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Abstract
We model the length of in-patient hospital stays due to stroke and the mode of discharge using a phase-type stroke recovery
model. The model allows for three different types of stroke: haemorrhagic (the most severe, caused by ruptured blood
vessels that cause brain bleeding), cerebral infarction (less severe, caused by blood clots) and transient ischemic attack or
TIA (the least severe, a mini-stroke caused by a temporary blood clot). A four-phase recovery process is used, where the
initial phase depends on the type of stroke, and transition from one phase to the next depends on the age of the patient.
There are three differing modes of absorption for this phase-type model: from a typical recovery phase, a patient may die
(mode 1), be transferred to a nursing home (mode 2) or be discharged to the individual’s usual residence (mode 3). The first
recovery phase is characterized by a very high rate of mortality and very low rates of discharge by the other two modes.
The next two recovery phases have progressively lower mortality rates and higher mode 2 and 3 discharge rates. The fourth
recovery phase is visited only by those who experience a very mild TIA, and they are discharged to home after a short stay.
The novelty of our approach to phase representation is two-fold: first, it aligns the phases with labelled diagnosis states,
representing stages of illness severity; second, the model allows us to obtain expressions for Key Performance Indicators
that are of use to healthcare professionals. This allows us to use a backward estimation process where we leverage the fact
that we know the phase of admission (the diagnosis), but not which phases are subsequently entered or when this happens;
this strategy improves both computational efficiency and accuracy. The model has clear practical value as it yields length
of stay distributions by age and type of stroke, which are useful in resource planning. Also, inclusion of the three modes of
discharge permits analyses of outcomes.
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1 Background

Due to the debilitating nature of a stroke and complex
makeup of the disease there is an urgent need for stochastic
models that can be used for bed occupancy analysis,
capacity planning, performance modeling and prediction,
with a view to decreasing patient delays, better use of
resources, and improved adherence to targets.
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Modeling length-of-stay (LOS) in hospital is an impor-
tant aspect of characterising patient stay in hospital and
outcomes in the form of discharge destinations. We focus
on using easily accessible administrative data routinely col-
lected at discharge. Such data, which include information
on patient date of birth, date of admission, diagnosis and
discharge date, are not appropriate for patient prognostica-
tion but can rather be aimed towards supporting planning,
service organization, and allocation of resources (see, for
example, Shahani et al. [20], Faddy and McClean [5], Mar-
shall and McClean [12] and McClean and Millard [14]). In
such cases we are interested in the behavior of patient popu-
lations rather than individuals, with a focus on system wide
planning.

Heterogeneity of patient pathways and LOS characteris-
tics have been investigated by a number of authors. Such
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heterogeneity arises from a number of sources, for exam-
ple, method of admission, diagnosis, severity of illness, age,
gender, and treatment (see, for example, [6, 9, 10, 13]). Such
covariates have previously been incorporated into phase-
type models via conditional phase-type models by Marshall
and McClean [12], a Coxian proportional hazards approach
[5] and classification trees [9].

The philosophy behind our work stems from two facts.
On the one hand, large amounts of data are usually required
to validate analytical models, even if they are parsimonious
in the number of parameters. On the other, often one is
not free to gather as much data as one needs in order to
determine the optimal number of parameters or stages for
such a model. Rather, one often tends to obtain a dataset
of a given size, without any option to enlarge it. It is in
this context that we propose to bridge the gap by exploiting
known physical properties underlying the problem being
studied. In our case, the setting pertains to the recovery
times for stroke patients of the three types most commonly
encountered: haemorrhagic (the most severe, caused by
ruptured blood vessels that cause brain bleeding), cerebral
infarction (less severe, caused by blood clots) and transient
ischemic attack, often abbreviated as TIA (the least severe,
a mini-stroke caused by a temporary blood clot).

The novelty in what we present lies in the representation
of the phases of the phase-type model as stages of illness
severity, allowing the maximum likelihood estimation to
be carried out using an efficient and accurate estimation
process. Since our focus is on predicting the behavior of the
patient population rather than individual outcomes, we can
leverage data which only becomes available at discharge,
e.g. discharge disposition; such information is commonly
available in routinely collected patient data. Mathematical
expressions and results for key performance indicators are
presented for a phase-type model fitted to stroke patient
data. There is further novelty in the application, as the
model allows us to obtain expressions for Key Performance
Indicators (KPIs) that are of use to healthcare professionals.

2 Literature review

Analytic models have previously been developed for health
services (see, for example, Fackrell [4] and Gunal and Pidd
[2]). One of the first was a two-phase model (acute care and
long-stay) introduced by Millard [18]. The model was fitted
to length-of-stay (LOS) data from a number of different
hospital and social services settings in Millard and McClean
[15]. For stroke patients, a three-compartment approach
(short stay, medium stay, long stay) was used in Vasilakis
and Marshall [22] to estimate the number of patients in
any state and their lengths-of-stay. McClean et al. [16,
17], Garg et al. [7] and Barton et al. [1] have generalized

this to Markov models, based on the Coxian phase-type
distributions, to help capacity planning within a stroke
department. In addition, Gillespie et al. [8] and McClean
et al. [17] have developed analytic cost models and applied
them to a stroke service to assess the cost-effectiveness of
the department.

