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MicroRNAs (miRNAs) are an abundant class of small non-coding RNA molecules 
(~22  nt) that can repress gene expression. Deregulation of certain miRNAs is widely 
recognized as a robust biomarker for many neoplasms, as well as an important player in 
tumorigenesis and the establishment of tumoral microenvironments. The downregulation 
of specific miRNAs in tumors has been exploited as a mechanism to provide selectivity 
to oncolytic viruses or gene-based therapies. miRNA response elements recognizing 
miRNAs expressed in specific tissues, but downregulated in tumors, have been inserted 
into the 3′UTR of viral genes to promote the degradation of these viral mRNAs in healthy 
tissue, but not in tumor cells. Consequently, oncolytic virotherapy-associated toxicities 
were diminished, while therapeutic activity in tumor cells was preserved. However, viral 
infections themselves can modulate the miRNome of the host cell, and such miRNA 
changes under infection impact the normal viral lifecycle. Thus, there is a miRNA- 
mediated interplay between virus and host cell, affecting both viral and cellular activities. 
Moreover, the outcome of such interactions may be cell type or condition specific, 
suggesting that the impact on normal and tumoral cells may differ. Here, we provide an 
insight into the latest developments in miRNA-based viral engineering for cancer therapy, 
following the most recent discoveries in miRNA biology. Furthermore, we report on the 
relevance of miRNAs in virus–host cell interaction, and how such knowledge can be 
exploited to improve the control of viral activity in tumor cells.
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inTRODUCTiOn

MicroRNAs (miRNAs) are small non-coding RNA molecules (~22 nt) that can negatively regulate 
the expression of large networks of genes (1). Not surprisingly, miRNA dysregulation impacts virtu-
ally all cancer-related processes (proliferation, cell death, migration, and cell cycle, among many 
others). Such dysregulation provides clear hallmark miRNA signatures that can distinguish between 
normal cells and the tumor cells of many different types of malignancy (1).

In this regard, therapeutic strategies rely either on the reintroduction of the individual miRNAs 
involved in tumor suppression functions, such as miR-34 (2), or on reducing oncogenic miRNAs 
with antisense oligonucleotides—“antagomirs” (3). Interestingly, Brown and coworkers exploited 
the differences in miRNA expression between tissues and proposed a novel mechanism to control 
transgene expression, based on the differential expression of miR-142 among lineages of hemat-
opoietic cells (4). Selectivity was achieved by the introduction of engineered target sites, or miRNA 
response elements (MREs). Later, oncolytic virotherapy also incorporated MREs to control the 
expression of viral or suicide genes. MREs can attenuate oncolytic viruses in non-tumoral tissue 

http://www.frontiersin.org/Oncology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2017.00142&domain=pdf&date_stamp=2017-07-04
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
https://doi.org/10.3389/fonc.2017.00142
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:cfillat@clinic.ub.es
https://doi.org/10.3389/fonc.2017.00142
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00142/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00142/abstract
http://loop.frontiersin.org/people/348335
http://loop.frontiersin.org/people/441851
http://loop.frontiersin.org/people/427558


2

Bofill-De Ros et al. miRNAs in Oncolytic Viruses

Frontiers in Oncology | www.frontiersin.org July 2017 | Volume 7 | Article 142

and therefore avoid the undesired toxicity associated with viral 
tropism when administered systemically or locoregionally (5–8). 
Posttranscriptional targeting with MREs could be complemented 
with transcriptional or transductional targeting to enhance the 
selectivity of oncolytic viruses.

The study of viral miRNAs and host responses has also shown 
the relevance of miRNAs in the regulation of viral replication. 
There are, in fact, several examples of how viral infection modu-
lates cellular miRNome, with consequences on both viral activity 
and host cell functionality.

This review discusses the latest developments with respect to 
fine-tuning oncolytic viruses, based on the viral engineering of 
MREs, and looks at the functional consequences of the interplay 
between miRNAs and viruses.

