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A key requirement for precision medicine is the accurate identification of patients that would respond to a specific treatment or
those that represent a high-risk group, and a plethora of molecular biomarkers have been proposed for this purpose during the last
decade.Their application in clinical settings, however, is not always straightforward due to relatively high costs of some tests, limited
availability of the biological material and time, and procedural constraints. Hence, there is an increasing interest in constructing
tissue-based surrogate biomarkers that could be applied with minimal overhead directly to histopathology images and which could
be used for guiding the selection of eventual further molecular tests. In the context of colorectal cancer, we present a method for
constructing a surrogate biomarker that is able to predict with high accuracy whether a sample belongs to the “BRAF-positive”
group, a high-risk group comprising V600E BRAF mutants and BRAF-mutant-like tumors. Our model is trained to mimic the
predictions of a 64-gene signature, the current definition of BRAF-positive group, thus effectively identifying histopathology image
features that can be linked to a molecular score. Since the only required input is the routine histopathology image, the model can
easily be integrated in the diagnostic workflow.

1. Introduction

The pathologic assessment of the tumor specimen provides
the essential information for patient management, outcome
estimation, and treatment decision. In the case of colorec-
tal cancer (CRC), the main parameters of the pathologic
assessment include the TNM stage, histologic grade, tumor
type, vascular infiltration, and status of the resectionmargins
[1]. Aside from these classical parameters, the discovery of
molecular drivers and markers for resistance led to refined
prognostic and predictive models [2]. For example, it has
been shown that KRAS-mutated tumors are resistant to
anti-EGFR treatment [3, 4]. In parallel several molecular
taxonomies partially explaining intertumoral heterogeneity
have been proposed for CRC [5–7]. Of interest for the current
study is the identification of a high-risk group ofCRCpatients

consisting of V600E BRAF mutants and a sizeable BRAF-
wild type subset of tumors which display a similar pattern
of gene activation, the so-called BRAF-mutant-like tumors
[8]. This group is collectively called BRAF-positive, as the
defining 64-gene signature has positive values for these cases
[8]. These are only a few of the plethora of gene expression
signatures proposed for CRC (in other types of cancer, the
situation being similar) and they all have in common the
requirement for profiling a rather large panel of genes and
the limited usage in clinical practice. Among the reasons
for their slow adoption are the associated costs for tests
and limited availability of biological material. On the other
hand, if one could robustly predict the outcome of some of
these molecular tests directly from the data available for the
pathologic assessment, significant speed-ups and cost cuts
would be achieved. This is one of the main justifications of
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the present study, in which we propose an image analysis
model for recognizing the “BRAF-positive” cases of CRC,
that is, to predict the (dichotomized) outcome of the BRAF
signature [8]. A second and broader in scope justification is
the interest in identifying and understanding the connections
between tumor architecture and gene activity as captured by
transcriptomics.

Such connections between phenotypical appearance of
the tumor and gene activity have been established before. For
example, in the case of breast cancer the lobular phenotype
is associated with deletions in the CDH1 gene (encoding E-
cadherin) [9] and the mesenchymal/metaplastic features are
predictive in the case of AR-positive triple negative breast
cancers [10]. In the case of colorectal cancer (CRC) the associ-
ation ofmucinous/serrated carcinomaswithBRAFmutations
is well known and we have shown that such association can
be extended to the group of “BRAF-mutated-like” tumors,
characterized by a specific genomic signature [8]. Similarly,
connections between nuclear morphometry and molecular
data have been identified in glioblastoma [11] and exploited
in a multimodal prognostic signature in breast cancer [12].
When deriving molecular subtypes for colorectal cancer, we
have also identified tumor architecture patterns preferentially
enriched in those subtypes [5].These observations all support
the idea that genomic and phenotypic traits can be put in
correspondence and, by consequence, that some phenotypic
features could potentially be used as proxies for genomic
markers.