Such phase-type or compartmental approaches to mod-
elling patient sojourns in hospital, particularly for geriatric
services and long-term conditions requiring long periods of
rehabilitation, have been used for over 25 years (see, for
example, Millard [18], Faddy and McClean [5, 6], and Xie
et al. [23]). Typically, these approaches used only LOS cal-
culated from admission and discharge dates. Subsequently
a number of authors have tried to improve on the model fit
and predictions by including available covariates, of which
gender, age, diagnosis and discharge disposition are com-
monly available from standard healthcare datasets. Such
variables have been shown to be statistically related to
patient LOS and to improve modelling and prediction (see
McClean et al. [16]). This resonates well with heterogene-
ity of patient pathways and LOS characteristics, in relation
to such covariates, have previously been investigated by a
number of authors. Such heterogeneity arises from a number
of sources, for example, method of admission, diagnosis,
severity of illness, age, gender, and treatment (see, for exam-
ple, Faddy and McClean [6], Marshall and McClean [13],
and Harper et al. [9]). Such covariates have previously been
incorporated into phase-type models via conditional phase-
type models by Marshall and McClean [12], a Coxian propor-
tional hazards approach [5] and classification trees [9].

The stroke model presented in this paper was based on
a 5-year retrospective dataset extracted from the Patient
Administration System (PAS) and consisting of all patients
admitted to the Belfast City Hospital (BCH) between 1
January 2003 and 31 December 2007 with a diagnosis of
stroke. Data were available for date of admission, date of
discharge, date of birth, gender, and discharge destination,
and we have previously demonstrated relationships between
these variables and LOS [16].

In the current paper we thus build on this work to
explicitly represent the phases of the phase-type model as
relating to the different types of stroke having occurred,
with different illness severities. While such different
diagnoses have different pathways in the acute phases,
healthcare trajectories are likely to be similar in the recovery
phases. In this way we incorporate diagnosis and discharge
destination into the model definitions; the other covariates
(here age and gender) are incorporated into the model
as parametric functions with the expected properties. This
approach has been used extensively in Survival Analysis
generally, e.g. for Cox regression, and for LOS modelling
in particular, (see, for example, Faddy and McClean [6] and
McGrory et al. [11]).
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3 Stroke in-patient data

We here focus on incorporating age and diagnosis into a
model of stroke patients in hospital. The modelling was
based on five years’ retrospective data for patients admitted
to the Belfast City Hospital with a diagnosis of stroke
(cerebral hemorrhage, bleed in the brain; cerebral infarction,
clot in the brain; transient ischemic attack, minor stroke;
and unspecified or undetermined type of stroke). Data were
obtained from the Patient Administration System, PAS (a
computerized system that records patient activity relating
to inpatients, outpatients, waiting lists, A&E and case note
tracking). Data retrieved from the Belfast City Hospital PAS
included age, diagnosis, LOS, and discharge destination.
Diagnosis and age were previously shown to be highly
significant with regard to LOS [16]. Our approach then
models the patient journey through hospital as a phase-
type model incorporating diagnosis and age. Summary
information is shown in Table 1.

The large number of deaths after a relatively short
average length of stay confirms the high mortality rate
of hemorrhagic stroke patients. Also, the large number of
discharges to home after a very short average stay indicates
the very mild nature of the TIA type of stroke.

4Model details

A probability distribution is said to be of “phase-type” if
it can be shown to represent the time to absorption in a
transient continuous-time Markov chain (see Neuts, 1981).
The phases referred to are the successive times spent in
the transient states, prior to absorption. The collection of
phase-type distributions is commonly abbreviated as “PH
distributions”, as we do hereafter.

We wish to underscore again that the model we
present below involves states which are intended to have
physical interpretations in the real world. Often when PH

Table 1 Summary by type of stroke and mode of discharge

Cerebral

Mode of Discharge Hemorrhagic Infarction TIA

Discharge Counts

Death 65 125 13

Nursing Home 5 59 8

Usual Residence 69 432 389

Average lengths of stay (days)

Death 18.3 34.6 37.5

Nursing Home 85.5 83.7 25.8

Usual Residence 51.3 31.9 8.2

distributions are used to model lengths of stay for which an
exponential distribution is inadequate, one aims to obtain
the best possible fit for a given matrix order without
imposing any structural restrictions in terms of associating
the underlying states with a physical meaning.

Of course, there is no reason to anticipate that the ideal
fit for a matrix of a given order will be sparse in terms
of the number of parameters involved. Thus, there is an
inherent disadvantage in seeking the best fit without regard
to the associated number of parameters that would have to
be estimated from the available data, and the corresponding
impact in terms of reduced statistical power.

The model which we have decided upon strikes us as the
best compromise between allowing for sufficient distinction
of the various types of stroke to be considered, while
maintaining a reasonable level of parsimony for parameter
estimation. In fact, when we tried to make the model smaller
as a check, there was a statistically significant reduction in
the loglikelihood that was more than would be justified by
the reduction in the number of parameters. Also, both our
goodness of fit tests and the work of McClean et al. [16]
show that phase-type models with this level of simplicity
tend to fit this hospital length of stay data well. Ultimately,
we wish to be able to distinguish paths based upon type of
stroke incurred, and eventual disposition upon absorption.
The model’s state transition diagram we initially considered
is shown in Fig. 1, although we eventually decided upon
an even more parsimonious model during the parameter
estimation stage (see Fig. 2) by eliminating transitions from
some transient recovery states to certain modes of discharge;
this is discussed below in Section 6.