THe MeCHAniSM OF ACTiOn OF miRnAs

Most miRNAs are transcribed from miRNA genes and follow a 
canonical miRNA biogenesis pathway. miRNAs are transcribed 
to primary miRNA transcripts (pri-miRNAs) that are processed 
by the RNase III enzyme Drosha in the nucleus to generate 
precursor miRNA that are exported by Exportin-5 to the cyto-
plasm. There they are recognized and cleaved by another RNase 
III enzyme, Dicer, to give rise to ~22 nt miRNA duplexes. They 
are then loaded onto the RISC complex, where the Ago proteins 
will help with the unwinding of the miRNA duplexes to form a 
functional miRNA-induced silencing complex that will recognize 
target mRNAs and interfere with their expression. Target mRNA 
recognition will be based on partial complementarity of miRNA 
sequences and the 3′UTR of the mRNAs (9).

miRNAs modulate gene expression through mechanisms of 
translational inhibition, mostly at the initiation step, and mRNA 
destabilization as a consequence of mRNA deadenylation and 
mRNA decay. These mechanisms may occur sequentially, with 
mRNA destabilization as the dominant effect. In consequence, 
the repression of miRNAs target genes can be evidenced by deple-
tion of the mRNA content (10, 11).

COnTROLLinG viRAL RePLiCATiOn 
THROUGH MRes

The selectivity of oncolytic viruses can be determined through 
the introduction of MREs, preferentially in the 3′UTR of viral 
genes (12). Noticeably, MREs can be inserted into virtually any 
viral mRNA. Comparable efficiencies have been observed with 
MREs targeting early phase transcription factors or late phase 
capsid structural proteins. Examples of the elements targeted 
are ICP4, ICP27, and glycoprotein H in herpes simplex virus 
(13–15), E1A and L5 (fiber) in adenovirus (15, 16), or M and L 
in vesicular stomatitis virus (17, 18). Interestingly, targeting early 
phase proteins reduces toxicity derived from its own expression 
and that of downstream genes, offering a greater safety margin 
than when targeting late phase proteins (16). However, the use 
of MREs to target both genomic and messenger RNA in RNA 
viruses showed efficient repression of mRNAs only. The efficacy 
of miRNA repression in genomic RNAs is reduced due to 

secondary structures and scaffold proteins that protect the viral 
genome (5, 19, 20).

The base pairing of the miRNA and target genes usually 
displays partial complementarity, restricted to nucleotides 2–7 of 
the miRNA, and known as the “seed” sequence (21, 22). However, 
partial complementarity can only mediate translational repression 
and mRNA decay (10, 23–25). To achieve a fast and robust effect on 
the control of viral replication, MREs must be designed to trigger 
direct cleavage in the viral mRNA. Although all human Argonaute 
proteins (Ago1–4) are capable of promoting a translational repres-
sion pathway, only Ago2 has endonucleolytic activity (26, 27). In 
order to trigger Ago2-mediated direct cleavage, the base-paring 
miRNA:MRE between nucleotides 10 and 11 must be complete 
(23). This mechanism of action exploits the same mechanisms 
as RNAi silencing (shRNA and siRNA) (28). The factors that can 
influence the efficacy of the MRE include the expression levels and 
profiles of Ago proteins between tissues (29) and the modulation 
of their activity by covalent modification (30, 31).

Elements of the design of MRE that contribute to its efficacy 
include the number of target sites, the distance between target 
sites, the sequence composition and local RNA structure sur-
rounding its location in the 3′UTR (Figure 1). The optimal design 
for MRE should include a range of target sites, usually from 2  
to 8, allowing a dose-dependent response to miRNA concen-
tration (32), and a seed separation of between 13 and 35 nt to 
avoid steric hindrance (33). Access to target sites can usually be 
estimated through the secondary structure, with the minimum 
free energy (mfe) and AU-richness surrounding the site (34–36). 
Moreover, sites for RNA-binding proteins should be avoided 
since they may also mask MREs and hamper recognition. Hence 
MRE engineering might benefit from a computed selection of 
spacers, to promote optimal separation and secondary structure.

