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Abstract

Concerns have been raised about the use of relative abundance data derived from next gen-

eration sequencing as a proxy for absolute abundances. For example, in the differential

abundance setting, compositional effects in relative abundance data may give rise to spuri-

ous differences (false positives) when considered from the absolute perspective. In practice

however, relative abundances are often transformed by renormalization strategies intended

to compensate for these effects and the scope of the practical problem remains unclear. We

used simulated data to explore the consistency of differential abundance calling on renor-

malized relative abundances versus absolute abundances and find that, while overall con-

sistency is high, with a median sensitivity (true positive rates) of 0.91 and specificity (1—

false positive rates) of 0.89, consistency can be much lower where there is widespread

change in the abundance of features across conditions. We confirm these findings on a

large number of real data sets drawn from 16S metabarcoding, expression array, bulk RNA-

seq, and single-cell RNA-seq experiments, where data sets with the greatest change

between experimental conditions are also those with the highest false positive rates. Finally,

we evaluate the predictive utility of summary features of relative abundance data them-

selves. Estimates of sparsity and the prevalence of feature-level change in relative abun-

dance data give reasonable predictions of discrepancy in differential abundance calling in

simulated data and can provide useful bounds for worst-case outcomes in real data.

Author summary

Molecular sequence counting is a near-ubituiqous method for taking “snapshots” of the

state of biological systems at the molecular level and is applied to problems as diverse as

profiling gene expression and characterizing bacterial community composition. However,

concerns exist about the interpretation of these data, given they are relative counts. In par-

ticular some feature-level differences between samples may be technical, not biological,

stemming from compositional effects. Here, we quantify the accuracy of estimates of
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sample-sample differences made from relative versus “absolute” molecular count data,

using a comprehensive simulation strategy and published experimental data. We find the

accuracy of difference estimation is high in at least 50% of simulated and real data sets but

that low accuracy outcomes are far from rare. Further, we observe similar numbers of these

low accuracy cases when using any of several popular methods for estimating differences

in biological count data. Our results support the use of complementary reference measures

of absolute abundance (like RNA spike-ins) for normalizing next-generation sequencing

data. We briefly validate the use of these reference quantities and of stringent effect size

thresholds as strategies for mitigating interpretational problems with relative count data.

This is a PLOS Computational Biology Methods paper.

Introduction

Warnings about the consequences of compositional effects in sequence count data have been

published repeatedly in the decades since the technology’s advent and its application to a host

of biological problems. The issue relates to a loss of scale information during sample process-

ing, which renders counts of genes, transcripts, or bacterial species as relative abundances. The

technical basis for this belief is summarized in Box 1. No consensus solution for this problem

exists. In this work, we use prominent differential abundance testing methods on simulated

and real data to quantify the discrepancy between differential abundance estimates made on

relative versus “absolute” abundances. Our simulations show that methods which heuristically

rescale sample abundances are often reasonably consistent in their estimates of change across

relative and absolute counts but that, in a sizeable number of cases characterized by substantial

change across simulated contiditions, most or all methods differential abundance testing

methods evaluated yielded inaccurate estimates. Further, we show that data sets which are

Box 1: Measuring relative abundances

Sequence counting has become widespread as a means of census-taking in microscopic

biological systems. Genomic material, typically RNA, is captured and quantified at the

component level. Sampled cells are lysed, messenger RNA is captured and fragmented,

transcribed into cDNA, sequenced, classified, and quantified. The results are relative

abundances of gene products in the cell (in the case of single-cell RNA-seq) or tissue (in

bulk RNA-seq). In another instance, whole bacterial communities are profiled by bar-

coding of the 16S subunit of the ribosome. Ribosomal RNA associated with this piece of

translation machinery is ubiquitously present across the bacterial kingdom but variations

in the genetic sequence of this component can uniquely identify bacteria to the species

or strain level in well-characterized systems, allowing a researcher to profile bacterial

community composition. Absent measurements of microbial load or transcriptome size,

however, the observed sequence counts in all these cases represent relative abundances.

Sequence count data is compositional due to steps in sample processing. Across

domains, samples are typically normalized to some optimal total amount of genetic

material prior to sequencing in accordance with manufacturer recommendations for

best performance. This step removes variation in total abundance across samples.
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especially susceptible to distortion by compositional effects can sometimes be predicted on the

basis of “signatures” of this distortion.

Compositionality in sequence count data

Compositionality refers to the nature of sequence count data as containing relative abundance

information only. In the differential abundance setting, several authors [1–3] have described

the problem this poses: whereas researchers would like to interpret change in absolute abun-

dances, compositional effects mean using change in relative abundances as a proxy can lead to

false discoveries. A few authors have cited instances of these false discoveries in real data.

Coate and Doyle [4, 5] discussed the issue of transcriptome size variation in plants and other

systems and the impact of this on accurate transcriptome profiling. Nie et al and Lin et al [6, 7]

documented the phenomenon of widespread “transcription amplification” by the transcrip-

tion factor c-Myc and Lovén et al [8] used c-Myc data and parallel RNA quantification assays

to show that substantial differences in total abundance between control and elevated c-Myc
conditions resulted in very different interpretations of apparent differential expression.

Common to these studies of transcriptomes is a recommendation that, where feasible,

researchers leverage RNA spike-ins as controls against which changes in observed abundance

can be scaled [9, 10]. But this practice has fallen short of widespread adoption. While several

papers have expressed confidence in the utility of spike-ins [11–15], the doubt cast by reports

of widespread batch effects [16] and technical noise [17] have had the effect of reducing

researcher confidence in their use. Further, the introduction of spike-ins is not practical on all

platforms.

Where approaches that rely on spike-ins are undesirable or infeasible, sample rescaling pro-

cedures have proliferated. These methods typically assume the existence of a stable set of fea-

tures and attempt to normalize compositions in such a way as to recover this stable set across

samples. In fact, in transcriptomics, these methods predominate.