The structure presented in Fig. 1 was arrived at as
follows. Since haemorrhagic strokes are generally the most
debilitating, we anticipate three recovery phases for such
patients. Those suffering from an infarction, being typically
less severe in its degree of debilitation, are seen as passing
through the latter two of the three recovery phases that
haemorrhagic patients encounter. TIAs are collectively the
least severe of all, but our study of the data revealed that
they appear to comprise two distinct groups in terms of the
duration of their recovery period. TIA patients experiencing
longer recoveries are considered to pass through the last
recovery phase of haemorrhagic patients and those with
infarctions (namely, Phase 3), while there is a distinct state
for very short TIA durations (Phase 4).

Transition rates for the model comprise some that depend
upon the age and stroke type of the patient, and others which
do not depend on age. Both for reasons of parsimony and for
simplicity, we have chosen exponential forms for selected
transition intensities and for the mixing probability for TIA
patients; this ensures positive rates for the former and results
in the interval (0,1) for the latter. We note that this does
not mean we are using exponential distributions (with the
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Fig. 1 Initial state transition
diagram

Phase 1 Phase 2 Phase 3 Phase 4

Death
Nursing
Home

Usual
Residence

Haemorrhagic
Cerebral
Infarction TIA

corresponding memoryless property). Rather we are using
an exponential functional form to incorporate covariates
into the hazard functions for transition between states, rather
in the way this is done in Cox regression.

For i = 1, 2, let λi(x) be the transition intensity
from phase i to phase i + 1 for a patient who is age x,
where λi(x) = exp(γi + βix). Also, let p(x) represent
the probability that a TIA stroke patient age x is in
recovery phase 4 upon admission to hospital (representing
the less severe TIAs). Consequently, a TIA patient starts
in phase 3 with probability 1 − p(x). We assume that
p(x) = exp{− exp(θ0 + θ1x)}. The exponential functions
used in modelling λi(x) and p(x) are fairly standard, and
ensure that their values are constrained to the required
ranges. These functions arise when using the log link and
complementary log-log link functions in generalized linear

models (see [3]). As regards the parameters which do not
depend upon age, for i = 1, . . . , 4, μi denotes the mortality
rate from phase i, νi the rate of discharge to a nursing
home from phase i, and ρi the rate of discharge to the usual
residence from phase i. As indicated in Fig. 1, it is assumed
that μ4 = ν4 = 0.

We have consciously decided not to have the rates of
mortality and discharge to nursing home and usual residence
depend on age. For mortality, the age effect is dominated
by the extra mortality that results from the stroke, the
severity of which depends on the phase of the patient.
This is influenced by the type of stroke and the time since
admission. It has been assumed, though, that the probability
of a more severe TIA and the first two rates of recovery
(progression through the phases) do depend on age. This
creates age effects in how fast the stroke related extra

Fig. 2 Revised state transition
diagram

Phase 1 Phase 2 Phase 3 Phase 4

Death
Nursing
Home

Usual
Residence

Haemorrhagic
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Infarction TIA
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mortality diminishes as well as how the rates of discharge
to nursing home and usual residence change with time
since admission. While we tested for gender differences, we
found them to be insignificant.

The infinitesimal generator matrix Q for our model can
be written as

Q =
(

T tA
0AT 0AA

)
(1)

where T = (tij ) is a 4 × 4 matrix containing transition rates
among the transient states, given by

T =

⎛
⎜⎜⎝

−�1(x) λ1(x) 0 0
0 −�2(x) λ2(x) 0
0 0 −�3 0
0 0 0 −�4

⎞
⎟⎟⎠ (2)

for �i(x) = λi(x)+μi+νi+ρi; i = 1, 2 and �i = μi+νi+
ρi; i = 3, 4. In like fashion, tA = (tij ); i = 1, 2, 3, 4; j =
5, 6, 7 is a 4 × 3 matrix containing absorption rates for the
various destination modes (death, nursing home, and usual
residence, respectively), given by

tA =

⎛
⎜⎜⎝

μ1 ν∗
1 ρ∗

1
μ2 ν∗

2 ρ2

μ3 ν3 ρ3

μ4 ν4 ρ4

⎞
⎟⎟⎠ . (3)

In Eq. 3, three of the rates have been appended with
asterisks. These identify the parameters from the original
model that we ultimately treated as zero as a result of the
initial parameter estimation step (see Section 6). Finally,
0AT and 0AA are null matrices of appropriate dimensions;
0 is a null column vector. These elements satisfy the
conditions tii < 0, for i = 1, . . . , 7, tij ≥ 0, for i �= j . T
and tA satisfy tA13 = −T14, where 1n is an n-dimensional
column vector of ones.

Letting X denote the stroke length of stay random
variable, the event {X > y} implies that recovery is ongoing
at time y. Thus, for a given initial distribution of recovery
phases α, the probability density function of X is given by

fX(y |α,T) = α′ exp(Ty) tA13 , y ≥ 0 . (4)

(These and other matrix-based operations are justified in
the light of Neuts [19], pp. 45-46). In the foregoing, the
exponential of a square matrix A is given by exp(A) =∑∞

k=0
Ak

k! . The partial density functions by discharge mode
can similarly be obtained. Integrating (4), the distribution
function of X is

FX(y | α,T) = 1 − α′ exp(Ty) (−T)−1tA13

= 1 − α′ exp(Ty) 14 , y ≥ 0, (5)

The 4 × 3 matrix P = (−T)−1tA is of interest in its
own right, and can be interpreted as the probability of being
absorbed into the various discharge modes (death, nursing
home, or regular residence), starting from the various

recovery phases. This is equivalent to similar expressions
previously given in McClean et al. [16].