The miRNAs considered as regulators to bind to MREs are 
selected from those that present abundant expression in normal 
tissue, but a significantly decreased expression in tumors, such as 
the ubiquitously expressed miRNA let-7 family (18, 37, 38). Other 
studies have exploited tissue-specific miRNAs. Some examples 
of tissue-specific MREs are miR-122 for liver (6, 7), miR-7 for 
brain (39), miR-148a for pancreas (39, 40), and miR-192 for heart 
(41). In this regard, miRNA belonging to the same family can be 
used to increase the efficacy of MRE. The extensive homology 
presented by miRNA of the same family allows sub-optimal rec-
ognition of the MRE (Figure 1). An increased level of complexity 
in the selection of miRNA candidates arises with the design of 
MREs for multiple organs detargeting, usually non-tumoral cells 
surrounding the tumor and tissues with native viral tropism (42). 
This can be achieved by using miRNAs present in both organs, 
or by combining multiple miRNAs (40). In this context, the 
extensive miRNome data in The Cancer Genome Atlas (https://
cancergenome.nih.gov/) for 33 types of cancer and normal tissue 
constitutes an invaluable resource for the selection of candidate 
miRNAs (43). Of special consideration when seeking to fine-
tune oncolytic virus activity is the diversity of cell types in tissue, 
especially in approaches using locoregional administration. 
Here, MREs could also provide the desired level of selectivity, for 
example, miR-375 has been described almost exclusively in the 
beta and alpha cells present in pancreatic islets (44, 45).
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FiGURe 1 | MicroRNA response element (MRE) design for an optimal selectivity of oncolytic viruses. The design of MRE in oncolytic virotherapy has to take into 
account several elements regarding the biology of the virus and the microRNA (miRNA) regulatory pathways. Although all viral genes with 3′UTR are susceptible to 
be targeted though MRE (1), it is of notice the toxicity of some viral proteins. An adequate location in the 3′UTR (2) together with a sufficient miRNA expression (3) 
will contribute to the target recognition. Perfect miRNA–MRE complementarity will trigger Ago2 slicing activity (4); however, imperfect base-paring with other miRNA 
family members will also contribute to the regulation though translational repression.
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An aspect of MRE design, aside from selectivity, that has yet 
to be tested for oncolytic viruses, is the incorporation of MREs 
as miRNA sponges or decoys. In other areas of gene therapy, 
sponge MREs have been used to reduce the effective amount 
of miRNA content (46–48). These particular MRE designs are 
characterized by a bulge that impairs the slicing activity of Ago2, 
while promoting miRNA degradation by way of trimming and 
tailoring (49). Sponge MREs could be incorporated into onco-
lytic viruses to downregulate the miRNAs involved in tumor 
progression (50), increase viral replication, or attenuate host 
antiviral response (51).

HOST miRnAs ReSPOnSe TO viRAL 
inFeCTiOn

When a virus infects a cell, a host–virus relationship is estab-
lished, creating an intricate network of interactions characterized 
by the massive reprogramming of cellular gene expression. The 

expression profile of cellular mRNAs and miRNAs is affected 
during viral infection (52, 53). Changes in the host miRNA profile 
have been reported after infection with adenoviruses (54–56), 
influenza viruses (57, 58), HIV-1 (59), Epstein–Barr virus (EBV) 
(60, 61), human cytomegalovirus (HCMV) (62), human herpes 
virus 1 (HSV-1) (63), and respiratory syncytial virus (64).

By merely observing miRNA profile change, it is difficult to 
discern whether miRNA deregulation is the consequence of a 
host-immune response to the infection or if it is triggered by the 
virus to favor replication. Comparative studies of the expression 
profiles of different viral infections and the analysis of miRNA 
targets can help elucidate the significance of deregulation.

