNN2 FCN3 SLC
THRSP CYP39A1 C9 C7 FAM134B CXCL12
DNASE1L3 BBOX1 CYP2B6 CYP2A6 CYP2B7
LIFR LPA ADRA1A CLRN3 ADGRG7 AKR1D1
CYP2C9 CYP2A7 CXCL2 CNTN3 TMEM27 M
SRD5A2 IDO2 FLJ22763 EGR1 FOLH1B FOS

3

STRING and displayed it via Cytoscape software.[11] As shown
in Fig. 2A, there were 105 nodes and 249 edges. In addition, 3
significant modules were identified via MCODE. All of the 15
nodes were upregulated DEGs in the module 1 (Fig. 2B).Whereas
in the module 2, the other 8 nodes were downregulated DEGs
expect SPP1 (Fig. 2C). In the module 3, all of the 6 nodes were
downregulated DEGs (Fig. 2D). Interestingly, most of the
upregulated genes have the highest connectivity with each other
(Fig. 2B).

3.4. Survival analysis of hub genes

UALCAN was utilized to identify 30 hub genes survival data
from 3 modules mentioned above. As shown in Fig. 3, 17
candidate genes were significantly correlated with HCC patient
m 3 profile datasets, including 30 upregulated genes and 85
ared with normal liver tissues.

Genes name

SULT1C2 CDK1 COL15A1 ACSL4 TOP2A SPP1 DTL CTHRC1 PEG10 DUXAP10
B PBK RRM2 AKR1B10 ANLN NEK2 ASPM GPC3 SPINK1
O1B3 CYP1A2 OIT3 BCO2 CLEC1B FCN2 HAMP SLC22A1 DCN ADH4 ESR1 CLEC4M
TTC36 CLEC4G LOC101928916///NNMT GYS2 CRHBP GBA3 LINC00844 CYP26A1
P///CYP2B6 SLC25A47 HGFAC BCHE SRPX MT1M HHIP GLYAT HAO2 HGF NAT2
IL1RAP PDGFRA GPM6A ALDOB IGF1 GHR APOF CYP4A22///CYP4A11 C3P1
T1F PLAC8 KMO FOS IGFBP3 LCAT PGLYRP2 GLS2 ACSM3 SERPINE1 MFSD2A
B IGFALS SULT1E1
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Table 3

KEGG pathway analysis of DEGs in hepatocellular carcinoma.

Pathway ID Name Count P value Genes

Upregulated DEGs
hsa04115 P53 signaling pathway 3 4.0E-3 CCNB1, CDK1, RRM2
hsa04110 Cell cycle 3 1.3E-2 CCNB1, CDK1, BUB1B

Downregulated DEGs
hsa00830 Retinol metabolism 6 7.5E-5 CYP2B6, CYP2C9, ADH4, CYP26A1, CYP2A6,

CYP1A2
hsa00232 Caffeine metabolism 3 4.7E-4 NAT2, CYP2A6, CYP1A2
hsa00982 Drug metabolism—cytochrome P450 5 1.2E-3 CYP2B6, CYP2C9, ADH4, CYP2A6, CYP1A2
hsa00980 Metabolism of xenobiotics by cytochrome P450 5 1.7E-3 CYP2B6, CYP2C9, ADH4, CYP2A6, CYP1A2
hsa05204 Chemical carcinogenesis 5 2.2E-3 CYP2C9, ADH4, NAT2, CYP2A6, CYP1A2
hsa00140 Steroid hormone biosynthesis 4 7.5E-3 SULT1E1, SRD5A2, CYP1A2, AKR1D1
hsa01100 Metabolic pathways 16 1.6E-2 CNDP1, CYP2B6, CYP2C9, NAT2, ALDOB, IDO2,

CYP26A1, KMO, CYP1A2, ACSM3, GLS2,
GBA3, ADH4, HAO2, CYP2A6, AKR1D1

hsa05020 Prion diseases 3 2.3E-2 EGR1, C7, C9
hsa04060 Cytokine–cytokine receptor interaction 6 2.6E-2 CXCL14, CXCL2, IL1RAP, LIFR, CXCL12, GHR
hsa00380 Tryptophan metabolism 3 3.1E-2 IDO2, KMO, CYP1A2

Table 2

The top 5 pathways in gene ontology analysis of DEGs in hepatocellular carcinoma.