In the setting of microbial community profiling, the prevailing assumption is that typical

compositions are too simple for rescaling methods to work well (although results in bench-

marking studies have been mixed [19, 20]). Competing approaches have been developed for

dealing with compositionality in microbial sequence count data. Quantitative microbiome

profiling [21] and similar approaches combine relative abundances with complementary mea-

surements of microbial load to reconstruct absolute abundances. In contrast, so-called compo-

sitional methods are also utilized. These involve log relative representations which can give

approximate log-normality, such that workhorse statistical methods for continuous data may

Saturation of sequencing has been cited [18] as another mechanism by which abun-

dances are rendered relative: a finite amount of reagent means there is an upper limit on

biological material which can be captured; rare components can be forced out by a

“competition” to be sampled. These factors withstanding, observed total abundances

would likely still be noisy. Repeated subsampling of small amounts of material and varia-

tion in the efficiency of library preparation steps can distort observed totals.

In transcriptomics and in microbial community profiling, residual variation in observed

total abundances across samples is generally regarded as a source of technical bias and

most analytics pipelines involve steps to rescale observed abundances. The simplest of

these is the counts per million (CPM) transformation which converts observed counts to

relative abundances, then scales by 1 million.
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be applied. However, interpretation of these quantities can be challenging (e.g. as with the iso-

metric logratio [22]).

Though there is evidence from simulated and real data that scale—i.e. increasing complex-

ity of composition in terms of numbers of genes, transcripts, or bacterial sequence variants—

mitigates the problem of compositionality [2, 20], it remains unclear whether there are

instances where it is reasonable to substitute relative abundances for absolute abundances and

several fields could benefit from clarity on this issue. In this work, we quantify the discrepancy

in differential abundance calling on simulated and real data sets representative of 16S metabar-

coding, bulk RNA-seq, and single-cell RNA-seq experiments.

In particular, we evaluate a set of methods which rescale observed total abundances and

show that all such rescaling strategies outperform a simple library size normalization in our

simulated data. The methods selected are a diverse set meant to be representative but not

exhaustive and draw from the fields of transcriptomic and metagenomic analysis: ALDEx2

[23], ANCOM-BC [24], DESeq2 [25], edgeR [26], and scran [27]. Each of these methods

rescales the observed counts against a reference quantity, implicit or explicit—typically, a sub-

set of putatively stable features. Where such a stable reference exists, differences in these

rescaled counts should approximate differences in absolute counts. In all cases, baseline or

“true” differential abundance for each feature in the absolute count data was determined by

the use of a simple generalized linear model. This yielded a common standard against which to

compare differential abundance calls made by ALDEx2, ANCOM-BC, DESeq2, edgeR, and

scran. Details on the simulation procedure and these differential abundance calling algorithms

are given in Methods.

In simulations exploring a broad range of differential abundance scenarios, we find median

false positive rates of differential abundance calls made on absolute versus relative counts are

11.5% and that false positive counts increase with the proportion of differentially abundant

features. The number of features (e.g. genes or bacterial sequence variants) plays little role in

observed outcomes. An exploration of sequencing data collected from twelve external studies

reveals similar trends. Further, we show that summaries of sparsity and the prevalence of

apparent feature-level change can provide reasonable predictions of the amount of discrepancy

in differential abundance calls in simulated data and may be useful for bounding expectations

of discrepancy in real data sets.

Results

We simulated differentially abundant count data in paired sets of absolute and relative abun-

dances. In the absolute abundances, differentially abundant features experienced either an

increase or decrease in abundance—often large—between each of two simulated conditions.

Large numbers of differentially abundant features frequently had the effect of changing the over-

all total abundance, potentially resulting in several-fold changes in scale between conditions. In

each simulated data set a subset of randomly selected features received a random increase or

decrease in average abundance between simulated conditions, contributing to an overall increase

or decrease in total abundance which might be large or small. These changes in total abundance

were purposely removed by a fixed-depth resampling to give a set of relative abundances. The

proportion of differentially abundant features simulated and other key characteristics of the sim-

ulated data are summarized in S1 and S2 Figs. Compositional effects might be present in this rel-

ative count data as relative change exhibited by non-differentially abundant features.

We explored ranges of feature number and in the amount of differential abundance, group-

ing simulations into three partially overlapping settings: a Microbial setting, characterized by

low feature number and high differential abundance; a Bulk Transcriptomic setting having
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high feature number and low differential abundance; and an intermediate Cell Transcrip-

tomic setting. The full results from 5625 simulations are summarized in S1 Table and visual-

ized in Fig 1, where agreement between differential abundance calls on absolute and relative

abundances for each data set are summarized by means of sensitivity and specificity statistics,

as described below. The same results are labeled in terms of increasing simulated fold change

in S3 Fig and organized by increasing feature number in S4 Fig. In all cases, differential fea-

tures were called with FDR� 0.05 on Benjamini-Hochberg adjusted p-values obtained from

each of the methods of interest.

We report outcomes in terms of sensitivity (true positive rate) and specificity (1—false posi-

tive rate). Perfect concordance of differential abundance calls made on observed versus abso-

lute counts would yield a sensitivity of 1.0 and a specificity of 1.0. Sensitivity drops as more

features deemed differentially abundant from the perspective of the absolute counts fail to

appear significantly different in the observed data and specificity drops as an increasing num-

ber of features appear differentially abundant in the observed counts alone. We highlight key

observations made on simulated data below.

Simulated data

All rescaling methods have higher accuracy than edgeR with library size normaliza-

tion. Library size—or total count—normalization represented an anticipated worst case for

accuracy in differential abundance testing. In order to test this, we employed edgeR, which

allows for either total count or trimmed mean of M-values (TMM) normalization [26]. The dif-

ference in accuracy outcomes with and without TMM normalization was substantial. Median

specificity was only 0.35 when the observed per-sample totals were normalized by total counts,

versus 0.88 when using TMM normalization on the same collection of simulated data sets.

False positive counts were over four times higher in the absence of TMM normalization, dem-

onstrating that, for edgeR, a very widely used differential abundance calling method, accuracy

is greatly improved by this heuristic per-sample rescaling. These results are illustrated in Fig 2.