The miRNA profile after adenoviral infection has been studied 
for adenovirus type 3 in human laryngeal epithelial cells (56), 
adenovirus type 2 (Ad2) in human primary cells (54), and, more 
recently, for adenovirus type 5 (Ad5) in prostate cancer cells 
(55). Ad2 infection studies showed that a correlation between 
the progression of the infectious cycle and the level of miRNA 
deregulation could be established. Changes in the profile extend 
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FiGURe 2 | Host microRNA (miRNA) profile alterations in adenoviral 
infections. (A) Changes in the miRNA profile during the course of an 
adenoviral infection. There was a switch from more upregulated miRNAs  
at early steps to more downregulated at late phases, probably as a 
consequence of VA RNAs competition with host miRNA biogenesis. 
(B) Adenoviral infections trigger the overexpression of specific miRNAs. Host 
miR-155 expression is induced as a consequence of the cell antiviral 
response. Viral infection promotes the expression of miR-132 to counteract 
the antiviral interferon response.
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from more upregulated, during the early stages of infection, to 
more downregulated miRNAs at the later phases (54). Massive 
miRNA downregulation could be the consequence of the expres-
sion of the VA (viral associated) RNAs codified by the virus at 
the later stages of the infection, competing with endogenous 
miRNA biogenesis (55) (Figure 2A). In fact, the same phenom-
enon was observed following Ad5 infection (55). Ad2 and Ad5 
infection triggered miR-155 upregulation, an effect also observed 
after VSV (65) and EBV infections (61), suggesting that miR-
155 could act as a host antiviral miRNA. It is also known that  
miR-155 is induced in macrophages, in response to interferon 
pathway activation (66).

Another miRNA that has been reported to be upregulated in 
cells infected by several viruses is miR-132. It has been found to 
overexpress after adenovirus (54, 55), HSV, KSHV, and HCMV 
infection (67). In contrast to miR-155, miR-132 acts by limiting 
host antiviral response since it exerts a negative effect on the 
expression of interferon-stimulated genes. This is a viral strategy 
which seeks to evade host antiviral response and promote viral 
replication (67, 68) (Figure 2B).

It is probable that viruses have evolved to induce the down-
regulation of interference miRNAs and favor the upregulation 
of miRNAs that can facilitate viral replication (54) (Figure 2B). 
Several examples illustrate this view. HSV-1 causes a series of 
changes in the miRNA profile and antagonizes host defenses 
by inducing miR-23a and miR-649 expression. These miRNAs, 
respectively, target IRF1 and MALT1 genes, involved in the 
antiviral signaling pathway (63, 69). In turn, the HSV-1 ICP4 
protein induces the expression of miR-101, which limits virus 
replication to ensure the survival of host cells and therefore 
support persistent HSV-1 infection (70). In cells infected with 
Reolysin, a reovirus currently being tested for the treatment 
of several cancers (71), Nuovo et  al. observed a modulation of 
certain miRNAs, with clear downregulation of let-7d, facilitating 

the productive viral infection and apoptosis-related death of the 
cancer cells (72). Hepatitis C virus (HCV) inhibits type I IFN 
production by upregulating the expression of miR-21 (73), while 
influenza virus activates the expression of miR-485, which targets 
the cytosolic sensor of viral RNA RIG-1 (57), and HIV-1 actively 
suppresses the expression of miR-17 and miR-20a that act against 
the virus (74).

Regardless of the miRNA changes triggered by viral infec-
tion, most cells are already equipped with miRNAs that will 
interact with viral genes. Antiviral miRNAs, such as miR-24 and  
miR-93, have been described to inhibit viral replication by directly 
targeting viral genes. Otsuka and coworkers described miRNA 
targeting VSV L and P protein genes, therefore inhibiting VSV 
replication (75). Such is also the case for cellular miR-32, which 
targets a sequence in the genome of primate foamy virus type 1 
(76), or host miR-214, which is capable of inhibiting adenovi-
rus replication by targeting the 3′UTR of E1A mRNA (77). By 
contrast, there are pro-viral miRNAs, such as miR-122, highly 
expressed in the liver, which interacts with the HCV genome to 
positively regulate the accumulation of RNA (78).

Thus, ever more experimental data regarding virus–host inter-
actions are currently being generated. In an attempt to provide 
some clarity with respect to the complex analysis of the signifi-
cance of the data, Li and coworkers generated an approach that 
defines potential regulatory networks of viral proteins, human 
miRNAs, and putative miRNA transcription factors between host 
targets (79).