In the present work, we propose an approach at building
a histology image-based classifier able to predict the “BRAF-
positive” status, as defined by the genomic signature.Thegene
expression data for the signature is supposed to be obtained
from the same (or adjacent) tumor section as the histopathol-
ogy whole-slide image.The key point of our approach resides
in a convenient summarization of the imaging data into
a code vector used for building the classification model.
Apart from our own earlier results [13], there were no other
studies to guide our selection of image features useful for
this task. Hence, we took a data-driven approach in which
the implicit hypothesis was that local tumor appearance
contained enough information to build a predictor for the
genomic “BRAF-positive” status. Thus, our approach was
prior-free, in the sense that we did not restrict ourselves to
a set of predefined (by an expert pathologist) measurements,
with the potential drawback of limiting interpretability of the
results.

Having a tissue-based surrogate biomarker for a genomic
test allows an immediate integration in the routine diagnostic
workflow and may provide the pathologist with hints for
further genomic testing. This integration is supported by the
increased adoption of digital pathology solutions. Addition-
ally, such models can be applied to pathology image archives
for the selection of cases for retrospective studies.

2. Materials and Methods

2.1. Data. The data collection used consisted of 𝑛 = 291
samples for which both histopathology whole-slide images
and clinical data (includingBRAF andKRASmutation status)
were available, along with gene expression necessary for

Table 1: Summary of main clinical parameters.

Parameter N Proportion (%)
Stage

Stage II 55 18.9
Stage III 236 81.1

MSI
MSI-H 12 4.1
MSI-L & MSS 279 95.6

V600E BRAF status
Mutated 16 5.5
Wild type 275 94.5

KRAS (codons 12 and 13) status
Mutated 113 38.8
Wild type 178 61.2

BRAF score
Positive 59 20.3
Negative 232 79.7

Mucinous
Yes 33 11.3
No 258 88.7

computing theBRAF score [8].These sampleswere a subset of
the data collected in the PETACC-3 clinical trial [14] andwere
selected based on the image quality and availability of the
mutation information. A summary of the data is presented
in Table 1 detailing the following clinical and molecular
parameters, in this order: tumor stage; microsatellite sta-
bility status (high microsatellite instability (MSI-M) versus
low microsatellite instability (MSI-L) or microsatellite stable
(MSS)); mutation status of BRAF (V600E mutation) and
KRAS (in codons 12 and 13) oncogenes; BRAF score (from
the genomic signature) and the mucinous histology status of
the tumor.

For each sample, a whole-slide image of haematoxylin-
eosin (H&E) stained tumor sections was acquired at 20x
magnification, using Hamamatsu NanoZoomer C9600 scan-
ner. The resulting images were compressed by the image
acquisition software using JPEG standard (at 80% quality)
and stored in the proprietary NDPI format. The resolution
of the images was 455 nm/pixel (equivalent to 55824 DPI) for
a typical size of 100,000 × 50,000 pixels (varying with the size
of the tissue section). The images were exported in standard
TIFF format using OpenSlide software library [15].

2.2. Image Preprocessing. Thewhole-slide images were down-
scaled to an equivalent 5x magnification and only tumoral
regions were retained from each sample (manually cut
following the pathologist’s annotations), the pixels outside
the tumors being set to zero. To obtain the intensity signal
corresponding to the haematoxylin and eosin dyes, the color
deconvolution method from [16] was used, resulting in two
single channel (intensity) images (H- and E-images).

2.3. Feature Extraction and Image Summarization. Our main
assumption for image data modeling was that local appear-
ance of the tissue section (local texture) contains enough
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information to yield discriminative features. However, the
representation of an image in terms of a set of local descrip-
tors still does not allow a direct comparison of two images
(required for building a classifier); hence further summariza-
tion and standardization of the representation are needed.
A suitable framework is represented by the image-retrieval
applications based on Bag-of-Visual-Words methods [17]. In
this framework, the local descriptors are used to construct a
codebook for image representation (the information in the
image is highly compressed) and the image is recoded in
terms of frequencies of elements (visual codewords) from the
codebook. We adapted this general approach to the problem
at hand, as follows.