Moderate specificity was typical but cases of low specificity were observed in all settings

for all methods. Median specificity was moderately high at 0.885—lowest for ANCOM-BC

in the Cell Transcriptomic setting at 0.835 and highest for ALDEx2 in the same setting at 0.937

(see Table 1). However, a minority of simulated data sets yielding very large false positive rates

were observed in every setting. Data sets with very low specificity (< 0.5) made up less than

10% of simulated cases in the Transcriptomic settings and more than 14% in the Microbial

setting.

Increasing feature number improves specificity but the effect is modest. Median speci-

ficity improved slightly for ALDEx2 and scran in the highest-feature Bulk Transcriptomic set-

ting relative to the lowest-feature Microbial setting. The change in false positive counts in

particular is visualized in Fig 2. For all other methods, accuracy remained similar across

settings.

Though scran was the top performer, outcomes were similar across methods. Scran

had the highest overall accuracy with a median sensitivity of 0.93 and specificity of 0.91. Sensi-

tivity was lower in ALDEx2 (median = 0.78) and specificity was lower in DESeq2

(median = 0.86). All in all, methods exhibited similar performance in terms of their distribu-

tions of sensitivity and specificity across settings. See Figs 1 and 2 and Tables 1 and 2.

Next, we explored the characteristics of relative abundances associated—either positively or

negatively—with observed sensitivities and specificities in simulated data. It is possible to

imagine characteristics which might indicate the presence of distortion by compositional

effects, for example, an increase in the percent of rare features from one condition to the next
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Fig 1. Simulated sensitivity and specificity as a function of setting and proportion of differentially abundant

features. Sensitivity and specificity for five differential abundance calling methods in three experimental settings: a)

Microbial, b) Bulk Transcriptomic, and c) Cell Transcriptomic settings. Data sets are labeled by proportion of

differentially abundant features.

https://doi.org/10.1371/journal.pcbi.1010284.g001
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Fig 2. False positive counts as a function of percent differentially abundant features in simulation. Counts of false positives as a function of the

percent of simulated differentially abundant features for six methods. edgeR with no heuristic rescaling is shown at top. Columns segregate simulations

with increasing numbers of features. All rescaling methods have higher overall accuracy than edgeR without rescaling. Counts of false positives tend to

be highest where a majority of features are differentially abundant.

https://doi.org/10.1371/journal.pcbi.1010284.g002
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(in effect, dropouts). While we might not expect any single such characteristic to predict the

sensitivity or specificity of calls made on relative versus absolute abundances, composites of

such characteristics might be informative. We describe the strongest associations we observed

below.

Sensitivity is anti-correlated with estimates of sparsity. Large proportions of zero- and

one-counts in the simulated relative abundances correlated with low sensitivity (Spearman’s

correlation between proportion zeros and sensitivity, ρ = −0.58). In effect, this echoes similar

findings that decreasing sequencing depth decreases power in genomics studies [14] and

reflects a lesser expected statistical confidence in the observed change of low-count features.

Table 1. Median and thresholded specificity by simulated setting, FDR� 0.05. Low specificity is a common outcome in simulated data. A majority of simulated data

sets have false positive rates in excess of 5%. A minority of data sets have false positive rates in excess of 50%.

Setting Method Median specificity Percent of data sets below 95% specificity Percent of data sets below 50% specificity

Microbial ALDEx2 0.915 57% 18%

Microbial ANCOM-BC 0.886 78% 13%

Microbial DESeq2 0.856 78% 15%

Microbial edgeR (TMM) 0.887 78% 16%

Microbial scran 0.901 71% 9%

Cell Transcriptomic ALDEx2 0.937 56% 5%

Cell Transcriptomic ANCOM-BC 0.835 88% 14%

Cell Transcriptomic DESeq2 0.865 76% 11%

Cell Transcriptomic edgeR (TMM) 0.858 84% 13%

Cell Transcriptomic scran 0.917 67% 6%

Bulk Transcriptomic ALDEx2 0.935 56% 2%

Bulk Transcriptomic ANCOM-BC 0.853 87% 11%

Bulk Transcriptomic DESeq2 0.865 77% 10%

Bulk Transcriptomic edgeR (TMM) 0.861 85% 12%

Bulk Transcriptomic scran 0.912 66% 4%

https://doi.org/10.1371/journal.pcbi.1010284.t001

Table 2. Median and thresholded specificity by simulated setting, FDR� 0.01 plus effect size thresholding. Specificity in simulated data under more stringent condi-

tions: here differential abundant is called using FDR� 0.01 and an effect size threshold (a fold change of at least 2-fold).

Setting Method Median specificity Percent of data sets below 95% specificity Percent of data sets below 50% specificity

Microbial ALDEx2 0.93 56% 12%

Microbial ANCOM-BC 0.942 55% 3%

Microbial DESeq2 0.957 45% 2%

Microbial edgeR (TMM) 0.945 53% 3%

Microbial scran 0.961 42% 2%

Cell Transcriptomic ALDEx2 0.941 55% 3%

Cell Transcriptomic ANCOM-BC 0.931 59% 1%

Cell Transcriptomic DESeq2 0.956 46% 2%

Cell Transcriptomic edgeR (TMM) 0.943 55% 2%

Cell Transcriptomic scran 0.964 40% 1%

Bulk Transcriptomic ALDEx2 0.936 56% 0%

Bulk Transcriptomic ANCOM-BC 0.943 56% 1%

Bulk Transcriptomic DESeq2 0.958 46% 2%

Bulk Transcriptomic edgeR (TMM) 0.944 54% 2%

Bulk transcriptomic scran 0.964 40% 1%

https://doi.org/10.1371/journal.pcbi.1010284.t002
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Interestingly, in our simulations, evidence of extremes in terms of the apparent correlation of

relative abundances (in fact, the skew of that distribution of correlations) was also inversely

associated with sensitivity (ρ = −0.50).

Specificity is strongly anti-correlated with the estimated proportion of differential fea-

tures. The proportions of features undergoing large fold decreases or large fold increases in

abundance relative to the mean were highly informative with respect to specificity (ρ = −0.61

and ρ = −0.43 respectively). The standard deviation of the change in log counts between simu-

lated conditions was also anti-correlated with specificity (ρ = −0.56). In each case, these charac-

teristics supplied evidence of the existence (or lack) of widespread change in composition.