We are also interested in length of stay by discharge
mode, so that we can obtain the conditional distributions by
dividing by the ultimate probability of absorption into the
appropriate states.

5 Conditional mean durations
and distributions

One of the merits of the phase type modelling approach
is that it lends itself quite readily to the determination
of expectations and distributions based upon a variety
of conditions. The overall mean duration of a stroke
hospitalisation, considering all possible types and outcomes,
is given by

E{X} = α′(−T −1)14. (6)

This mean comprises three distinct pieces. The contribution
due to patients who ultimately die is given by

E{X I (Death)} = α′(−T −1)P1 (7)

where I (Death) denotes the indicator function for the event
that a death occurs, and P1 denotes the first column of
the matrix P. Therefore, the conditional expectation for
the length of hospitalisation, given that a patient dies, is
given by

E{X|Death}=E{X I (Death)}/P (Death)= α′(−T −1)P1/(α
′P1).

(8)

The mean hospitalisation duration for patients who return
to their own home, as well as that for patients who go to a
nursing home, can be similarly obtained.

Another way in which the model can be employed for
useful inferences is to determine residual lengths of stay
for patients who have already been hospitalised for a given
time, say of duration y. The probability of such an event is

P(X > y) = α′ exp(Ty)14 (9)

and the mean residual hosptialisation for such patients is
given by

E{X−y|X > y} = α′ exp(Ty)(−T −1)14/(α
′ exp(Ty)14) , y > 0.

(10)

Finally, we consider the impact of hospitalisation
duration on the relative likelihoods of the various possible
destinations for the given patient. Intuitively, we expect that
the longer a stroke patient is hospitalised, the less risk there
is that the patient will die. Mathematically, the phase type
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model predicts that the impact of a hospitalisation of length
y on the various possible discharge destinations is given by
the 4 × 3 matrix

P(y) = α′ exp(Ty)P/(α′ exp(Ty)14) , y > 0. (11)

6 Estimation

The total number of parameters to be estimated is 16. We
employed maximum likelihood estimation. The likelihood
function is given by the product over all 1,234 stroke
patients of the likelihood contribution for that patient. The
likelihood contribution for a given patient is proportional to
the model probability or probability density associated with
our observation for that patient.

Phase-type models have previously been used for patient
modelling by a number of authors, as described in Section 1.
However, since the phases are usually latent states of the
underlying Markov model, parameter estimation can be
challenging, with high numbers of parameters and large
variances of parameter estimates. The novelty here is that
by aligning the phases with labelled diagnosis states, which
represent stages of illness severity, the estimation process
reduces to a problem of semi-supervised learning where
we know the phase of admission (the diagnosis), but not
which phases are subsequently entered or when. Our current
estimation strategy allows us to use maximum likelihood in
an iterative manner moving backwards through the phases,
where we progress from estimating transition parameters for
the least severe patients to the most severe. At each iteration,
parameters relating to transitions and data from patients
entering into that phase are added to the estimation process
while previously estimated parameters, pertaining to less
severe phases, are left unchanged if no further information
has been provided. As such, we are able to use the data on
phase of admission to its best use, as well as patient duration
in hospital, thus improving both computational efficiency
and accuracy.

Let Lj represent the likelihood contribution for patient j .
If patient j is a TIA patient, then

Lj = (1 − p(xj )) exp{−(μ3 + ν3 + ρ3) sj }μ
δ
μ
j

3 ν
δν
j

3 ρ
δ
ρ
j

3

+p(xj ) exp{−ρ4 sj }μ
δ
μ
j

4 ν
δν
j

4 ρ
δ
ρ
j

4 , (12)

where sj is the length of stay of patient j , xj is the age
at admission of patient j , δ

μ
j is 1 if patient j died and 0

otherwise, δν
j is 1 if patient j was discharged to a private

nursing home and 0 otherwise, and δ
ρ
j is 1 if patient j was

discharged to his/her usual residence and 0 otherwise.
In interpreting equation (12), recall that μ4 = 0 and

ν4 = 0; furthermore, we treat 00 as 1. Therefore, for a TIA
patient who died (δμ

j = 1) or was discharged to a nursing
home (δν

j = 1), the second term on the right-hand side of
Eq. 12 is zero. Hence, Lj is the probability of a more severe
TIA times the density associated with a stay of length sj
ending in death (if δ

μ
j = 1) or discharge to a nursing home

(if δν
j = 1). For a patient who was discharged to his/her

usual residence (δρ
j = 1), Lj is the sum of two terms:

the probability of a more severe TIA times the conditional
density of a stay of length sj ending in discharge to usual
residence (given it is a more severe TIA), and the probability
of a less severe TIA times the conditional density of a stay
of length sj ending in discharge to usual residence (given it
is a less severe TIA).

The likelihood contributions for the other two types of
stroke are more complicated. To simplify the expressions,
let

r1j = μ1 + ν1 + ρ1 + λ1(xj ),

r2j = μ2 + ν2 + ρ2 + λ2(xj ),

where xj denotes the age upon admission and

r3 = μ3 + ν3 + ρ3.