Category Term Count P value

Upregulated DEGs
GOTERM_BP_DIRECT GO:0007067–Mitotic nuclear division 6 4.2E-5
GOTERM_BP_DIRECT GO:0051988–Regulation of attachment of spindle microtubules to kinetochore 3 5.2E-5
GOTERM_BP_DIRECT GO:0000086–G2/M transition of mitotic cell cycle 4 1.3E-3
GOTERM_BP_DIRECT GO:0051436–Negative regulation of ubiquitin–protein ligase activity involved in mitotic cell cycle 3 5.8E-3
GOTERM_BP_DIRECT GO:0051437–Positive regulation of ubiquitin–protein ligase activity involved in regulation of mitotic

cell cycle
3 6.6E-3

GOTERM_CC_DIRECT GO:0030496–Midbody 6 1.2E-6
GOTERM_CC_DIRECT GO:0005737–Cytoplasm 19 4.6E-5
GOTERM_CC_DIRECT GO:0072686–Mitotic spindle 3 1.7E-3
GOTERM_CC_DIRECT GO:0097149–Centralspindlin complex 2 4.4E-3
GOTERM_CC_DIRECT GO:0005829–Cytosol 12 5.2E-3
GOTERM_MF_DIRECT GO:0005515–Protein binding 22 5.5E-3
GOTERM_MF_DIRECT GO:0035173–Histone kinase activity 2 6.4E-3
GOTERM_MF_DIRECT GO:0004672–Protein kinase activity 4 1.9E-2
GOTERM_MF_DIRECT GO:0004674–Protein serine/threonine kinase 4 2.2E-2

Downregulated DEGs
GOTERM_BP_DIRECT GO:0019373–Epoxygenase P450 pathway 5 1.1E-6
GOTERM_BP_DIRECT GO:0055114–Oxidation-reduction process 14 2.3E-6
GOTERM_BP_DIRECT GO:0042738–Exogenous drug catabolic process 4 1.9E-5
GOTERM_BP_DIRECT GO:0006805–Xenobiotic metabolic process 6 2.7E-5
GOTERM_BP_DIRECT GO:0032787–Monocarboxylic acid metabolic process 3 6.0E-5
GOTERM_CC_DIRECT GO:0005576–Extracellular region 25 1.8E-8
GOTERM_CC_DIRECT GO:0031090–Organelle membrane 8 7.4E-8
GOTERM_CC_DIRECT GO:0042567–Insulin-like growth factor ternary complex 3 1.0E-4
GOTERM_CC_DIRECT GO:0005615–Extracellular space 15 1.2E-3
GOTERM_CC_DIRECT GO:0016942–Insulin-like growth factor binding protein complex 2 1.2E-2
GOTERM_MF_DIRECT GO:0020037–Heme binding 8 1.9E-6
GOTERM_MF_DIRECT GO:0005506–Iron ion binding 8 3.9E-6
GOTERM_MF_DIRECT GO:0016705–Oxidoreductase activity, acting on paired donors, with incorporation or reduction of

molecular oxygen
6 4.3E-6

GOTERM_MF_DIRECT GO:0008392–Arachidonic acid epoxygenase activity 4 3.3E-5
GOTERM_MF_DIRECT GO:0016712–Oxidoreductase activity, acting on paired donors, with incorporation or reduction of

molecular oxygen, reduced flavin or flavoprotein as 1 donor, and incorporation of 1 atom of
oxygen

4 3.3E-5
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Figure 3. Overall survival validation of hub genes in HCC patients. HCC = hepatocellular carcinoma.

Figure 2. Protein–protein interaction (PPI) network construction and 3 significant modules. A, PPI relationships among common DEGs from the 3 datasets of GEO.
B, Module 1. C, Module 2. D, Module 3. Red nodes represent upregulated DEGs and green nodes represent downregulated DEGs.
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Table 4

Reanalysis of 17 selected genes for pathway enrichment.

Pathway ID Name Count P value Genes

hsa04115 P53 signaling pathway 3 1.3E-3 CCNB1, CDK1, RRM2
hsa04110 Cell cycle 3 4.7E-3 CCNB1, CDK1, BUB1B

Figure 4. Relative expression of hub genes in HCC samples and normal liver samples. HCC = hepatocellular carcinoma.

Sun et al. Medicine (2020) 99:32 Medicine
survival. Briefly, 14 of the 15 genes in module 1 experienced poor
survival; no significant difference between PRC1 expression and
survival in HCC patients. In the module 2, HCC patients with
higher SPP1 or lower ESR1 expression exhibited worse survival.
However, the upregulation of SERPINE1 gene is correlated with
poor survival, which is contrary to the results of the microarray
data. The other 6 genes had no significant. In the module 3, the
upregulation of CYP2C9 gene is correlated with better survival,
whereas the other 5 genes had no significant. Next, GEPIA was
applied to assess the RNA sequencing expression of 17 candidate
genes. Results demonstrated that 15 of 17 genes exhibited high
expression level in HCC samples and 2 of 17 genes reflected low
expression level in HCC samples compared with normal liver
samples (Fig. 4), which is consistent with the microarray array
data.

3.5. Reanalysis of 17 selected genes for pathway
enrichment

To investigate the possible pathway of these 17 hub genes,
DAVID software was used to reanalyze the pathway enrichment.
As shown in Table 4 and Fig. 5, 4 genes were enriched in 2
pathways, the P53 signaling pathway and cell cycle (all P value
less than.05).