Methods which rescale observed abundances rely on a pool of stable reference features against

which to estimate per-sample “scaling factors.” The larger the number of components in the

composition apparently changing, the greater the extent to which this rescaling is impaired.

We utilized these and over 50 additional features derived from relative abundance data to

train per-method models of both sensitivity and specificity, with the aim of predicting the dis-

crepancy in relative versus absolute differential abundance calls from features of observed data

alone, reasoning that these “signatures” might be highly informative. All model features are

outlined in S2 Table and feature importance is explored in S3 and S4 Tables. Predictive models

were trained on 80% of our simulated data and their performance was evaluated on the held-

out 20% of simulated data sets. Predictions of specificity were more accurate than predictions

of sensitivity (mean specificity R2 = 0.70; mean sensitivity R2 = 0.59). Prediction of outcomes

was most successful for ALDEx2, where the R2 values for sensitivities and specificities on held-

out data were 0.74 and 0.72, respectively. Full results are given in Table 3. These results sug-

gested it might be reasonable to predict discrepancy between differential abundance calls

made on absolute versus relative abundances using characteristics of the relative abundance

data alone. However, the study of some representative real data sets will suggest prediction

may be much more difficult in this setting.

Real data

Next, we examined a variety of real data sets across many experimental settings in order to

explore outcomes in real data. We collected publicly available data from twelve studies [28–39]

and attempted to reconstruct absolute abundances by normalizing observed total sample

abundances against reference quantities provided in the same published materials. In most

cases, these reference quantities were external RNA spike-in sequences. In others, recon-

structed absolute abundances had already been estimated, as in [28] through quantitative

microbiome profiling (QMP [21]). In one case [38], we normalized against the housekeeping

gene gapdh [40] and in another [33], against paired measurements of cell mass. Visual and tex-

tual summaries of these data sets are available in Figs 3 and 4 and Table 4. While not exhaus-

tive, these studies illustrate a wide range of experimental conditions. We acknowledge the

Table 3. Predictive model performance summaries. Performance of per-method random forest predictive models of

sensitivity and specificity on held out data sets.

Method Sensitivity prediction R2 Specificity prediction R2

ALDEx2 0.737 0.721

ANCOM-BC 0.671 0.482

DESeq2 0.517 0.819

edgeR 0.504 0.776

scran 0.526 0.699

https://doi.org/10.1371/journal.pcbi.1010284.t003
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Fig 3. Visual summaries of real data sets 1–6. Visual summaries of nominal abundances (left panels) and relative abundances (right

panels) for a) Hagai et al. b) Hashimshony et al. c) Song et al. d) Monaco et al. e) Vieira-Silva et al. f) Barlow et al. Features (genes or

bacterial sequence variants) with at least 1% relative abundance across all samples are colored; all other features are gray.

https://doi.org/10.1371/journal.pcbi.1010284.g003

PLOS COMPUTATIONAL BIOLOGY Accuracy of differential abundance from relative data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010284 July 11, 2022 10 / 25

https://doi.org/10.1371/journal.pcbi.1010284.g003
https://doi.org/10.1371/journal.pcbi.1010284


Fig 4. Visual summaries of real data sets 7–12. Visual summaries of nominal abundances (left panels) and relative abundances (right

panels) for g) Grün et al. h) Muraro et al. i) Kimmerling et al. j) Yu et al. k) Owens et al. m) Klein et al. Features (genes or bacterial

sequence variants) with at least 1% relative abundance across all samples are colored; all other features are gray.

https://doi.org/10.1371/journal.pcbi.1010284.g004
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difficulty in reconstructing absolute abundances and caution that these estimates are likely

noisy. Rather than call them absolute abundances, we will adopt the helpful terminology of [9]

and call these reconstructions “nominal abundances” to distinguish them from some theoreti-

cal ground truth. While these quantities are an abstraction, since they derive from real experi-

ments, we believe they capture some of the real variation in composition and scale we could

expect to see in data from typical experiments and should serve to ground expectations. As

with simulated data, we proceed by comparing differential abundances called on the relative

count data (via ALDEx2, ANCOM-BC, DESeq2, edgeR, or scran) with differential abundances

called on the nominal abundances—our proxy for “true” differential abundance.

We have endeavored to include among the real data sets some of the most challenging pos-

sible cases for differential abundance calling from relative count data. Many of the data sets we

have selected involve a large amount of absolute and/or compositional change across experi-

mental or biological conditions. These data sets help us answer the questions: What is the scale

of discrepancy in the worst cases? How useful are summaries derived from relative abundances

in these cases? Could a researcher reasonably predict error from relative abundance data

alone?

Accuracy outcomes for these real data sets are given in Figs 5 and 6 and S5 and S6 Tables.

These outcomes can be broadly classified on the basis of sensitivity into low, moderate, and

high sensitivity cases, described below.

Low sensitivity, high specificity cases. Three data sets exhibited a combination of very

low sensitivity (median = 0.06) and high specificity (median = 0.99). These were the data of

Table 4. Overview of real data sets. Real 16S metabarcoding, bulk RNA-seq, and single cell RNA-seq data sets corresponding to the abundances shown in Figs 3 and

4. The estimated percent differential features are those significantly differential to a negative binomial GLM in the nominal abundances.

Source Description Number

sequence

variants

Number samples

(per-condition)

Percent

zeros

Approx. fold

change

Approx. percent

differential features

Hagai et al. [30] bulk RNA sequencing of both unstimulated and

mock-viral infected mouse fibroblasts

13937 10, 29 34% 1.5 18%

Hashimshony

et al. [31]

single cell RNA-sequencing of quiescent and

cycling mouse fibroblasts

9381 31, 38 9% 1.3 32%

Song et al. [34] nCounter array of human primary lung cancer vs.

brain metastases

765 13, 15 0% 1.3 37%

Monaco et al. [36] immune cell profiling in human humans via bulk

RNA-seq

20675 4, 8 15% 3.4 45%

Vieira-Silva et al.