We decided to use a two-level approach to image repre-
sentation with the first level (L1) being generic for all images
and the second one (L2) specific to each class. The main
reason behind this approach was that the first coding level
was designed to capture the appearance of small structures
(several cells, patches of stroma, parts of the colon crypts,
etc.), while the second level was intended to capture larger
arrangements of basic structures, which might be specific to
each class. Additionally, since the classification problem was
highly imbalanced, such separation would allow structures
of both classes to be equally represented. Such multilevel
approach has been already used in natural scene categoriza-
tion [18]; however in our method we used the class label in
generating the second level representation.

The first level (L1) of coding considered local patches of
size 32 × 32 pixels as the basic processing unit. For such
patches, we used the Gabor descriptors computed on bothH-
and E-images for each sample. These descriptors were based
on the real component of the Gabor filter [19]:

𝐺 (𝑥, 𝑦; ], 𝜃, 𝜎) = exp(−𝑥2 + 𝑦22𝜎2 )
× exp (2𝜋]𝑗 (𝑥 cos 𝜃 + 𝑦 sin 𝜃)) ,

(1)

where 𝑗 = √−1 and ] was the frequency, 𝜃 the orientation,
and 𝜎 the bandwidth of the Gaussian kernel, respectively.
The parameters were fixed throughout all experiments: 𝜎 ∈{1, 2√2}, 𝜃 ∈ {𝑘(𝜋/4) | 𝑘 = 0, . . . , 3}, and ] ∈ {3/4, 3/8, 3/16}.
In total, there were 24 Gabor filters that led to a 48-valued
descriptor vector for each H- and E-image, with the first 24
values representing the mean response and the last 24 values
representing the variance of the filter responses, over the
considered 32 × 32 pixels’ patch. Thus, to each local patch
from the original images corresponded 96-value descriptor
vectors obtained by concatenating the Gabor descriptors of
the H- and E-images.

From each image in the training set (which will be gener-
ated within the cross-validation loop, see Classifier Design),1,000 random patch descriptors were selected for building
the L1 codebook using the standard k-means clustering, with𝐾

1
= 128 clusters. Then, all the patches were assigned a code1, . . . , 𝐾

1
based on the closest cluster (codeword) from the L1

codebook.
The second level of coding (L2) considered neighbor-

hoods of 15 × 15 L1 patches (i.e., 480 × 480 pixels). For each

such neighborhood, the descriptor computed was the vector
of frequencies of the L1 codes (a vector with 𝐾

1
values).

Similarly to L1 coding, a new codebook was constructed
by clustering L2 descriptors (500 random L2 descriptors
selected from each image) with 𝐾

2
= 128 clusters. Two

such codebooks were constructed, one of each class (BRAF-
positive and BRAF-negative), and then both used for coding
each image, leading to a representationwith codes 1, . . . , 2𝐾

2
.

The process described above led to a recoding of each
image in terms of a histogram with 2𝐾

2
bins, each corre-

sponding to an L2 code.Wenote that, in all the steps for image
coding, the patches containingmore than 50%of background
pixels were excluded.

2.4. Classifier Design. After the image recoding step, to each
image corresponded a 2𝐾

2
-value vector which constituted

the input data for the classifier design. The classifier design
included the following main steps:

(1) Classifier feature selection: features (elements of the
input vectors) were ordered based on recursive fea-
ture elimination (RFE) method [20] and subsets of
features of sizes 𝑓 = 30, 50, . . . , 130 (approximately
half of total number of features) were considered for
Step (2).

(2) For each subset of features, a Support VectorMachine
(SVM) [21] with Radial Basis Function (RBF) kernel
was trained and its metaparameters were optimized
in an inner cross-validation loop. Its performancewas
estimated by cross-validation and the estimated area
under the ROC curve (AUC) recorded.

(3) The number of features yielding the maximum AUC
was deemed optimal and the final SVM was trained
on that number of features.