4. Discussion

In the present study, a total of 115 shared DEGs were identified
from 3 independent gene expression profiles via bioinformatics
analysis, including 30 upregulated genes and 85 downregulated
genes in HCC samples. Upregulated DEGs were mainly enriched
6

in mitotic nuclear division and cell cycle related functional terms,
whereas downregulated DEGs were mainly enriched in multiple
metabolic-related functional terms. Among these DEGs, 3
modules and 30 vital genes were screened from the PPI network
complex. In addition, through survival analysis of these 30 vital
genes, we found that 15 upregulated genes and 2 downregulated
genes were significantly associated with worse survival of HCC
patients. Furthermore, reanalysis of 17 selected genes for KEGG
pathway enrichment clarified that 4 hub genes (CCNB1, cyclin-
dependent kinases [CDK1], RRM2, BUB1B) enriched in P53
signaling pathway and cell cycle, and all of these 4 hub genes were
upregulated in the HCC samples compared with normal liver
samples, indicating the “driver” function of these genes in HCC
development.
Previous studies indicated that cell cycle dysregulation is a

hallmark of cancer,[14] and target cell cycle could be an effective
therapeutic strategy in the treatment of cancer. Increasing
evidence indicated that cell cycle-related genes such as CCNB1,
CDK1, and BUB1B, which were also screened in this study, are
involved in the initiation and progression of cancers.[15–18]

CCNB1 is overexpressed in many cancers and correlated with
worse survival such as pancreatic cancer,[19] breast cancer,[20]

and prostate cancer[21] and could promote the G2/M transition of



Figure 5. Reanalysis of 17 hub genes via KEGG pathway enrichment. A, CCNB1, CDK1, and BUB1B are enriched in the Cell cycle. B, CCNB1, CDK1, and RRM2
are enriched in the P53 signaling pathway.
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the cell cycle by regulating and forming a complex with
CDK1.[22] The transcription factor p53, located on chromosome
17p, plays an essential role in regulating cell cycle, DNA repair,
and apoptosis and acts as a powerful tumor suppressor.[23,24]

However, in most tumors, p53 gene is inactivated by mutation or
degradation of its associated pathway.[24] Zhang et al[25] have
demonstrated that CCNB1 silencing could suppress pancreatic
cancer cell proliferation and promote apoptosis through
activating the p53 signaling pathway. Chai et al[26] have reported
that FOXM1 could promote proliferation of HCC cells via
transcriptional activation of CCNB1. These reports are in line
with our present demonstration that CCNB1 was overexpressed
in HCC samples, which was correlated with worse survival of
HCC patients.
Accumulating studies demonstrated that CDKs play essential

roles in the regulation of cell cycle.[27] A recent study indicated
that karyopherin subunit-a 2 could promote cell proliferation
and induce cell cycle arrest via upregulating CDK1 and CCNB2
in HCC.[28] Another report revealed that miR-582–5p inhibited
the HCC progression in vitro via targeting CDK1 and AKT3.[29]

In other tumors, suppressing the expression of CDK1 could
significantly inhibit cell proliferation and induce apoptosis in
breast cancer.[30] In addition, overexpression of miR-31–5p
significantly inhibited renal cell carcinoma progression in vitro
through targeting CDK1.[31] Similar association was identified in
the present study that CDK1 was upregulated in HCC and higher
expression of CDK1 correlated with worse survival of HCC
patients. Taken together, these data indicated that CDK1may act
as a potential biomarker for predicting the survival in HCC.
Mitotic checkpoint serine/threonine kinase B (BUB1B), known

also as BubR1, encodes a spindle checkpoint-related kinase and
plays an important role in the proper chromosome segrega-
tion.[32] Accumulating data reveal that BUB1B acts as an essential
role in the development and progression of many forms of cancer
including breast,[33] prostate,[34] lung,[35] and liver cancer.[36] A
recent investigation revealed that high level of BUB1B was
associated with worse survival in HCC patients,[36] which is in
agreement with our present study.
Human ribonucleotide reductase (RR) is the rate-limiting

enzyme catalyzing the conversion of ribonucleoside diphos-
phates to deoxyribonucleoside diphosphates in cells. RR is
composed of 2 identical subunits, RRM1 and RRM2. The
7

expression level of RRM1 is relatively stable during the course
of cell cycle, while the expression of RRM2 only occurred in
the late G1 and early S phase and functioned as an essential
role in DNA synthesis and repair.[37,38] Therefore, RRM2 is
identified as an important anticancer target.[39] Several
investigations demonstrated that the hepatitis B virus (HBV)
could induce RRM2 expression through activating DNA
damage response and targeting RRM2 could effectively inhibit
HBV replication.[40,41] These studies indicated that RRM2 may
be identified as a therapeutic target in HBV-related HCC.
Indeed, upregulation of RRM2 was correlated with worse
survival in HCC,[42] which is in line with our study. Taken
together, these data indicated that RRM2 may act as a
potential therapeutic target for HCC.
In brief, our bioinformatics analysis identified 4 hub genes

(CCNB1, CDK1, RRM2, BUB1B) which were correlated with
poor survival in HCC patients. However, the specific mechanism
of these hub genes involved in regulating the occurrence,
development, and prognosis of HCC still needs to be further
explored.
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