If patient j is a Cerebral Infarction patient, then

Lj = exp{−r2j sj }μ
δ
μ
j

2 ν
δν
j

2 ρ
δ
ρ
j

2

+λ2(xj )
exp{−r3 sj }−exp{−r2j sj }

r2j − r3
μ

δ
μ
j

3 ν
δν
j

3 ρ
δ
ρ
j

3 . (13)

The first term above corresponds to the density associated
with a CI patient stay in phase 2 equal to sj before a direct
transition is made to the death state (if δ

μ
j = 1) or the usual

residence state (if δ
ρ
j = 1). [Since ν2 = 0, direct transition

to a nursing home is not allowed.] The second term is the
density associated with a CI patient moving from phase 2
to phase 3 and then dying (if δ

μ
j = 1), being discharged to

a nursing home (if δν
j = 1) or being discharged to usual

residence (if δ
ρ
j = 1) after a total stay of sj .

If patient j is a Haemorrhagic stroke patient, then

Lj = exp{−r1j sj }μ
δ
μ
j

1 ν
δν
j

1 ρ
δ
ρ
j

1 + λ1(xj )
exp{−r2j sj } − exp{−r1j sj }

r1j − r2j

μ
δ
μ
j

2 ν
δν
j

2 ρ
δ
ρ
j

2

+λ1(xj ) λ2(xj )

r1j − r2j

(
exp{−r3 sj } − exp{−r2j sj }

r2j − r3
− exp{−r3 sj } − exp{−r1j sj }

r1j − r3

)
(14)

×μ
δ
μ
j

3 ν
δν
j

3 ρ
δ
ρ
j

3 .
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The interpretation of Eq. 14 is similar to Eq. 13, except that
for Haemorrhagic stroke patients, Lj involves three terms,
reflecting hospital stays ending upon transition from phase
1, phase 2 or phase 3.

We construct the log-likelihood function by summing the
logarithms of the likelihood contributions, and this function
is maximized with respect to the 16 parameters to obtain the
estimates of these parameters.

It is challenging to maximize a function of 16 parameters
without good starting values. We are, however, able to
obtain reasonable starting values by first considering subsets
of the data based on type of stroke. Referring to the discharge
counts in Table 1, we see that the TIA data provide mostly
information about ρ3 and ρ4, and all of the information
about ρ4. The Cerebral Infarction data provide additional
information about ρ3 and most of the information about μ3,
ν3, μ2, ν2 and ρ2. Finally, the Haemorrhagic stroke data
provide additional information about μ2 and ρ2 as well as all
of the information about μ1, ν1 and ρ1. It is not uncommon
in health care data for specific subsets of the data to provide
more information about certain patient pathways, and this
can be taken advantage of as we have here.

We began by using the TIA data only to obtain
preliminary estimates of θ0, θ1, μ3, ν3, ρ3 and ρ4. With these
parameters held fixed, we then used the Cerebral Infarction
data only to obtain preliminary estimates of γ2, β2, μ2,
ν2 and ρ2. Combining the TIA and Cerebral Infarction
data, we updated the preliminary estimates of the 11
parameters. Next, with these parameters held fixed, we used
the Haemorrhagic stroke data only to obtain preliminary
estimates of γ1, β1, μ1, ν1 and ρ1. Finally, the preliminary
estimates were used as starting values to estimate all 16
parameters using all of the data combined.

The results of the initial estimation process showed that
three of the initial parameters (namely, ν1, ν2 and ρ1)
were not meaningfully different from zero, as the associated
p-values were all in excess of 90 percent. We therefore
revised the original state transition diagrams to eliminate
these transitions. These eliminations also make sense, in that
Phase 1 pertains to seriously ill patients, for whom any sort
of discharge other than by death is unrealistic. Similarly,
there would be no reason to transfer patients from Phase 2
to a nursing home without availing of the normal amount of
recovery time provided by Phase 3. The resulting diagram
appears in Fig. 2.

After setting ν1, ν2 and ρ1 to 0, we obtained the
parameter estimates shown in Table 2. An asymptotic
covariance matrix is obtained as the inverse of the observed
information matrix evaluated at the maximum likelihood
estimates. The latter matrix is found as a byproduct of
the numerical method used to maximize the log-likelihood
function. The standard error estimates shown in Table 2 are
the square roots of the diagonal elements of the asymptotic

Table 2 Parameter estimates

Parameter Estimate Std Error Z-Stat p-value

γ1 6.63570 1.21893 5.44388 0.00000

β1 −0.03652 0.01631 −2.23902 0.02515

γ2 −3.06931 1.22697 −2.50153 0.01237

β2 0.07153 0.01667 4.29057 0.00002

θ0 −8.66118 1.48644 −5.82680 0.00000

θ1 0.08801 0.01828 4.81391 0.00000

μ1 22.10156 4.95434 4.46105 0.00001

μ2 2.48820 0.37993 6.54912 0.00000

μ3 1.56162 0.20294 7.69509 0.00000

ν3 1.27849 0.17391 7.35165 0.00000

ρ2 11.76860 0.99634 11.81180 0.00000

ρ3 3.41989 0.38393 8.90762 0.00000

ρ4 63.92514 4.11394 15.53865 0.00000

covariance matrix. The Z-statistics are simply the parameter
estimates divided by the standard errors, and each can be
used to test the hypothesis that the corresponding parameter
equals 0. The p-values, based on asymptotic normality of
the parameter estimators, indicate rather strong evidence
against the null hypothesis in each case.