To estimate the performance of the system, the image
recoding procedure followed by Steps (1)–(3) above was
embedded into an external 10-fold stratified cross-validation
loop, thus ensuring an unbiased estimation. The vector of
predicted labels within this outer cross-validation was taken
to represent typical predictions of the model and used in
statistical analyses to avoid overly optimistic conclusions that
would have been obtained from the predictions made by the
model trained on the full data set.

2.5. Statistical Analyses. The main performance parameter
for the classifier was AUC, but sensitivity and specificity
were equally measured. For sensitivity and specificity 95%
confidence intervals were computed using Agresti-Coull
approximation [22] while for AUC they were obtained by
bootstrap [23]. To test the association between individual
image features and the class label, univariable logistic regres-
sion models were fit and the sign of the resulting coefficient
was used to determine the sense of the association. To test for
the association between clinical variables and classifier pre-
dictions we used 𝜒2-test on 2 × 2 contingency tables. Survival
analysis was performed using survival package (version 2.39-
4) from R statistical computing environment (version 3.3.1,
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Figure 1: Analysis of the classifier’s predictions. (a) Waterfall plot of the BRAF scores and the corresponding predictions (color-coded). (b)
The relationship between the genomic score (𝑥-axis) and the prediction margin (𝑦-axis) for the misclassified samples.

Table 2: Confusion matrix for classifier predictions. The ground
truth is given by the genomic signature.

Predicted
BRAF-negative

Predicted
BRAF-positive

Genomic BRAF-negative 221 11
Genomic BRAF-positive 9 50

http://www.r-project.org). The estimation of hazard ratios
was obtained from Cox proportional hazards regression in
the absence of any other covariates, while the comparison of
survival experiences of different subgroups was assessed by
log-rank test (Mantel-Haenszel test). Statistical significance
level was chosen to be 𝑝 = 0.05 and no adjustment for
multiple hypotheses testing was performed.

3. Results and Discussion

3.1. Image-Based Predictor. Theestimated performance of the
classifier was AUC = 0.938, 95% CI = (0.903–0.972), with a
default operating point yielding a sensitivity Se = 0.848, 95%
CI = (0.733–0.920), and a specificity Sp = 0.926, 95% CI =
(0.917–0.974), corresponding to an accuracy Acc = 0.931,
95% CI = (0.896–0.956). The optimal number of features
varied throughout the cross-validation iterations between 70
and 110. In Table 2, the confusion matrix from the cross-
validation predictions is shown.

The relationship between the image-based classifier pre-
dictions (from cross-validation) and the genomic score can
be seen in Figure 1. The misclassified samples are covering
the whole range of genomic scores (Figure 1(a)). For the
SVMs, the margin of a sample can be viewed as a confidence
in the prediction; hence we were interested in studying the
classification errors in the context of their corresponding
margins. In Figure 1(b), the margins are shown as a function
of genomic score. It appears that smaller margin corresponds
to larger (in absolute value) BRAF scores indicating that the
confidence in those (erroneous) predictions is rather low.

A different trade-off between sensitivity and specificity
could be obtained by adapting the classifier’s threshold: for
example, an operating point yielding Se = 0.915, 95% CI =
(0.812–0.967), and Sp = 0.776, 95%CI = (0.718–0.825), would
favor the detection of BRAF-positives.

3.2. Relationship with Clinical Parameters. Further investiga-
tion of the classifier’s errors showed that most of the false
negatives were KRASmutants (6 out of 9) while the majority
of the false positives were double wild type (BRAF and KRAS
wild type). We also note that the classifier labeled two cases
(out of 16) of BRAF mutant tumors as “BRAF-negative”;
however, one of them had also a negative genomic score. The
predictions were also associated with the mucinous status
of the tumors (𝜒2 test𝑝 value = 0.0066), the microsatellite
instability status (𝜒2 test𝑝 value < 0.0001), and the grade
(𝜒2 test𝑝 value = 0.0006) as expected [8] but not with
other clinical parameters including KRAS mutation status
and tumor stage.