[28]

16S metagenomics from human gut samples of

control and Crohn’s disease patients

76 14, 54 37% 1.8 47%

Barlow et al. [35] 16S metagenomics from ketogenic diet and control

mice

104 17, 18 89% 3.4 47%

Grün et al. [32] mouse embryonic stem cells cultured in serum and

a two-inhibitor solution

4652 76, 56 22% 1.1 51%

Muraro et al. [29] single cell RNA-seq of pancreatic islet cells 3494 100, 100 37% 1.1 59%

Kimmerling et al.

[33]

cycling, stimulated CD8 + T cells 9918 79, 79 35% 2 74%

Yu et al. [37] single cell expression profiling of rat brain and

liver tissue

26898 32, 32 15% 2 79%

Owens et al. [39] single cell sequencing of zebrafish embryos; early

vs. late time course samples drawn

40476 24, 35 16% 3.7 89%

Klein et al. [38] single cell RNA-sequencing of normally

developing and leukemia inhibitory factor-treated

mouse ESCs

2928 100, 100 37% 2.9 98%

https://doi.org/10.1371/journal.pcbi.1010284.t004
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Fig 5. Results for real data sets 1–6. Results summaries for a) Hagai et al. b) Hashimshony et al. c) Song et al. d)

Monaco et al. e) Vieira-Silva et al. f) Barlow et al. Barplots on the left indicate counts of true and false positives (TP, FP)

and true and false negatives (TN, FN). Boxplots on the right indicate the 50% (box) and 90% (line) intervals of

prediction and points, the observed values of either sensitivity or specificity.

https://doi.org/10.1371/journal.pcbi.1010284.g005
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Fig 6. Results for real data sets 7–12. Results summaries for g) Grün et al. h) Muraro et al. i) Kimmerling et al. j) Yu

et al. k) Owens et al. m) Klein et al. Barplots on the left indicate counts of true and false positives (TP, FP) and true and

false negatives (TN, FN). Boxplots on the right indicate the 50% (box) and 90% (line) intervals of prediction and

points, the observed values of either sensitivity or specificity.

https://doi.org/10.1371/journal.pcbi.1010284.g006
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Hashimshony et al., Barlow et al., and Kimmerling et al. (Figs 5 and 6). These studies consisted

of two transcriptomic experiments—in human and mouse cells—and a single gut microbial

data set. The range of differentially abundant features, as estimated from nominal count data,

spanned 32% to 74% in these studies (see Table 4). This differential abundance was often small

in absolute terms and demonstrably difficult to detect relative to the scale of sample-sample

variation. Features which were significantly differentially abundant in the nominal count data

often fell below the threshold of significance in the observed counts. An representative exam-

ple of this from Kimmerling et al. is shown in S5 Fig.

Prediction of outcomes in these cases (Figs 5 and 6) was dichotomous. None of the

observed sensitivities were within 50% intervals of model prediction. However, 100% of the

observed specificities were within 50% predictive intervals for specificity.

Moderate sensitivity and specificity cases. Most data sets exhibited intermediate sensitiv-

ities and specificities. Median sensitivity in this group, which included Hagai et al., Song et al.,

Monaco et al., Vieira-Silva et al., Grüen et al., Muraro et al., and Yu et al., was 0.47 and median

specificity was 0.84. These data sets spanned a large range of estimated percent differentially

abundant features in their nominal counts, from 18% to 79%, and mean fold change in total

abundance across conditions ranged from 1.1 to 2. Count tables contained between 76 and

over 26,000 features. Within-data set sensitivity and specificity were variable across methods.

In some data sets, like those of the Monaco et al. and Vieira-Silva et al. studies, there is evi-

dence of a trade-off in sensitivity and specificity (Fig 5).

Sensitivity prediction was poor again. Only 24% of observed sensitivities were within the

50% interval of prediction on sensitivity but 79% of specificities were within the same 50% pre-

dictive interval.

High sensitivity, low specificity cases. A final group contained the data sets of Owens

et al. and Klein et al., each of which had an overwhelming majority of differentially abundant

features, as estimated from differences in nominal counts. These majorities of differentially

abundant features contributed to similarly large, several-fold change in total abundance across

conditions for each set of nominal counts. Experimentally, both involved studies of tissue dif-

ferentiation—one in zebrafish, one in mouse. Though sensitivity was at its highest in this data,

specificity was overall very low. We note that this is at least partially attributable to a reduction

in the number of stably abundant features in these data sets, as false positive rates are a func-

tion of the ratio of “positive” and “negative” calls. For a complementary perspective in terms of

false positive counts, see S6 Fig. Nevertheless, a representative false positive from the data of

Klein et al. is shown in S5 Fig. The direction of change in this and other features is reversed in

the “observed” count data relative to nominal counts, suggesting a compositional effect.

Accuracy of prediction was lower for sensitivity than for specificity in these data sets. The

observed, high sensitivity fell within the 50% predictive interval in 90% of cases. However,

none of the per-method specificity predictions for the data of Owens et al. or Klein et al. were

within the 50% predictive interval.

Summarizing results for all twelve data sets, we note that sensitivity was greatly reduced in

these real data sets relative to simulation and was more difficult to predict as well. Observed

sensitivities were within the 50% interval of model-prediction only 29% of the time overall,

versus 71% for specificity. In this small sample, sensitivity and specificity constitute a tradeoff

with an association coefficient of -0.54 (p< 0.0004). The lowest specificities (or highest false

positive rates) are associated with those data sets encoding the largest amount of change, both

in terms of the number of changing features and the scale of the resulting change in total abun-

dance. However, as in Fig 2, false positive counts are lower in these data sets than those of Song

et al., Monaco et al., and Grüen et al. (see S6 Fig).
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Finally, we note that superficially similar data sets (e.g. those of Kimmerling et al. and

Owens et al.; see Table 4) can yield very different outcomes on the basis of differences in sam-

ple-sample variation.

Mitigation strategies

We pursued two mitigation strategies which we believed could improve the accuracy of differ-

ential abundance estimates from relative counts: 1) increased stringency of differential abun-

dance testing and 2) normalization against stable reference features with DESeq2.

In the first case we both increased the significance threshold for differentially abundant fea-

tures (FDR� 0.01) and enforced a fold change (effect size) threshold for differential features.