In order to check the fit of our model, we considered
comparisons of nonparametric estimates of the cumulative
intensity functions for the different modes of discharge with
estimates of the cumulative intensity function based on our
fitted model. Since the latter estimates depend on age at
admission, we examined nonparametric estimates for three
age groups. Specifically, we plotted the well-known Nelson-
Åalen estimates of the cumulative intensity function for
each of the age intervals [60, 70), [70, 80) and [80, 90) for
each type of stroke and each mode of discharge for which
we have a meaningful number of discharges. These plots
are shown in Figs. 6, 7, 8, 9, 10 and 11 in the Appendix.
Along with the Nelson-Aalen estimates in each graph, we
also plotted the fitted model cumulative intensity function
for the endpoints and midpoint of the age interval.

For most of the graphs, we observe a reasonably good
fit. The fitted model estimates conform fairly well with
the nonparametric estimates, and when the model estimates
are not very close, they tend to stay within the 95 percent
confidence limits for most length of stay values.

7 Results

At this point, we turn our attention from parameter
estimation to some examples of what the model can be
used for. The first such measure we present indicates,
for three ages, the likelihoods of the possible destinations
upon discharge for each initial recovery phase. The results
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presented in Table 3 indicate the relative likelihoods
as a percentage for an individual aged 65, 75, and
85, respectively. We observe that as patients age, more
Haemorrhagic patients tend to die and fewer are discharged
to their usual residence. Relatively speaking, there is much
less impact upon the Infarction patients, with a very small
increased likelihood of mortality, accompanied by a larger
likelihood of going to a nursing home. These relative
likelihoods are in keeping, qualitatively speaking, with what
one might anticipate from the relative severity of these two
types of stroke. For TIA patients, we see that the likelihoods
of death and discharge to nursing home increase with age,
and the likelihood of discharge to usual residence decreases
with age. This is expected, as the probability of a more
severe TIA, for which the patient begins in phase 3, is an
increasing function of age.

Figure 3 presents the cumulative probability of discharge
as a function of the type of stroke for each of the modes
of discharge: death, nursing home, and usual residence (i.e.
home). In the case of haemorrhagic strokes (top panel),
we see that the deaths that occur tend to happen quickly,
with most of them having happened within the first 10 days
since onset of the stroke. In contrast, the discharges to the
usual residence take much longer, as an extended period is
needed to pass through the corresponding recovery phases
before being discharged home. As there are very few cases
on record of discharge to a nursing home in the event of
haemorrhagic stroke, little can be inferred, other than the
fact that it tends to take a lot of time.

The middle panel of Fig. 3 reveals that the chance of
death is markedly reduced in the case of cerebral infarctions,
and that those deaths that do occur tend to happen over the
course of the stay (perhaps due to onset of a further stroke
event while recovering, as the data does not record such

Table 3 Ultimate destination percentage by age and type of stroke

Death Nursing home Usual residence

Age 65

Haemorrhagic 38.5 4.0 57.5

Cerebral infarction 19.4 5.2 75.5

TIA 1.3 1.0 97.7

Age 75

Haemorrhagic 45.1 5.8 49.1

Cerebral infarction 20.5 8.4 71.1

TIA 3.0 2.4 94.6

Age 85

Haemorrhagic 52.5 7.3 40.1

Cerebral infarction 21.9 12.0 66.1

TIA 6.6 5.4 88.0

distinctions). The likelihood of discharge to a nursing home
is also greater than either of the other types of stroke, but
even in this case, death is about twice as likely as discharge
to nursing home.

The story in the case of TIAs is rather straightforward,
with in excess of ninety percent of patients being discharged
to their usual residence. Once again, from a medical
perspective, one might suspect that those few patients who
die or are discharged to a nursing home are likely to have
incurred another stroke, but as our data does not provide this
information, we cannot make such a conclusion from the
model.

Figure 4 displays how the mean residual length of
stay (LOS) depends upon the patient’s age and type of
stroke, as a function of their incurred LOS. For patients
of age 65, there is little difference between the curves
for Haemorrhagic and Infarction patients, and what little
difference there is tends to diminish quickly. We observe
that the mean LOS for Haemorrhagic patients is smaller
than that for Infarction patients; this reflects the increased
mortality of the former relative to the latter. We observe
an increased mean residual stay for TIA patients; this
reflects the fact that after a few days, all of the quick
recoveries have occurred, and the pertinent patients have
been been discharged. In the limit, all curves tend to a mean
residual stay of about 60 days, indicating that all patients
are virtually assured of being in the last common recovery
stage.

The situation for patients of ages 75 and 85 is much
the same, except that we note a larger initial discrepancy
between Haemorrhagic and Infarction patients, reflecting
increased likelihood of death for Haemorrhagic patients at
older ages. The TIA curve rises more quickly to its limiting
value, reflecting a larger number of patients suffering the
more severe type of TIA.

Figure 5 expands upon the foregoing analysis by
presenting the probabilities of various lengths of further
stay for Haemorrhagic and Infarction patients as a function
of the incurred stay. As expected, the longer a patient has
stayed, the longer we expect the residual stay to be, since
the quicker recoveries have already been discharged. For a
patient of age 65, we still observe a meaningful difference
in terms of the length of further stays for patients who have
already stayed two months versus those who have stayed
one year. However, this distinction has virtually disappeared
for patients of age 75, and by the time the patient has
reached 85 years of age, there is virtually no difference even
after one month of stay.