The BRAF genomic signature was shown to have a strong
prognostic value for overall survival (OS) and survival after
relapse (SAR) and limited value for relapse-free survival
(RFS) [8]. In the subset of samples considered, the genomic
signature maintained its prognostic value and the classifier
predictions inherited, to some degree, this property: the
predictions were prognostic for OS (𝑝 = 0.007,HR = 1.81,
95% CI = (1.17–2.81)) and SAR (𝑝 = 0.010,HR = 1.89, 95%
CI = (1.16–3.10)) but not for RFS (𝑝 = 0.072,HR = 1.44, 95%
CI = (0.97–2.13)).

3.3.The Predictive Image Features. We investigated the struc-
ture of the final model generated using the complete data set,
on which both image recoding and the classifier design steps
were applied as described above. For this model, 90 features
(corresponding to codewords from the L2 codebook) were
selected as the optimal set and using the logistic regression
coefficient (from single-variable models) they were divided
into “positive features” (preferentially present in BRAF-
positive cases, 58 features in total, see Figure 2) and “negative

http://www.r-project.org/
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Figure 2: “Positive features”: image patterns associated with BRAF-positive class. Each feature is a 480 × 480 image patch and corresponds
to an L2 codeword. Higher resolution image is available at DOI: 10.5281/zenodo.376999.

Figure 3: “Negative features”: image patterns associated with BRAF-negative class. Each feature is a 480 × 480 image patch and corresponds
to an L2 codeword. Higher resolution image is available at DOI: 10.5281/zenodo.376999.

features” (preferentially present in BRAF-negative cases, 32
features in total, see Figure 3). We note that a number
of features were dedicated to representing the border of
the tumors and that some were partially affected by the
markings present on the slides. It appears that the color
deconvolution used in combination with Gabor descriptors
made the representation robust to this type of noise. A second
observation was that there were, roughly, twice as many
image features representing the positive class compared to

the negative one. This was to some degree not unexpected:
indeed, in general, the BRAF-mutated and MSI-H CRC
tumors show more intratumoral heterogeneity than the rest;
however our results may suggest that this characteristic is
common to a larger group of tumors.

The exact contribution of each feature to the final decision
is less obvious as their involvement in the classifier’s predic-
tion is through the RBF kernel and since the support vectors
(actually a number of images from the training set) are

https://zenodo.org/record/376999
https://zenodo.org/record/376999
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(a) (b)

(c) (d)

Figure 4: Spatial distribution of (positive and negative) features in two correctly classified images. The regions with low contrast were not
involved in the classification process. (a-b) A BRAF-positive tumor: (a) positive image features; (b) negative image features. (c-d) A BRAF-
negative tumor: (c) positive image features; (d) negative image features. Higher resolution images are available at DOI: 10.5281/zenodo.376999.

defining the separation boundary between classes. However,
a visualization of their spatial distribution in images may
help in qualitatively understanding the model: in Figure 4
two examples of correctly classified tumors are shown. It
appears that the features identified as “positive features” cover
a relatively larger region in the BRAF-positive tumors than
the “negative features.” The inverse relationship holds for the
BRAF-negative tumors.

We also investigated whether the codebooks (for both
levels of coding, L1 and L2) are biased towards one or a
small group of images. We recall that the codebooks have
been generated using an equal number of image patches
randomly selected from the images. None of the clusters
of the codebooks was dominated by a particular image,
indicating that the codebooks capture general features.

4. Conclusions

We presented an image-based classifier that was able to
predict with high accuracy the outcome of a genomic score.
The input images were scans of H&E pathology slidesmaking
the system suitable for integration in the routine diagnostic
procedures. Since the predictions of the classifier (as those of
the corresponding genomic score) were not correlated with
the TNM staging, they brought an independent indication
of high-risk tumors (in the case of positive predictions). The
system could also be applied for the retrospective selection of
cases from tumor archives, reducing the volume of cases that
an expert would need to evaluate.

Another important outcome is the observation that
some gene expression based signatures may be translated
into an image-based surrogate biomarker. Such tissue-based
biomarkers may be used as a filtering step before the genomic
tests.
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