In essence, we now ask about the agreement between absolute and rescaled relative data in

terms of big, unambiguous differences. In this setting, median specificity was improved from

0.90 to 0.95 and from 0.63 to 0.85 in the subset of data sets with a majority of differentially

abundant features. For full results, see Table 2 and compare Figs 1 and 2 with S7 and S8 Figs

respectively.

In a second analysis, we briefly explored the effect of normalization by stable reference fea-

tures. DESeq2 allows a user to specify a set of reference features against which samples will be

normalized using a “control_genes” option. We utilized this feature in three settings: 1) nor-

malizing simulated data sets against low-variance features identified in absolute counts, 2) nor-

malizing real data sets against low-variance features identified in absolute counts, and 3)

normalizing real data against a set of 13 “housekeeping genes” pulled from the literature

including gapdh and hprt1 [40–43].

Results derived from low-variance gene normalization show mostly modest improvements

in specificity in both simulated and real data (S7 and S8 Tables; S9 Fig). For example, median

specificity was increased by over 15% in data sets with an initial “high” FPR of greater than

10%. This improvement was progressive: real data sets with the worst specificities showed the

greatest improvement, from 0.653 to 0.902 (Song et al.), 0.830 to 0.896 (Monaco et al.), and

0.853 to 0.906 (Muraro et al.; S8 Table). The housekeeping gene set was less effective and even

increased discrepancy in two data sets, suggesting that, although normalization by control fea-

tures can improve accuracy substantially, caution should be employed here: strong biological

prior knowledge or independent validating measurements may be required if researchers wish

to propose stable genes for sample normalization.

Discussion

While the potential for compositional effects to drive differential abundance has repeatedly

been described in the literature, uncertainty remains about the scope of this problem. Previous

studies have shown that rates of false positive differential abundance calls can be high in cer-

tain settings [2, 19, 20]. Our results indicate that the problem is at least partially a function of

the amount of change in the system under study and that differential abundance estimates

from experiments characterizing extreme change across observed conditions are likely to be

distorted. Both simulated and published experimental data contributed to this picture. Data

sets with low fold change across conditions and a minority of differentially abundant features

had high specificities (low false positive rates) and low false positive counts.

We found prediction of outcomes was possible in a limited sense. In simulated data, espe-

cially discrepant outcomes were roughly predictable by a few summary statistics derived from

their relative abundances—low sensitivity from features which captured information about

sparsity in the data set, and low specificity from estimates of the number of differentially abun-

dant features.
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Accuracy outcomes were less predictable in real data where poor predictive performance

generally took the form of overprediction. Extreme cases were more difficult to predict: where

sensitivity was extremely low, per-method models tended to overpredict it and where there

was a tremendous number of differentially abundant features, specificity was overpredicted.

Some simple strategies offer avenues for mitigating the discrepancy between absolute and

relative estimates of differential abundance. In our analysis, increasing the stringency of differ-

ential abundance calling through stricter significance and effect size thresholds improved

accuracy significantly. That is, absolute and relative data is more often in agreement about fea-

tures exhibiting large, unambiguous changes across conditions. Secondly, we observe that nor-

malization by known stable features modestly improves accuracy when performed by DESeq2.

Where these stable features are known or can be experimentally discovered, analyses would

likely benefit from their use. Similarly, the use of external reference features like spike-ins has

been validated in plate-based single-cell assays [13]. Though their application remains chal-

lenging on droplet-based platforms, they may still offer the best experimental means of recon-

ciling the relative and absolute perspectives of change.

Lastly, it should be noted that the concerns motivating this and similar studies may be

moot for some types of sequence count data. In particular, some single-cell platforms generate

library sizes (i.e. total per-sample observed abundances) which are already roughly propor-

tional to absolute abundances. This is in line a view that abundances in deeply sequenced

UMI-barcoded single cells are likely to be a good proxy for absolute abundances [12, 14]. The

effect of compositionality may be a minor concern under these circumstances.

Materials & methods

We simulated general purpose molecular count data. These counts are interpretable as a vari-

ety of biological quantities, for example, transcript abundance in a cell or bacterial strain abun-

dance in a microbial community. The simulated abundances undergo a sampling step

intended to loosely replicate the process of measurement itself and, crucially, the normaliza-

tion of total abundance across samples, giving a second set of count data. We refer to the first

set of count data as “absolute” counts and the second, resampled set as relative or observed

counts and explored the degree to which this loss of information about changes in total abun-

dance alters the results of a mock differential abundance analysis by simulating a wide range of

settings in our data, where key characteristics like complexity of composition (e.g. gene num-

ber) and fold change across simulated conditions varied widely.

Simulation model

We designed a simulation framework to generate count data corresponding to two arbitrarily

different conditions, denoted by superscripts in the equations below. First, for p = 1, . . ., P fea-

tures in the first condition, a set of log mean abundances was drawn as

y
ð1Þ

p � Nðm; S2Þ; ð1Þ

where hyperparameters m and S tune the mean and standard deviation of baseline log abun-

dances. A correlation matrix was drawn as

O � Inverse-Wishartðn;QÞ ð2Þ

where scale matrix Q was supplied as either the identity matrix (for a minority of simulations)

or a dense correlation matrix with net positive elements. The matrix O is subsequently re-

scaled to a correlation matrix and used to draw correlated feature perturbations in a second
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condition as

y
ð2Þ

p � MVNðyð1Þp ;O � aÞ ð3Þ

where the hyperparameter a exists in order to tune the overall scale of the correlated log per-

turbations. Mean abundances on the scale of sequence counts for each condition are calculated

as

gð1Þp ¼ expðyð1Þp Þ; gð2Þp ¼ expðyð2Þp Þ ð4Þ

Differentially abundant features in some desired proportion, c, are obtained as follows: fea-

tures are selected as differentially abundant with probability c. For those selected features only,

the perturbed gð2Þp serves as the mean abundance in the second condition; for all other features,

the mean abundance in both the first and second conditions is given by gð1Þp . Let these new vec-

tors be mð1Þp ; m
ð2Þ
p . These represent mean the abundances of P features in two conditions, some

of which differ across conditions, others of which are identical. Replicates i = 1, . . ., 10 are then

generated for each condition as follows. A fixed dispersion parameter for absolute counts is

defined as dabs = 1000 and those counts are drawn as

yð1Þi;p � NegBinomðmð1Þp � d; 1000Þ ð5Þ

where

d � maxð0:1;Nð1; gÞÞ ð6Þ

(Note that the dispersion parameter has been chosen such that the resulting counts are only

barely overdispersed with respect to a Poisson.) The purpose of the truncated, per-sample mul-

tiplier δ is to re-scale all abundances within a given sample by some factor of approximately 1

but by increasing the scale of hyperparameter g, increasing replicate noise can be added within

a condition. This process is repeated for the second condition to give a set of absolute counts

yð2Þp .