Table 4 presents the mean lengths of stay by age,
type of stroke, and ultimate destination. We note that the
Haemorrhagic patients who die tend to do so within a
few weeks of admission. A comparison of the overall
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Fig. 3 Cumulative probability
of discharge by type of stroke
and destination
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mean lengths of stay reveals a shorter average stay for
Haemorrhagic patients than for Infarction patients, and this
only makes sense by accounting for the higher mortality
rate in the first recovery phase. This pattern is observed
for all three age groups, where older patients tend to stay
in hospital longer, irrespective of the diagnosis, with the
exception of the TIA patients whose stroke seems to be so
minor that age is not a factor. In all cases patients who
died in hospital had a shorter stay in hospital than patients
who were discharged to home, and this latter group of
patients had a shorter stay in hospital than patients who
were discharged to a private nursing home. This pattern is
as expected, as the first group are very ill and do not survive
for long, whereas we would expect the last group to require
the longest recovery and rehabilitation period in hospital.

8 Discussion

Overall, modelling can be used to characterize the whole
system of stroke patient care and the associated pathways,
integrating hospital and community services to provide
tools for describing current services, assessing the impact
of proposed changes, and predicting resource requirements
in future scenarios. Our current focus is on developing
models that use routinely available hospital discharge
data to describe patient admissions, movements through
hospital, and discharge to, inter alia, community services,
such as nursing homes. By describing movements of
patients along pathways, a model can be used to facilitate
performance modelling, bed occupancy analysis, capacity
planning, and prediction of patient numbers in different
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Fig. 4 Mean residual length of
stay by age and type of stroke
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components of the overall care system. By using a model
to quantify resource consumption, and costs of such
proposed interventions, we can compare different solutions
and determine optimal strategies for the whole integrated
patient care system. Within stroke patient care, there are
many possible interventions which straddle hospital and
community services, which often operate separate budgets.
However, by utilizing planning tools that encapsulate
the whole system we can determine optimal integrated
strategies, to the overall benefit of the service and the
patient.

For such models to be effective, a robust estimation
process and thorough evaluation is essential. However, to
achieve these goals a large amount of data is required
even to estimate a small number of parameters. This is the
case in our current study where the variables we consider
are LOS, discharge destination, age, and diagnosis, as

extracted from the, routinely available, discharge summary
data. In addition, a number of the variables are continuous
(LOS and age), potentially increasing the number of
parameters to estimate, even when we employ models. On
the other hand, the LOS distributions are highly diverse,
varying from hospital to hospital according to patient
management strategies and catchments. In addition, the
situation is typically highly dynamic with management
practices changing rapidly. These sampling issues have
an impact on validation as, with such inherently limited
sample sizes, we cannot afford to perform model testing
based on hold-out samples; as a result, we have, in this
paper, validated the model using all the data for estimation
and Z-tests to determine if the parameters are significantly
different from zero. This strategy is primarily proposed in
this paper because it is difficult to get enough data so that
the LOS distribution is stable, as discussed. As a result, the
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Fig. 5 Probability of remaining
in hospital by age, type of
stroke, and length of stay to date
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model should only be used for short-term predictions and to
identify the way in which the system is changing.

Modelling is a particularly useful approach for under-
standing stroke patient pathways. Due to the potentially
serious and debilitating nature of stroke, many patients have
a prolonged LOS in hospital, often considered to be an inef-
ficient use of resources, as well as a distressing time for
the patients and their families. Using modelling, we can
create scenarios that explore the potential benefits of inter-
ventions such as early discharge schemes, drug therapy e.g.
thrombolysis (clot busting drugs), surgery and CT scan-
ning, that impact on crucial aspects such as LOS in hospital,
destination on discharge, and quality of life subsequent to
discharge. Overall LOS is a key performance indicator for
hospital services, and it is therefore useful to be able to anal-
yse the different components of LOS and assess the impact
of key interventions, in terms of their impact on LOS for

different hospital phases, diagnoses and demographic pro-
files. A particular aspect of this is the influence of discharge
delays on overall LOS where, due to the lack of availability
of a suitable placement, patients may undergo an extended
stay in hospital. In addition, delayed discharge not only neg-
atively affects the hospital performance metrics, but also has
other serious consequences for the healthcare system such
as bed blocking and potentially a negative effect on patients’
health and quality of life. In the next few paragraphs we
describe how our initial model can be used to accommo-
date such interventions by modifying the rates or structure
of the model. Possible mechanisms follow for early dis-
charge, based on rate modification, and thrombolysis, based
on structure modification.

For early discharge we have used a previous (much less
parsimonious) phase-type model fitted to the same data as
used in the current paper to assess the effect of increasing
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Table 4 Mean length of stay (Days) by age, type of stroke and ultimate
destination

Death Nursing home Usual residence All

Age 65

Haemorrhagic 18.6 81.3 33.7 29.8

Cerebral infarction 38.2 77.4 29.8 33.9

TIA 58.3 58.3 7.2 8.4

Age 75

Haemorrhagic 19.0 78.5 38.6 32.1

Cerebral infarction 44.2 73.4 33.5 39.0

TIA 58.3 58.3 9.3 12.0

Age 85

Haemorrhagic 19.0 75.4 45.3 33.7

Cerebral infarction 49.7 68.9 38.9 44.8

TIA 58.3 58.3 14.3 19.6

the delay in discharge to private nursing home (PNH) on
the overall LOS in hospital [16]. A systematic increase
in the LOS of patients discharged to PNH (achieved by
modifying the rates of discharge to PNH appropriately)
resulted in an increase of overall average LOS in hospital,
as expected. Results for delayed discharge were further
explored in McClean et al. [16], where the relationship
between average overall LOS and delay in discharge to
PNH, when the patients have to queue for discharge, was
explored. Here, the effect of the queue on overall LOS was
much more dramatic than was the case without queueing, as
expected. For our current model, a similar approach is likely
to yield similar results and provide insights into the impact
of potential service improvements.