DeReGULATiOn OF miRnAs in CAnCeR 
wiTH iMPLiCATiOnS FOR viRAL 
ACTiviTY

As already mentioned, miRNA signatures can not only distin-
guish between normal and cancer cells but also between cancer 
subtypes, and even between the cell types conforming the tumor 
itself. Studies have shown that lower expression, or even loss 
of miRNAs, is commonly found in tumor cells (80, 81), where 
most of them are recognized as tumor suppressors. On the other 
hand, fewer miRNAs are overexpressed in cancer cells and are 
considered oncomiRs, since they tend to be involved in tumori-
genic processes. Both oncomiRs and tumor suppressor miRNAs 
contribute to different stages of carcinogenesis (82). On this 
basis, attempts to modulate miRNA expression are an important 
area of therapeutic development (83). Since many miRNAs are 
involved in tumorigenesis, the action of expressing or interfering 
with a single miRNA may have limited anti-cancer effects. The 
combination of multiple miRNAs with complementary mecha-
nisms may impact on several signal transduction pathways, 
leading to an improved outcome. In this respect, multiple long 
non-coding RNAs have been designed for an adenovirus, aiming 
to cause it to bind to oncomiRs, instead of otherwise binding 
to endogenous targets, and thus achieving the interference of 
multiple miRNAs (84).

Cancer cells are coupled with abnormal signaling pathways 
and this has consequences for viral replication. For example, ade-
noviruses use interferon signaling to inhibit lytic virus replication 
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in normal cells. However, they fail to inhibit it from replicating in 
cancer cells (85). The loss of interferon defenses in tumor cells is 
one of the mechanisms involved in the cancer selectivity of reo-
virus (86). Exploiting interferon deregulation in cancer is also a 
strategy employed to provide oncoselectivity for complex viruses 
(87, 88). Alterations to a variety of other pathways in cancer have 
constituted the principle option when seeking to confer cancer 
selectivity to viruses, with a view to cancer treatment (89, 90). 
Thus, although very little is yet known, one could speculate that 
the dysregulation of miRNAs in cancer may impact viral activity 
in tumor cells. Although the simplest rationale could claim that 
the more dysregulated miRNAs would be the first candidates 
when seeking to influence viral replication, recent observation 
illustrates that this might not always be the case and, in fact, func-
tional interrogation would always be required. This is a point that 
was raised by the studies of Hodzic and coworkers, in which they 
showed that miR-26b, an abundant miRNA in prostate cancer 
cells, promoted adenovirus propagation and spread, leading to 
increased cell death (55). Further studies in this direction will 
provide a clearer view of the relevance that miRNA dysregulation 
in tumor cells may have with respect to modulating viral activity. 
Such a body of knowledge could constitute a novel platform in 
our quest to optimize oncolytic virotherapy.

COnCLUDinG ReMARKS

Investigation of miRNAs has strongly impacted the field of 
oncolytic virotherapy. Many studies have shown their potential 
in precisely detargeting viral protein expression. The expression 
of viral protein in normal tissue is an undesired effect. They are 
highly immunogenic proteins that the body tends to eliminate, 
and can cause inflammation and cell death. Thus, the incorpora-
tion of MREs to regulate viral proteins has been key to improving 
the safety profile and therapeutic index of oncolytic virotherapy. 
Fine-tuning the design of the MRE has improved the efficacy of 
both cleavage and detargeting effects.

On the other hand, our understanding of the importance of the 
role of miRNAs in viral infections is increasing. Virus–host cell 

interaction impacts cellular miRNAs and alters their miRNome. 
Viruses take advantage of host cell miRNAs to promote virus 
replication, but cells react to viral infections by upregulating 
antiviral miRNAs. Interestingly, biological responses to the viral 
infection of cancer cells with abnormal signaling pathways are 
not the same as they would be with normal cells, and miRNAs 
would also seem to play a role in this differential response.

Up until now, much progress has been made in the engineer-
ing of oncolytic viruses with MREs in the attempt to provide 
improved selectivity and safety for their use. Future research may 
concentrate on further understanding the relationship between 
host miRNAs and viral replication, and how this may differen-
tially impact normal and cancer cells. Such knowledge could 
prove fundamental and serve as the basis for exploiting newly 
engineered oncolytic viruses with enhanced antitumor potency.
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