A new average observed total abundance (or library size) is randomly drawn as

u � Unifð5000; 2� 106Þ ð7Þ

Finally, observed abundances z are generated through a multinomial resampling procedure

similar to that of [10, 20, 23] which gives relative abundances as counts per million. Where i
and k index different samples prior to resampling, i0 indexes the sample i after resampling, and

total counts for sample i prior to resampling are given by ni = ∑ yi, we have

zi0 � Multðpi0 ¼ yi=ni; ni0 ¼ nkÞ ð8Þ

where superscripts have been suppressed as this procedure is identical across simulated “con-

ditions.” The resulting P-length vector of counts for a given sample contains relative but not

absolute abundance information. These vectors are collapsed into a P × 20 count matrix con-

taining 10 replicate samples for each of two simulated conditions. In order to evaluate the dis-

crepancy of differential abundance calling on observed versus absolute counts, we apply

differential abundance methods to count matrices Z and Y respectively and score the

differences.
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Breadth of simulations

In order to generate simulations with a wide variety of characteristics, we swept in a grid over

all our hyperparameters. Feature number P was stepped through values 100, 1000, and 5000. A

maximum feature number of 5000 was chosen as these simulations were computationally

intensive and major trends had become apparent at that scale. The degree of feature correla-

tion was encoded in five realizations of scale matrices Q, encoding fully independent features

at one extreme and 50% strongly positively correlated features at the other extreme. Log mean

abundance (m) and the log variance (S) were independently incremented through low to high

values. Likewise, the average log perturbation size (a) was swept from low to high in five steps,

as a proportion of log mean abundance.

Replicate noise g varied from low to high in three steps. And finally, the proportion of dif-

ferentially abundant features ranged across 20%, 30%, 50%, 70%, and 90%. Note that because

many “perturbations” were very small, detectable differential abundance was generally only a

fraction of the parameterized amount and most data sets contain a minority of differentially

abundant features. Overall this 5625 simulated data sets were generated with almost continu-

ous variation characteristics of interest.

We suggest that ranges of these parameter settings approximately represent different data

modalities. We term the Microbial setting that with low to moderate feature number

(P� 1000) and largest average perturbation, in accordance with a belief that bacterial commu-

nities are often simple (in terms of sequence variants with more than negligible abundance)

and that they are highly variable even at short time scales [44].

We designate the Bulk Transcriptomic setting as that with the largest feature number

(P = 5000) and having a lower average perturbation, the rationale being that transcriptomes

sampled in aggregate over many cells are complex but largely stable compositions. Similarly, we

define the intermediate Cell Transcriptomic setting, approximately representative of single-cell

RNA-seq data, to comprise simulations with moderate to large feature numbers (P� 1000) and

moderate perturbation sizes. These categories are intended as rough outlines and we note that

within these settings the realized data varies in terms of 1) degree of feature correlation, 2) over-

all abundance, 3) (un)evenness of composition, and 4) within-condition variation in totals.

Calling differential abundance

Five differential abundance calling methods were used in this study. These were ALDEx2

v1.22.0 [23], ANCOM-BC v1.0.5 [24], DESeq2 v1.30.1 [25], edgeR v3.32.1 [26], and scran

v1.18.5 [27]. Each of these methods relies upon the use of a reference quantity to renomalize

sample total abundances. ALDEx2, DESeq2, and edgeR rely on various (trimmed) estimates of

the per-sample mean or median abundance for this reference quantity. ANCOM-BC uses a

model-derived estimate of the “sampling fraction” of total abundance represented in an

observed sample. scran’s procedure learns and applies a condition- or cell type-specific normal-

ization factor. For simplicity, we omit from consideration models which lack a rescaling. We

also omit zero-inflation models. Although these are popular in single-cell mRNA sequencing

data, the debate continues about whether these models are appropriate for these data [45, 46].

Finally, differential abundance calls made on observed counts must be evaluated against a

reference in order to calculate discrepancy. For this reference, we used calls made by a negative

binomial generalized linear model on absolute abundances as a pseudo-gold standard or “ora-

cle” in all cases. Features with significantly different means according to the GLM were consid-

ered “true” instances of differential abundance. One caveat is that some of the discrepancy in

calls between absolute and relative abundances will be due to differences in sensitivity between

the models applied to the reference and “observed” data sets—i.e. between a stock NB GLM
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and DESeq2. In all settings, true positive, true negative, false positive, and false negative calls

were manually spot checked to verify disagreements between methods were generally unam-

biguous. Accuracy (in terms of sensitivity and specificity) was calculated between differential

abundance calls made on absolute abundances and observed abundances. Unadjusted p-values

were collected from all methods and multiple test correction applied via p.adjust in R using

Benjamini-Hochberg method.

Predictive modeling

In total, we trained 10 random forest models over 61 summary features, for each combination

differential abundance calling method (ALDEx2, ANCOM-BC, DESeq2, edgeR, or scran) and

accuracy measure (sensitivity or specificity). All such predictive models were fit with the ran-

domForest package in R [47]. A random forest is an ensemble of decision trees and this tree-

based approach was chosen because, while extensive, our simulations were not exhaustive. We

anticipated that learning sets of decision rules might generalize well to unseen conditions, in

particular feature numbers larger than those we explored in simulation. Feature importance

was measured as “gain,” or the relative increase in predictive accuracy achieved by the inclu-

sion in the model of a given feature, as computed by the caret package in R [48].

Predictive models built from these summary features attempted to estimate sensitivity and

specificity values explicitly. Details on these models are given in the Methods. All models were

trained on 80% of the simulated data and their predictive accuracy was assessed on the

reserved 20%.