The previous model introduced in McClean et al. [16]
was also used as a basis for assessing the effective of
thrombolysis on costs and quality of life [8]. For those
patients who receive thrombolysis, the LOS in acute care
has been estimated to be reduced by 2 days [21]. Also it
is the case that only patients with a Cerebral Infarction
can benefit from thrombolysis. We therefore introduce a
new state (Phase 2*) to the model, to represent initial
hospitalization for patients with Cerebral Infarction who
have been thrombolysed. There is then a probability of
thrombolysis and 1- or not being thrombolysed, on entry to
this state. All transitions from Phase 2* are as for Phase 2
except that for each possible transition the rate is adjusted to
reduce the average LOS in phase 2* by 2 days. The impact
of these interventions on patients’ LOS can then be found as
for the primary model, as presented in Section 4 (the theory)
and Section 5 (the results). Costs can be associated with
these stays as can quality-adjusted life years (QALYs); see
for example Barton et al. [1].

9 Conclusions and further work

We have developed a phase-type modelling approach with
particular applicability to stroke patient care. Since in most
cases, there are multiple outcomes for patients, such as
discharge to normal residence, nursing home, or death,
we have presented a phase-type model with a number of
absorbing states. In terms of modelling stroke patients,
we are particularly interested in discharges to private
nursing homes, which may be responsible for bottlenecks,
and resulting delayed discharge. Such delays can have a
significant effect on expected LOS in hospital, which is a
key performance metric.

Based on data for stroke patients from the Belfast City
Hospital, various scenarios have been explored with a focus
on modelling phases which represent different stages of
severity of illness and transition rates which are functions
of important covariates, in this case age. The admission
phase is characterised by the type of stroke, where different
types of strokes have corresponding severity of illness and
outcome. The results demonstrate the relationship between
phase of discharge and expected total LOS, including the
impact on bed occupancy. By exploring such scenarios, the
key mechanisms for delay can thus be explored and their
impact assessed.

Our current framework represents initial work towards
developing integrated models for stroke services, including
both hospital and community care, with the aim of
supporting integrated planning. However, we believe that it
also has considerable potential to be extended to include
more detailed and explicit models of stroke services that
allow us to assess complex scenarios involving interactions
between services. Also, our current analytic model has the
advantage that the results are based on routinely available
discharge data. Another important aspect of extending our
current framework is to attach costs to various options
within the model. For example, we would like to be able to
answer questions such as: should additional resources be put
into thrombolysis for patients immediately after they have
suffered a stroke, or is it better to focus on rehabilitative
services in the community? Stroke is an excellent paradigm
example enabling modelling of a whole health and social
care system. The experience gained and techniques learned
are likely to be relevant to the health and care of older
persons in general. Phase-type models have an important
role in this work.
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Appendix: Goodness of fit graphs

Fig. 6 Nelson-Aalen & fitted
model estimates of the
cumulative intensity function for
TIA patient discharges to their
usual residence. Nelson-Aalen
estimates appear in black along
with approximate 95%
confidence limits (dashed). The
red curves represent the fitted
cumulative intensity function at
the endpoint ages and middle
age
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Fig. 7 Nelson-Aalen & fitted
model estimates of the
cumulative intensity function for
Cerebral Infarction patient
deaths. Nelson-Aalen estimates
appear in black along with
approximate 95% confidence
limits (dashed). The red curves
represent the fitted cumulative
intensity function at the
endpoint ages and middle age
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Fig. 8 Nelson-Aalen & fitted
model estimates of the
cumulative intensity function for
Cerebral Infarction patient
discharges to their usual
residence. Nelson-Aalen
estimates appear in black along
with approximate 95%
confidence limits (dashed). The
red curves represent the fitted
cumulative intensity function at
the endpoint ages and middle
age
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Fig. 9 Nelson-Aalen & fitted
model estimates of the
cumulative intensity function for
Cerebral Infarction patient
discharges to a private nursing
home. Nelson-Aalen estimates
appear in black along with
approximate 95% confidence
limits (dashed). The red curves
represent the fitted cumulative
intensity function at the
endpoint ages and middle age
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Fig. 10 Nelson-Aalen & fitted
model estimates of the
cumulative intensity function for
Haemorrhagic patient deaths.
Nelson-Aalen estimates appear
in black along with approximate
95% confidence limits (dashed).
The red curves represent the
fitted cumulative intensity
function at the endpoint ages
and middle age
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Fig. 11 Nelson-Aalen & fitted
model estimates of the
cumulative intensity function for
Haemorrhagic patient discharges
to their usual residence.
Nelson-Aalen estimates appear
in black along with approximate
95% confidence limits (dashed).
The red curves represent the
fitted cumulative intensity
function at the endpoint ages
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