Real data processing

Publicly available data was downloaded from sources provided in the published materials for

the studies cited. In general, relative abundances were converted to counts per million and

sequences for external spike-ins extracted from these counts. Simple per-sample scaling factors

were calculated from mean spike-in abundances and applied to the relative data to give “nomi-

nal” abundances.

In the inhibited and control cells of Klein et al., the expression of housekeeping gene Gapdh
was used to normalize per-sample total abundance. In the 16S metagenomic data of Barlow

et al. and Vieira-Silva et al., nominal abundances had already been estimated by the authors of

those studies using quantitative PCR-based methods. In the single-cell expression data of Yu

et al., log2 observed total abundances correlated well with log2 spike-in abundances and the

observed data themselves were treated as true abundances. Relative abundances were derived

by normalizing per-sample library sizes and scaling to give counts per million. Finally, in the

coupled cell mass and expression measurements of Kimmerling et al., the estimated cell mass

was used as scaling factor for observed expression to give nominal abundances.

Nominal and relative abundances were then filtered to exclude features (genes or bacterial

sequence variants) present at an average abundance of less than a single count in either the

nominal or relative count tables. This both reduced the size of the largest data sets—making

them more computationally manageable—and reduced sparsity in the most extreme cases.

Supporting information

S1 Text. Additional details on simulated data sets and mitigation strategies. This file con-

tains supplemental methods and results detailing the characteristics of simulated data sets,

describes variable importance determination in predictive models, and gives further details on

the effects of mitigation strategies like control genes.

(PDF)
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S1 Table. Median and thresholded simulated specificity by feature number. Specificity in

simulated data, FDR� 0.05. Per-method results are grouped and sorted by increasing feature

number.

(PDF)

S2 Table. Predictive feature list. Features of observed abundances used to predict sensitivity

and specificity outcomes.

(PDF)

S3 Table. Features informative for the prediction of sensitivity. Predictive features and their

relative importance (as gain) in the prediction of sensitivity.

(PDF)

S4 Table. Features informative for the prediction of specificity. Predictive features and their

relative importance (as gain) in the prediction of specificity.

(PDF)

S5 Table. Observed sensitivities on real data sets. Observed sensitivities on real data sets.

(PDF)

S6 Table. Observed specificities on real data sets. Observed specificities on real data sets.

(PDF)

S7 Table. Real data sensitivity with control features. DESeq2 sensitivity when using a variety

of features as controls (via the control_genes argument). Sensitivity is improved when using a

random set of low-variance features as references against which to rescale observed abun-

dances. A selection of “housekeeping” genes used for the same purpose gives less improvement

over baseline.

(PDF)

S8 Table. Real data specificity with control features. DESeq2 specificity when using a variety

of features as controls (via the control_genes argument). Specificity is improved when using a

random set of low-variance features as references against which to rescale observed abun-

dances. A selection of “housekeeping” genes used for the same purpose gives less improvement

or worsens specificity in the data sets of Monaco et al. and Grüen et al.

(PDF)

S1 Fig. Characteristics of simulated data. Distributions associated with three characteristics

of the 5625 simulated data sets: a) percent differentially abundant features, b) fold change in

total abundance across conditions, and c) percent zeros.

(TIF)

S2 Fig. Asymmetry of simulated differential abundance. The number, scale, and direction of

differential abundance varied randomly in simulation, giving rise to both increases and

decreases in total abundance across conditions.

(TIF)

S3 Fig. Simulated sensitivity and specificity as a function of feature number and propor-

tion of differentially abundant features. Sensitivity and specificity for five differential abun-

dance calling methods in terms of increasing feature number from a) 100 to b) 1000 to c) 5000

features.

(TIF)
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S4 Fig. Simulated sensitivity and specificity as a function of setting and fold change. Sensi-

tivity and specificity for five differential abundance calling methods in three experimental set-

tings: a) Microbial, b) Bulk Transcriptomic, and c) Cell Transcriptomic settings. Data sets are

labeled by fold change across conditions.

(TIF)

S5 Fig. Example discrepant differential abundance calls. Discrepant calls in nominal and rel-

ative abundances. a) A typical false negative result in data derived from the experiment of

Kimmerling et al. This feature (the gene H2-T3) is significantly differentially abundant in the

nominal abundances but not in estimates made from relative abundances by DESeq2. b) A

typical false positive result in data from Klein et al. associated with gene UNG, tested by edgeR

(with TMM normalization).

(TIF)

S6 Fig. False positive counts as a function of percent differentially abundant features in

real data. Counts of false positives as a function of the percent of simulated differentially abun-

dant features for five methods applied to 12 real data sets.

(TIF)

S7 Fig. Simulated sensitivity and specificity as a function of feature number and fold

change, FDR� 0.01 plus effect size thresholding. Sensitivity and specificity for five differen-

tial abundance calling methods in three experimental settings: a) Microbial, b) Bulk Transcrip-

tomic, and c) Cell Transcriptomic settings. Data sets are labeled by proportion of differentially

abundant features. Here, differential abundance calling is subject to greater stringency: FDR

� 0.01 and a fold change across conditions of at least 2. Median specificity is improved from

0.90 (FDR� 0.05) to 0.95.

(TIF)

S8 Fig. False positive counts as a function of percent differentially abundant features in

simulation, FDR� 0.01 plus effect size thresholding. Counts of false positives as a function

of the percent of simulated differentially abundant features for five methods with stringent dif-

ferential abundance calling (FDR� 0.01 and a fold change across conditions of at least 2). Col-

umns segregate simulations with increasing numbers of features. Counts of false positives are

reduced relative to FDR� 0.05.

(TIF)

S9 Fig. DESeq2 simulated accuracy with “control” genes. Sensitivity and specificity for all

simulated data sets using DESeq2 a) without and b) with “control genes.” Per-columns settings

from left to right are Microbial, Transcriptomic (center column), and Bulk Transcriptomic. c)

Distribution of the change in sensitivity and d) specificity following the introduction of control

genes. Sensitivity is largely unchanged. Specificity is generally improved.

(TIF)
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